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ABSTRACT
We consider a scattering system consisting of a dielectric film deposited on a semi-infinite metal, and focus on
the wavelength dependence of the total integrated scattering and angle resolved scattering from such a system. In
particular we study theoretically by a large scale rigorous numerical simulation approach the reflectivity, 7?.(A) ,as well
as the total scattered energy, U(A), of such systems as functions of the wavelength of the incident light. The scattering
system consists of vacuum in the region X3 > d1 + ( i) , a dielectric film in the region , d2+ (2 1 ) < x3 < d1 + (i(xi),
and a metal in the region X3 < d2 + C2(xi). This system is illuminated from the vacuum side by p-polarized light
whose wavelength is allowed to vary from O.2im to 12pm. The film is assumed to have a dielectric function
that is insensitive to the wavelength of the incident light. In obtaining the numerical results reported here the metal
substrate is taken to be silver. The dielectric function of silver for a given wavelength is obtained by interpolation from
experimental values. The surface profile functions, ( 21) , are assumed to be either zero or single-valued functions
of x1 that are differentiable as many times as is necessary, and to constitute zero-mean, stationary Gaussian random
processes. Their surface height auto-correlation function is characterized by a Gaussian power spectrum. We study
and discuss the wavelength dependence of 7.(A) and U(A) for several scattering systems obtained by turning on and
off the surface profile functions Ci,2(xi) and/or the correlation between these two surface profile functions.

Keywords: reflectivity, dielectric film, surface roughness, Fabry-Perot interference modes, pseudo-Brewster effect

1. Introduction
The use of light scattering, both total integrated scattering and angle resolved scattering, to measure surface roughness
has a long history in both physics and technology.'7 Not only has the method been the subject of a large number
of theoretical investigations, but light scattering systems have also been used in practical applications to access the
surface quality of both optical components and mechanical parts.

The purpose of the present work is to study theoretically, by the use of rigorous numerical simulations, the wave-
length dependence of the light scattered from one-dimensional, randomly rough, metallic surfaces with a dielectric
coating. This problem is of great practical interest. Many metallic surfaces are given a layer that either serves as
a protective coating or has specific optical properties, such as an enhanced reflectivity. Both the metal surface and
the surface of the dielectric film may be rough, and the roughness of the two surfaces may be either correlated or
uncorrelated.

Light scattering calculations have been carried out by the use of a multitude of methods, including geomet-
rical optics, scalar theory, vector theory, numerical simulation approaches, and quantum mechanical perturbative
methods. 17
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Davis8 was one of the first to give a theoretical description of light scattering from statistically rough surfaces, and
to relate the scattering to the topographical properties of the surface. His theory was, however, restricted to perfectly
reflecting surfaces whose root-mean-square (rms) roughness was assumed to be small compared to the wavelength
of the incident light. Later Bennett and Porteus9 generalized Davis' work. Both of these works were based on the
scalar Fresnel-Kirchhoff diffraction formulae,5 and considered only opaque reflecting surfaces.

To include the vector nature of the scattered field requires a different approach. Two dominant methods have
been used to study light scattering. The first is a perturbation theory approach. The second is based on the Stratton-
Chu equations . The former works well when the rms roughness is small compared to the wavelength of the
light. In principle perturbation theory may be used to calculate successively higher order solutions, but this becomes
progressively more complicated, and high order perturbation theories are not practical.

Most of the works discussed so far have been devoted to scattering from a single surface. However, Elson has
studied the scattering of light from surfaces with both single" and multiple coatings.'2 His approach was within the
framework of perturbation theory and is therefore valid only for small roughness and thin dielectric films.

In this paper we go beyond the small roughness limit. We use a formally exact rigorous numerical simulation
approach based on Green's second integral identity in the plane'3 to study the scattering from silver coated by a
dielectric film of mean thickness 500nm. Such simulation approaches are frequently used today,7 but only for a single
frequency of the incident light, since such Monte Carlo calculations are computationally expensive. However, in
this work we study the wavelength-dependence of the total and specularly scattered energy in the wavelength range
250nm to l200nm. To our knowledge this is the first such study using a formally exact approach.

