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ABSTRACT
In this work we consider a structure consisting of a dielectric medium characterized by a dielectric constant i in the
region x3 > H, a second dielectric medium characterized by a dielectric constant 2 in the region ((Xi) < X3 < H,
and vacuum in the region x3 < C(xi). The surface profile function ((x1) is assumed to be a single-valued function
of x1 that is differentiable and constitutes a random process. The structure is illuminated from the region x3 > H
by s-polarized light whose plane of incidence is the x1x3-plane. By the use of the geometrical optics limit of phase
perturbation theory we show how to design the surface profile function C(xi) in such a way that the mean differential
transmission coefficient has a prescribed form within a specified range of the angles of transmission, and vanishes
outside this range. In particular, we consider the case that the incident s-polarized light is incident normally on
this structure, and the mean intensity of the transmitted light is constant within a specified range of the angle of
transmission , and vanishes outside it . Numerical simulation calculations show that the transmitted intensity indeed
has this property.

Keywords: random surfaces, inverse problem, transmission coefficient, uniform diffuser

1. Introduction
An optical element that transmits light uniformly within a prescribed range of the angle of transmission and produces
no transmission outside this range could be useful in projection systems where the desire is to illuminate a screen
uniformly but not to waste light by illuminating outside the confines of the screen. Such an optical element will be
called a band-limited uniform diffuser in transmission.

In a recent paper1 a band-limited uniform diffuser was studied in the form of a dielectric film, characterized by
a dielectric constant E that occupied the region —D < x3 < C(xi). The region x > ((x1) was a vacuum, as was
the region x3 < —D. The surface profile function C(xi) was assumed to be a single-valued function of x1 ,that is
differentiable, and constitutes a random process. This film was illuminated from the region x3 > C(xi) by s-polarized
light, which was transmitted into the region x3 < —D. By the use of methods developed earlier in Refs. 2-5 for
the design of random surfaces that act as band-limited uniform diffusers in reflection, it was shown how to design
the surface profile function C(xi) in such a way that the mean differential transmission coefficient of the film had a
prescribed form within a specified range of the angle of transmission, and vanished outside this range. This work was
carried out as a reflection of the fact that the experimental demonstrations that surfaces fabricated according to the
prescriptions given in Refs. 2-5 do act as band-limited uniform diffusers have been carried out for the transmission
of light through dielectric films with random surfaces of this type.35

However, the structures used in the experimental studies whose results were reported in Refs. 3-5 were multilayer
structures, unlike the simple film system studied theoretically in Ref. 1. Consequently, in order to make comparisons
between theoretical and experimental results for the properties of band-limited uniform diffusers more meaningful, it
seemed to be worthwhile to construct a theory of such diffusers on the basis of multilayer structures closer to those
in Refs. 3-5. In this paper, on the basis of the geometrical optics limit of phase perturbation theory, we show how
these diffusers can be designed in such a fashion that, when they are illuminated at normal incidence by s-polarized
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light the angular dependence of the mean intensity of the transmitted light is constant for the angle of transmission
et in the interval (0m , Cm) and vanishes outside this interval. A computer simulation of the angular dependence of
the mean intensity of the transmitted light confirms that the optical element designed in this way indeed possesses
the properties specified for it.

2. The Transmission Amplitude
The system we consider in this work consists of a dielectric medium characterized by a dielectric constant c in the
region x3 > H; a dielectric medium characterized by a dielectric constant e2 in the region ((xi) < x3 < H; and a
dielectric medium characterized by a dielectric constant e in the region X3 < C(xi) (Fig. 1). The surface profile
function C(xi) is assumed to be a single-valued function of x that is differentiable and constitutes a random process.
In the numerical calculations carried out in this paper we will assume that the region x3 > H is glass, the region
C(xi) < x3 < H is photoresist, and the region X3 < C(xi) is vacuum. The thickness of the photoresist film in the
absence of the surface roughness is H = 5pm.

X3=H

X3(X,)
"S xl

'S'S"

Figure 1. A sketch of the scattering system considered in the present work.

This system is illuminated from the region x3 >H by an s-polarized plane wave of frequency w, whose plane of
incidence is the x1x3-plane. In the numerical calculations carried out in this paper we will assume that the frequency
w = 2rrcfA, where c is the speed of light in vacuum, corresponds to a wavelength A = 612.7nm. The single nonzero
component of the electric field in this system is

E2(xi, X31W) = exp[ikxi — iai(k)(x3 — H)]+J R(qIk) exp[iqx1 + i1(q)(x3 — H)] (2.1)

in the region x3 > H;

E2(xi, x3Iw) = exp(iqxi){Bi(qk) exp[—ia2(q)x3] + B2(qlk) exp[ia2(q)x3]} (2.2)

in the region C(xi) < x3 < H;

I dq
E2(xi, x3Iw) =

_L
—T(qIk)

exp{iqx1 — ia3(q)x3] (2.3)
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in the region x3 < C(xi ) . In these expressions the functions c (q) are defined by

aj(q) = [e(w/c)2 q2]4 II < (w/c)
= i [q2 - €(w/c)2] IqI > (w/c). (2.4)

From the boundary conditions at the interface X3 = H we obtain

2ir6(q — k) + R(qk) = Bi(qk) exp[—ia2(q)H] + B2(q(k) exp[ia2(q)H] (2.5a)
ai(q)[2rr(q — Ic) — R(q(k)] = c(q) {Bi(qk) exp[—icx2(q)H] — B2(qk) exp[ia2(q)H]} . (2.5b)

Therefore,

Bi(qIk) = 2ir(q — k)t12(k) — ri2(q)B2(qk), (2.6)

where

ai(q) — a2(q)
r12(q) =

ai(q) + a2(q)
exp{2ia2(q)H}, (2.7a)

t12(q) =
ai(q)

exp{ia2(q)H}. (2.7b)

The boundary conditions at the interface x3 = (x1) can be written in the forms

I exp(iqxi){Bi(qk) exp[—ia2(q)(x1)} + B2(qk)

=1 exp(iqxi)T(qk) exp[iqx1 — ia3(q)((x1)]

I exp(iqx1){[2(q) + q'(xi)}Bi(qIk) exp[-ia2(q)C(x1)] - [a(q) - q'(xi)]B2(qk)

=1 exp(iqx)[a3(q) + q'(xi)]T(qk) exp{—ia3(q)((xi)].

If we multiply Eq. (2.8a) by [a2(p) +p'(xi)] exp[—ipxi + ia2(p)C(xi)] and integrate on x ,then multiply Eq. (2.8b)
by exp[—ipxi + ic2(p)C(x1)] and integrate on x1 , and finally add the two resulting equations, we obtain

22(p)Bi(pIk) = (E3
-E2)f I(a3a2(P) T(qk), (2.9)

where

I(71Q) = dx1 exp[—iQxi — i7C(xi)]. (2.10)

Similarly, if we multiply Eq. (2.8a) by [a2(p) —pC'(xi)] exp{—ipxi — ia2(p)((xi)] and integrate on x , then multiply
Eq. (2.8b) by exp[—ipxi —ia2(p)(x1)] and integrate on x1, and finally subtract the second ofthe resulting equations
from the first, we obtain the equation

2a2(p)B2(plk) = -(€3 -f2)f I(a3
2(P) q)

T(qfk). (2.11)
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On combining (2.9) and (2.11) with Eq. (2.6) we obtain the reduced Rayleigh equation for the transmission amplitude
T(qk):

00
w2

J dq f I(c3(q) — 2(P)lP q) I(c3(q) + a2(P)IP _ q)
(E3-E2) 3(q)-a2(p)

-r12(P)
a3(q)+a2(p)

T(qlk)