2. Scattering Theory
2.1. Scattering system
The one-dimensional film system that will be considered in this paper is depicted in Fig. 1 . It consists of a dielectric
film deposited on the surface of a semi-infinite metal that will be assumed to be silver. The medium above the film
is vacuum. In the most general case both the vacuum-dielectric and the dielectric-metal interfaces are allowed to be
randomly rough. In order to guarantee that the film is well-defined we will consider only the case where these two
surfaces are non-overlapping. The coordinate system is chosen so that the surfaces are located at x3 = d1 + ((x,)
(i = 1, 2) where d are real constants with d, > 0 and d2 < 0, i.e the origin of the coordinate system is between,
or located on one of, the mean (planar) interfaces of the film. Here the index i = 1 corresponds to the vacuum-
dielectric interface (the upper surface) , while i = 2 refers to the dielectric-metal interface (the lower surface).
Thus, with this convention, vacuum is found in the region x3 > d, + (,(x,), the dielectric film in the region
d2 + (2(xi) < x3 < d, + ,(x,), and the metal occupies the region x3 < d2 + C2(x,).

The surface profile functions j(x,) are assumed to be single-valued functions of x1 that are differentiable as many
times as needed. Furthermore, they are assumed to constitute zero-mean, stationary, Gaussian random processes
defined by

(((x,)) = 0, (2.la)

(((x,)((x)) = 2iTyTj(1x, xiI). (2.lb)

In these expressions i, j = 1, 2, is the rms height of ((x,) which is assumed to be the same for the two interfaces,
and < . > denotes an average over an ensemble of realizations of 1(x,). The correlation functions W(IxiL), which
obviously are symmetric in the indices i and j, denote in the case i = j just the usual surface height autocorrelation
functions, while for i they are the cross correlation functions between the two interfaces (if we assume that their
rms heights are the same). For the cross-correlations between the two surfaces we will assume here that either the two
surface profile functions are perfectly correlated (C (x,) = (2 (x,)), in which case W,2 (ix, I) = W2,(Is, I) = W"(Ix, I)
or that they are completely uncorrelated, W12(Ix, I) = W2,(Ix,1) = 0.

Furthermore, the correlation functions can be related to the power spectra by

g(IkI) = dx, Wj(Ix,I)e' (2.2)

66 Proc. SPIE Vol. 4100

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



In the numerical simulation results to be presented below we have assuriied Gaussian pover spectra exclusively. iliev
have tile form

gii(k) 922(IAI) exp() (2.)

where a is the transverse correlation lengt Ii. Notice I hat. due to Eq. (2.1 a) the niean thickness of I lie (helectric film,
WI thi our convent ion is

il = d1 + d > ft (2.1)

2.2. Scattering Equations
If the vacuum—dielectric interface .r3 = d1 + (i ('i ) is illuminated from I he vacuum side by a li-polarized electroniag—
net ic wave of frequency whose plane of incidence is the a1 a3-plane. the electromagnet ic field can fully he (lcscri bed
by the nonzero second component of the magnetic field vector. In the region a3 > (Ii + max ( (a1 ) it (all he written
as the sum of an incident beam of finite width and a scattered field:

1l (a1 j ezkrI_k.)r + / R(q,)e21
,( (2.5)

where F(k) is an envelope function which in principle can be an arbitrary function for which the integral exits. In
Eq. (2.5) R(q, ) denotes the so—called scattering amplitude, while we have defined

I /s_.
c)(q, ) V (2.h)- . > /c.

In the present work we will use a Gaussian envelope function defined bye

= 1
Xf) —

w22
(arcsin — o)

2

(2.7)
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/
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x3=d (x1)
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Figure 1. A sketch of tile scattering system considered iii this work. It consists of vacuum in the region r3 >
d1 + (i (a1), a dielectric film in the region d1 + i(xi) < x3 < d2 + (2(x1), and a metal iii the region :i < ii + (a1).
Here cj(x1 ) are random functions with the properties described in tile text.
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where w denotes the half-width of the incident beam and 0o is the angle of incidence.