—00

= 2rr6(p — k)2c2(k)ti2(k). (2.12)

We solve Eq. (2.12) as an expansion in powers of the surface profile function through terms linear in C(xi), with
the result that

w2 1 1 — rl2(q) (q _ )] (2.13)T(qk) = To(k)[2ir6(q — k) — i(e2 — ____________________
c2 a3(q) + a2(q) 1 + r12(q)r23(q)

where

r23(q) — 2() — 3(q)
(2.14)

—
2(q) + a3(q)'

T0 (k) is the Fresnel transmission amplitude in the absence of the surface roughness,

To(k) — t23(k)t12(k)
(2.15)—

1+r12(k)r23(k)'
with

2a2(k)i23(k) = (2.16)
a2(k) + c3(k)'

and
00

(q — k) = J dxiC(xi) exp[—i(q — k)xi]. (2.17)
-00

The result given by Eq. (2.13) can be rewritten as
00

T(qIk) = To(k) J dx1 exp[—i(q — k)x1} [i — i(a2(q) —
1 ri2(q)

)]
. (2.18)+ r12(q)r23(q)

-00

It is more convenient to rewrite this expression identically in the form
00

T(qlk) = To(qk) f dx1 exp{—i(q — k)xi]{1 — i(a2(q) — a3(q))Fo(k)(xi)J, (2.19)
-00

where

t12(k)123(k) 1 — ri2(q)
To(qjk) = _ ri2(k) 1 + r12(q)r23(q) '

(2.20)

and

1 — r12(k)
Fo(k) = (2.21)

1 + r12(k)r23(k)

The phase perturbation theory for T(qk) is obtained by exponentiating the expression in brackets in the integrand
of Eq. (2.19). Thus, finally, we have the result that

00

T(qk) = To(qk) J dx1 exp[—i(q — k)xi] exp[iF(qk)(xi)], (2.22)
-00

where

F(qfk) = [a3(q) — c2(q)]Fo(k). (2.23)
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3. The Mean Differential Transmission Coefficient
The differential transmission coefficient ôT/ô9 is defined in such a way that (ôT/DO)dO is the fraction of the
total time averaged incident flux that is transmitted into the angular interval (° , Ot + d) , where O is the angle of
transmission (Fig. 1). The magnitude of the total time-averaged incident flux is given by

Pinc —Re f dx1 J dx2(S), (3.1)

where S is the 3-component of the complex Poynting vector, and the minus sign compensates for the fact that the
flux is in the —x3-direction. In s polarization

2
cvc 7;*7TT _ 7:;* 2
J3 — rI2u1 — 228ir 8irw 3x3

Then from Eq. (2.1) we find that

Piric L1L2—ai(k), (3.3)8irw

where L1 and L2 are the lengths of the surface along the x1- and x2-axes.
The magnitude of the total time-averaged transmitted flux is given by

Ptr = —Ref dxif d2(S)tr

c2 f dq 2= L2— j —a3(q)T(qk) , (3.4)

where we have used Eq. (2.3) together with Eq. (3.2). We introduce angles of incidence and transmission, 0o and Ut
respectively, by (Fig. 1)

k=/EsinOo q=J±sinU. (3.5)

It follows that the incident and scattered fluxes are given by

Pinc = LiL2flj—cosOo (3.6)

Psc = L2e3 f dOtcos2UtIT(qk)2. (3.7)

The differential transmission coefficient by definition is then given by

DT 1 E3 W cos2O 2— = T(qk)I . (3.8)
OUt L1 J7T2rrc cosU0

Since we are studying transmission through a random surface, it is the mean differential reflection coefficient that is
of interest to us. It is given by

/ÔT\ 1 e3 W cos2Ut

S;) =
cosUo

(lT(qk)I2), (3.9)

where the angle brackets denote an average over the ensemble of realizations of the surface profile function ((x1).
On combining Eqs. (2.22) and (3.9) we find that in phase perturbation theory