When the scattering amplitude is known, one can obtain the differential reflection coefficient 3R/ô08 . It is defined
so that (3R/303 )dG is the fraction of the total time-averaged energy flux incident on the surface that is scattered
into the angular interval d88 about the scattering angle O in the limit as dO8 —+ 0 . The contribution to the mean
differential reflection coefficient from the coherent (specular) component of the scattered field is given by6'7

= 2 (R(q,w))J2
(2.8a)

\aGs /coh (2r) CW [erf(-( +oo)) +erf( ( _ Go))]

where erf(.) denotes the error function.'8"9 The contribution to the mean differential reflection coefficient from the
incoherent (diffuse) component of the scattered field is given by6'7/\ - 2 --cos29 (R(q,w)I2)- (R(q,w))2

(28b)\ao., I incoh (2ir) CW
[erf(- (: + Go)) + erf (s?- (i en))]

•

In Eqs. (2.8), the wave number q is given in terms of the angle of scattering, O by q (w/c) sin G . This angle is
measured clockwise from the x-axis as indicated in Fig. 1.

From the knowledge of the mean differential reflection coefficient one may define the reflectance of the surface,
RA), as

1(A) = f dO8 () . (2.9)
— S coh

Likewise, the total scattered energy (normalized by the incident energy) is defined by

U(A) = jdG3 K?) (2.10)

where (ÔR/598 ) is the sum of the coherent and incoherent contributions to the mean differential reflection coefficient
defined by Eqs. (2.8a) and (2.8b), respectively.

2.3. Excitation of eigenmodes supported by the scattering system
The film system shown in Fig. 1 supports many different types of excitations that might affect the way light is
scattered from it. Such excitations includes bulk plasmons, surface plasmons, surface plasmon polaritons, guided
waves, Fabry-Perot interference modes, etc. We briefly discuss some of the modes that are relevant for the present
work below.

The conduction electrons in the bulk of a metal can execute collective oscillations in a neutralizing background
of positive charge, called plasma oscillations, in which their charge density oscillates with a frequency wcalled the
plasma frequency. The plasma frequency is close to the frequency at which the real part of the metal's dielectric
function vanishes, and we will denote the (plasma) wavelength at which this happens by A,, = 2irc/w . In the
numerical simulation results to be presented below we will be considering silver. The dielectric function of silver,
E2(W) = EAg(W), as reported in Palik,'4 is plotted as a function of wavelength in Fig. 2. From this figure it is
observed that the plasma wavelength is ),, 0.32um. This value is also the one observed for silver in the experiments
reported in.15 Notice that in regions where Re e2(A) > 0 the metal is dielectric—like with a low reflectance, and where
Re E2(A) < 0 it is metal—like and the reflectance is high. The reflectance is therefore expected to make a jump from
a low (A < A) to a high value (A> A) whenever the wavelength is such that the dielectric function of silver passes
through zero.

If both interfaces in Fig. 1 are planar (((x1) 0) the scattering problem can be solved analytically. The Fresnel
coefficient for our scattering system for p-polarization of the incident light reads'6

Ro(k,w) = V_(k,w) (2.lla)V(k,w)
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+ [Eo(w)ci(/c,w) Ei(w)ao(k,w)] [Ei(w)cx2(k,w) —E2(w)ai(k,w)] e1(,w)d. (2.llb)

In Fig. 3 we have plotted the Fresnel reflectivity IR0(k,w)J2 obtained from Eqs. (2. 1 1) as a function of wavelength.
The angle of incidence 6 is related to the wavenumber k by k = (w/c) sin 9, and the angle of incidence assumed
in plotting Fig. 3 is 9 = 00. As a function of the wavelength the reflectivity is seen to display a series of minima,
whose depths are determined by the absorption in the system. The wavelengths at which they occur are indicated
by vertical dotted lines, and are the wavelengths of the so-called Fabry-Perot interference modes of the scattering
system5. For the range of wavelengths we consider here there are six such modes. Their wavelengths at normal
incidence are given in Table 1. The nature of these modes can be understood in the followingway.

The solutions of the dispersion relation

Guided wave no. modes AFP [pm]
1 0.26
2 0.31
3 0.38
4 0.49
5 0.69
6 1.14

Table 1. The wavelengths of the Fabry-Perot interference modes supported by the scattering system at normal
incidence.

where

V(k, w) = [Eo(w)c1 (k, w) E (w)co(k, w)] [i (w)a2(k, w) + E2(w)al (k, w)]

V(k,w) = 0, (2.12)

yield the eigenmodes of the planar system. Their dispersion curves are plotted in Fig. 4. The (w, k)—plane in Fig. 4 is
divided into three regions defined by the straight (dotted) light lines . The right line describes the light propagating
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Figure 2. The experimental dielectric function for silver (Ag) as a function of wavelength A taken from Ref.'4. The
inset shows a detailed view of the wavelength interval from A = 0.2pm to 0.4pm.
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in the dielectric film along the surface with the dispersion relation

k=/i1, (2.13)

the middle line describes the light propagating along the surface in the vacuum with the dispersion relation

k=v', (2.14)

and the left line describes the Brewster mode of the dielectric. The latter has the dispersion relation

k = I EOE1 (2.15)
V so + El C

For these particular values of w and k the electromagnetic field does not "feel" the presence of the film deposited on
the metal surface. The Fabry—Perot interference modes discussed in the preceding paragraph exist in the radiative
region to the left of the vacuum light line. They are the leaky modes of the structure under consideration. The
waveguide modes are nonradiative both in the vacuum and the metal, but are wave—like modes in the film. They exist
in the region between the vacuum and dielectric light lines. The surface plasmon polaritons exist in the nonradiative
region, to the right of the dielectric light line. As k —+ oo the dispersion curve of surface plasmon polaritons saturates
at the dispersionless dispersion curve of the surface plasmons that exist at the metal—dielectric interface, whose
frequency is determined from the equation

El + E2(W) = 0. (2.16)

Before presenting the numerical results, we will make some comments about the numerical implementation used, i.e.
how we calculated the scattering amplitude R(q, w) on which most of the expressions of the preceding subsections
rely. There are several ways to calculate this quantity including both perturbative and rigorous numerical simulation
approaches. The advantage of a perturbative (approximate) approach is that it needs limited computer resources for
its application. However, on the other hand, such a method is restricted to surfaces that can, at the wavelength of
the incident light, be considered as weakly rough4, i.e. to surfaces for which

0.4

2i5[ << 1. (2.17)

Figure 3. The Fresnel reflectivity at normal incidence for the film system depicted in Fig. 1. The vertical dotted
lines indicates the position of the Fabry-Perot interference modes in the dielectric film.

70 Proc. SPIE Vol. 4100

C

2.4. Numerical implementation

0.8

0.6

0.2

A [.tm]

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Figure 4. The dispersion curves for the scattering system determined from the relation D (k, w)= 0. The horizontal
dotted line corresponds to the frequency of the surface plasmons determined from e + 2(w) = 0. The three tilted
dotted lines correspond from right to left to the dielectric (w = kc/fti)) and vacuum (w = kc) light lines and the
Brewster modes (w = kc/o + i/,/ëi) respectively.

Since we will be interested in the wavelength dependence of R.(A) and U(A) the above condition is hard to satisfy
for all optical wavelengths. In large parts of the roughness-correlation length parameter space this approach does
not apply to the surfaces that we will be interested in. Since we are interested in the frequency dependent scattering
properties of the system, a change of wavelength might cause a transition from a region where the criterion for the
validity of perturbation theory originally was justified to one where it breaks down.

For this reason, we will be using a rigorous numerical simulation approach that is formally exact. However, the
disadvantage of this approach is that it requires very significant computational power in order to obtain reliable
results. The rigorous approach that we will be using is based on the use of Green's second integral identity in the
plane.'3 By taking advantage of this theorem, one can derive a set of four coupled inhomogeneous integral equations
for the source functions7 — the fields and their normal derivatives evaluated on the two interfaces. Discretizing these
integral equations leaves us with a matrix system that can be solved by standard techniques17 for any realization of
(2(x). The resulting formulae are given explicitly in Appendix APPENDIX A. We stress that this approach does
not assume small roughness and is valid, in principle, for any degree of roughness.

For a given wavelength of the incident light one easily calculates the contributions to the mean differential
reflection coefficient from the coherent and incoherent components of the scattered light, Eqs. (2.8), from the
solution of the matrix system given by Eqs. (A5) . These contributions are then used to calculate the reflectance and
total scattered energy, defined by Eqs. (2.9) and (2. 10), respectively. For each wavelength of the incident light, A,
at least 500 realizations of the surface profile functions were used in calculating the ensemble average. Furthermore,
the calculations were continued by increasing the number of samples in steps of 250 until the reflectance, R.(A), and
the total scattered energy, U(A), had both converged, for that wavelength, to within a relative error of less then 0.5%
as compared to the previous logged result for the same quantity. All numerical calculations were performed on an
SGI Cray Origin 2000 supercomputer.

3. Results and discussion
Our scattering system allows for two rough surfaces: the vacuum-dielectric and dielectric-metal interfaces. There
are thus many different configurations possible that one might consider. We have chosen to study four different
configurations defined so that either the (i) upper or the (ii) lower interface is rough while the other one is planar, or
that both interfaces are rough and are perfectly correlated (iii) (i.e. (1(x1) =(2(x1)), or the two interfaces are (iv)
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uncorrelated. In all cases the statistical properties of the random functions (j(x1) are taken to be the same, when
these functions are non-vanishing. They are characterized by an rms height ö = O.025pm, while the surface height
autocorrelation function is assumed to be Gaussian with a correlation length a O.1im. This roughness is enough
to make small—amplitude perturbation theory inappropriate for large regions of the wavelength of the incident light
considered. The wavelength of the incident light, ), is allowed to vary in the interval from O.2pm to 1.2jim. This
interval fully includes the wavelengths of visible light. The dielectric film of mean thickness d d1 + 1d21 O.5pm has
a dielectric function E = 2.6869 + iO.O1 that is assumed to be independent of wavelength over the wavelength range
considered. However, the dielectric properties of silver located in the region X3 < (2(x1) are wavelength dependent,
and its dielectric function, E2 = Ag(\), 5 obtained by interpolation from experimentally measured values.14 The
real and imaginary part of this function are plotted as functions of the wavelength in Fig. 2. From the inset in this
figure we see that the plasma wavelength of silver is ) O.32pm (,(Ap) 0). Surface plasmons at the film-silver
interface should, according to Eq. (2.16), exist for a wavelength ) = where E + EAg(Asp) 0. From Fig. 2 we
find that O.37am.

In Figs. 5 we show the results of rigorous numerical simulations for the reflectance, 7(A) (lower curves), and the
total scattered energy, U(A) (upper curves) , as defined in Subsection 2.2and obtained by the numerical approach
described above. The light was incident normally (0° = OO) the dielectric film from the vacuum side.

The first thing we notice from the simulation results of Figs. 5 is that the reflectance 7?.(A) possess characteristic
oscillations. Such oscillations resemble those seen in the Fresnel reflectance (Fig. 3) obtained for the equivalent planar
scattering system.5 For the rough system these oscillations are caused by the same phenomenon that give rise to
them in the planar geometry. Hence the local minima of these oscillations are a result of Fabry-Perot interference
modes. The reader may check with Table 1 that their positions for the rough scattering systems are practically
unaffected by the introduction of roughness. We stress that it is only the wavelength of these modes that survives
when roughness is introduced, and not the value of the reflectance itself at a given wavelength. The actual numerical
value of the reflectance depends heavily, as can be seen from Figs. 5, on the scattering system considered.

Due to energy conservation a local minimum in R(A) should (in most cases) be accompanied by a local maximum
in U()). This can be seen quite clearly from Fig. 5a. Strictly speaking, this statement holds true only if it is
absorption due to IrnEA9 (w) that is the main source of energy removal from the incident light. In particular, if there
exists an eigenmode of the system at the wavelength of the incident light, such a mode may be excited and thus
remove energy from the incident light. For such cases it is not clear that there should be a relation between the
reflectance and the total scattered energy.

Furthermore, we observe from Figs. 5 that the characteristic jump in R.(A) around the bulk plasma wavelength
found for the planar system (Fig. 3) is washed out when the film-metal interface is made rough (Figs. 5b—d).

This is a result of the strongly reflecting rough metal surface causing a substantial fraction of the incident energy to
be scattered incoherently away from the specular direction, reducing the specular reflection as a consequence. One
can see this in (Figs. 5b—d) as a large difference between the curves corresponding to R\) and U(A). This behavior
is not seen for 7Z(A) if only the vacuum-film interface is rough (Fig. 5a) where, crudely speaking, the reflectance
is a downscaled version of the Fresnel reflectance shown in Fig. 3. Moreover, for the total scattered energy U(A)
its value is dramatically increased when the wavelength of the incident light is increased from below to above the
plasma wavelength ) . This holds true whether the strongly reflecting film-metal surface is rough or not, and is
caused by the metal in this wavelength range changing its nature from dielectric—like (Re E2 > 0) to becoming
metal—like (Re E2 < 0).

By comparing Figs. 3 and 5 and recalling that for a non-rough scattering system the Fresnel reflectivity is equal
to the total scattered energy, we observe that introducing roughness at one or both of the interfaces dramatically
increases the amount of energy absorbed in the system, or equivalently reduces the total scattered energy U(A) . While
the total scattered energy for the planar system case (Fig. 3) for wavelengths ) > is about 85—95%, depending on
the wavelength, the same quantity is typically reduced to 60% or lower in the same wavelength region when roughness
(of the order 25nm) is introduced. That roughness may cause dramatic changes in the total scattered energy
is well known and not surprising. However, we find it interesting and somewhat strange at first to observe that
the value of U(A) for A > is consistently lower for the case where only the upper interface, i.e. the vacuum-film
interface, is rough, as compared to the other configurations where the film-metal interface is rough. The explanation
for this behavior is as follows. Due to a small dielectric contrast of the scattering interface both the reflection and
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Figure 5. Rigorous numerical Monte Carlo simulation results for the wavelength—dependent reflectance, 7.(A,Go),
and the total scattered energy, U(,\,Os), as defined in the text, for light of wavelength .\ scattered from the scattering
system depicted in Fig. 1. The medium x3 > d1 + Ci(xi) was vacuum (o = 1) and the film (d1 + Ci(xi) <
X3 < d2 + (2(x1)) of mean thickness of d = d1 + d21 = O.500jim had a wavelength independent dielectric constant
Ei 2.6869 + iO.O1. The medium in the region s3 < d2 + (2(x1) was silver, and its dielectric function is plotted in
Fig. 2. The surfaces used in the simulations all had a length L = 25.6im, and were subdivided into N = 300 equally
spaced points. A beam of p—polarized waves of wavelength ..\ with a finite width g =6.4pm was incident on this
system at an angle O = O . For each wavelength of the incident light the results for 7Z(.\, 9), and the total scattered
energy, U(A, Go) were averaged over N( � 500 surface realizations, and this number was increased (if needed) in steps
of 250 until these two quantities had converged to a precision of 0.5% or better. The scattering geometries were
such that either the (a) upper or (b) lower surface was rough, or both the upper and lower were rough but in such
a way, that they were (c) completely correlated or (d) uncorrelated. The rough surfaces in all cases were assumed
to constitute a zero—mean, stationary, Gaussian random process, characterized by an rms-height S =25nm and by a
Gaussian height autocorrelation function of correlation length a = lOOnm.

the scattering are weak. However, when the vacuum—film interface is rough the local angle of incidence of light onto
the film—metal interface is typically different from zero. Thus, locally the reflection from the planar metal surface
becomes weaker, while the absorption increases. Therefore, when the vacuum—film interface is made rough the total
scattered energy decreases.

It is also interesting to observe that in the case where only the upper vacuum-film interface is rough the reflectance
and total scattered energy are the same for two wavelengths. From the definitions Eqs. (2.9) and (2.10) we realize that
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this means that for these wavelengths there is no, or practically no, diffuse scattering even though roughness is present
for the scattering system. To understand why this is so, let us consider small—amplitude perturbation theory and,
for simplicity, assume a plane incident wave so that the scattering amplitude becomes R(qk) where k = (w/c) sin O.
Since only the vacuum-film interface is rough we find from the criterion (2.17) that we are just at the border of the
region in which small—amplitude perturbation theory is valid. Note that if the strongly reflecting film-metal interface
is also rough, small—amplitude perturbation theory is not applicable due to the much larger value of EAg(A). If we
expand the scattering amplitude R(qk) in powers of the surface profile function, R(qlk) =>°R()(qk)/n!, it can
be shown that the lowest order nonspecular term is given by'6

(1) _ . EoE,co(q) [e,a(q) + E201(q)] Eoe,ao(k) [sia2(k) + e2ai(k)]R (I ) — z(,(q—k)(1 —i,) ,T I \ E(qlk) ,r' Ii\
'—'+'q)

(3.la)

where ((q) is the Fourier transform of the surface profile function ((x1), V+(q) has been defined earlier in Eq.
(2.llb),

E(qlk) = {
a,(q)a,(k)

[1 + 21(q)] [1 + 21(k)] - [1 - i(q)] [1 - 21(k)]} , (3.lb)

G((2) is a non-vanishing function for all (2(x,) 0, and

r2,(q) = E,a2(q) E2a1(q) exp {2ia,(q)d} , (3.lc)
E,c2(q) + E2c,(q)

is the Fresnel reflection coefficient5 at the film-metal interface times a phase factor. For the simulation results pre-
sented in Fig. 5a the film-metalsurface is planar, i.e. (2 = 0, with the consequence that G((2) vanishes. Furthermore,
since we are considering normal incidence (k = 0) the last term of E(qk) vanishes. Now in the limit 1E21 >> 1 the
reflection coefficient r21 (q) becomes

r2,(q) —exp{2ia,(q)d}, k21 >> 1. (3.2)

If this reflection coefficient is equal to minus one, E(q(Ic) as well as the scattering amplitude R(')(qk) will vanish.
This should happen when ai(q)d = nir for some integer n or for wavelengths

n=1,2,3 (3.3)

This gives for our parameters the wavelengths )t2 = O.82,am, = O.55jm, A4 O.41,um, etc. Since the condition
I E2 I >> 1 is satisfied best for the longest wavelengths, one should expect, based on small—amplitude perturbation
theory, that the diffuse scattering will disappear only for the largest wavelengths. This is indeed supported by the
numerical simulations results presented in Fig. 5a, from which it is seen that RA) U(A) for the wavelength A
to the accuracy that we have in the numerical simulations. Already for ) = .\3 there seems to be a small fraction
of diffuse scattering. This is particularly noticeable for wavelengths with n > 3. For such wavelengths also the
assumption made above that E2(A)I >> 1 is starting to become questionable. The wavelengths that we read off from
our numerical simulation result that correspond to A2 and A3 are respectively O.82,um and O.56pm. Notice that the
phenomenon described above is unique to normal incidence 0o = O . For non-normal incidence the second term of
E(qk) can not be made to vanish at the same time as the first term. Furthermore, from Eq. (3.la) we notice that
when the lower interface is rough, C2(xi) 0, independent of what the upper interface is, the effect is not present
since then G(C2) 0 and therefore R(')(qk) will not vanish.

Furthermore, U(A) , for all geometries considered, varies only slightly (±10%) for wavelengths A > , and its level
in this wavelength range seems to be 50—60%. Furthermore, for R(A) we observe wavelength—dependent oscillations.
These are of the same type and origin as those observed in the case of a planar geometry (see Fig. 3).

Another characteristic feature that can be seen in the simulation results presented in Figs. 5 are the distinguished
dips that occur at the wavelength Ad 0.45J1m. These dips occur only when the film-metal interface is rough and

74 Proc. SPIE Vol. 4100

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



must therefore be related to a phenomenon that takes place at the film-metal interface. They occur at a wavelength
where the reflectance has a minimum at the "quasi-Brewster angle" . Since the surface is rough, we have all angles
of incidence onto the film-metal interface including quite large angles. The scattering potential does not have any
zeros or minima when the film-metal interface is rough. However, the total (integrated) scattered energy, U(A), as
defined by Eq. (2. 10) , has a minimum, and the wavelength of this minimum is the one at which the quasi-Brewster
angle moves into the radiative region of the vacuum. By using small-amplitude perturbation theory, the frequency
positions of the dips can be estimated. They can be shown to fall into the frequency region defined by2°

e + E2(W) 0, (3.4)

which is due to the quasi—Brewster effect at the dielectric—metal interface. The high local slopes of the rough
dielectric—metal interface makes it possible to observe the dips. With the dielectric function of silver plotted in
Fig. 2, Eq. (3.4) defines a wavelength of the dip consistent with given above and obtained from the simulations.
From the numerical simulation results there seems to be no good evidence of excitations of surface plasmons. This
we believe to be related to the fact that in our case the surface plasmon polaritons are strongly damped by the
interface roughness.

4. Conclusions
We have studied by a rigorous numerical simulation approach the wavelength dependence of the reflectance, R(A) , and
the total scattered energy, U(A), for light ofwavelength ..\ O.2—1.2pmincident normally on a system consisting of a
dielectric film (E = 2.6869+iO.O1) of mean thickness O.5pm deposited on the surface of a semi—infinite silver substrate.
The medium of incidence located above the dielectric film was vacuum, and for the dielectric function of silver we
used experimental values as reported in Palik.'4 It is found, as is well known, that introducing roughness into at least
one of the two interfaces reduces the total scattered energy dramatically. However, what is more surprising, we have
found that the total scattered energy is reduced the most by making the vacuum-film interface rough while at the
same time keeping the film-metal interface planar. We attribute this behavior to the enhancement of the absorption
in the metal. It is also shown that the Fabry-Perot interference modes that exist for the geometry considered,
and which are easily seen in 7Z(A) , are rather robust and are not much changed by introducing roughness into the
scattering system. However, there seems to be no evidence for the excitation of the surface plasmon polariton of the
three—layer system, which can be attributed to the strong roughness-induced damping of surface plasmon polaritons.
The well—pronounced dip of the total scattered intensity (a peak in the absorptivity) at ) =O.45pm we attribute to
the maximum of the absorption by the rough metal surface due to the quasi—Brewster effect.

Acknowledgments
The work of A.A.M. and T.A.L. was supported by Army Research Office Grant DAAD 19-99-1-0321. 1.5. would like
to thank the Research Council of Norway (Contract No. 32690/213) and Norsk Hydro ASA for financial support.
This work has also received support from the Research Council of Norway (Program for Supercomputing) through
a grant of computing time.

APPENDIX A. The integral equations
In this appendix we give the matrix elements for the matrix system used in calculating the scattering amplitude
R(qk) for the film system of Fig. 1. In order to simplify the notation we introduce some index conventions. In order
to distinguish the different materials we will use subscript p, where p = 1 refers to vacuum, p = 2 to the film, and
p = 3 to the metal. A surface index u will also be used, where a = 1 refers to the vacuum-dielectric interface, while

= 2 denotes the dielectric-metal interface. The index v is a polarization index taking on values ii = p, s. In our
case, it should be put equal to ii = p.

With these conventions the source functions — the fields and their normal derivatives evaluated on the interfaces
— become, respectively,

F(x1jw) = x1,x3Iw) (Ala)

= 7(x) 8Y(x1,x3Iw) . (A.lb)x3=d+C(rl)
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i w2 H')(f(xi — xç)2 +{d +(a(Xi) — d' — ('(xç)+ }2)—
4 C2

x [(x1 _ x)2(1(x) — {4 + 7a(Xi) _ 7i(x) + }2] (A.9)

I I IBp;cri'(XiIXi) = -;: G(x1,x3Ixi, X3) X3 da + (a(Xi) + ii
x = 4' + Ca'()

= _H1)((x1 - xç)2 + {4 + ((x) -4' - ('(x) + }2) (A.1O)

where i is a positive infinitesimal. Furthermore, G(x1, X3X , x) denotes the Green's function for the two-dimensional
Helmholtz equation,'9 and H'(.) is the Hankel function of the first kind 18
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