/OT\ 1 E3 W cos2Ut 2— 1 = To(qlk)I
\OUt i L1 Jj2rrc cosU0

00 00

x dxiJ dx exp[-i(q - k)(xi - x)](exp{i[F(qIk)(xi) -F*(qfk)((x)]}). (3.10)
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In order to pass to the geometrical optics limit of phase perturbation theory, we have to work in a parameter range
where the coefficients of C(xi) and C(x) in the exponent in the integrand in Eq. (3.10) are the same and real. This
requires that the inequality

1F2(qlk)t << IF1(qlk)I, (3.11)

where F1(qk) = ReF(qk) and F2(qlk) = ImF(qk), be satisfied. As long as the range of scattering angles does
not reach the critical angle for total internal reflection at the photoresist/vacuum interface, F1 (qfk) = (a3(q) —

a2(q))ReF0(k) and F2(qtk) = (a3(q) — a2(q))IrnFo (k), and we can always choose the thickness of the photoresist
film to minimize ImFo(k). For the values of the parameters to be used in our numerical calculations F2(qk))
IFi(qk). Consequently, we will neglect F2(qk) in what follows with the result that the expression (3.10) for
(ôT/ôO) now takes the form

00 00() =
To(qlk)12f dxif dx exp{-i(q _ k)(x)](exp[iFi(qIk)(C(xi)- ((xi))]). (3.12)

We now make the change of variable x = x1 + u, and obtain

00 00() = To(qk)2 J dx1 f duexp[i(q - k)u](exp[iFi(qk)((xi) -C(xi + n))]). (3.13)
-00 -00

To obtain the geometrical optics limit of this expression, we expand the difference C(xi) — ((x1 + u) in powers of u,
and retain only the term linear in u. Thus, we have in this limit

00 00() =
J dx1 f duexp[i(q-k)u](exp[-iFi(qk)u'(xi)]). (3.14)

-00 -00

In what follows we specialize to the case of normal incidence: 0o = 0, so that Ic = 0. In this case Eq. (3.14)
becomes

00 00

K) = f dx1 J duexp(iqu)(exp[—iFi(qIO)ii'(xi)]). (3.15)

-00 -00

This expression is the starting point for the determination of a surface profile function C(xi) that yields a specified
form for (DT/DO).

4. The Surface Profile Function ((x1)
We assume that the surface profile function C(xi) is written in the form [2]

C(xi) = too cts(Xi — t2b), (4.1)

where the {ct} are independent, positive, random deviates, b is a characteristic length, and the function s(x1) is
defined by

0 xi<—(rn+1)b
—(in + 1)bh — hx1 —(in + 1)b < x1 < —mb

s(x1) = —bh —nib < x1 < mb (4.2)
—(in+1)bh+hxi mb<xi < (rn+1)b
0 (in+1)b<xi,
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where rn is a positive integer. Due to the positivity of the coefficient Cl, its probability density function (pdf)
fey) = (6(7 — Ct)) 15 nonzero only for y > 0.

It has been shown [2] that for the random surfaces defined by Eqs. (4.1) and (4.2),

00 00

I dx1 J duexp(iqu)(exp{-iFi(qJ0)('(xi)])= F(10)Ih [f (IF1(0)1h) + f (Fi(ql0)1h)] . (4.3)
irL1 _______ _________________ __________ —q

-00 -00

On combining Eqs. (3.15) and (4.3) we find that the mean differential transmission coefficient is given in terms of
the pdf of Ct by

t 2c (qI0)I21(l1)1 [(F1:0h) +fFi(q0)h)] . (4.4)________ ________ ( —q
KT)

C3 W 2 ______ ______ ______— ————cos eIT0

We now make the change of variable (q/IF1(qIO)Ih) = y, so that

q _ /(w/c)sinOt
(4.5)h =

IF1(qIO)I IFi((w/c)sinOtI0)I
We need to invert this expression to obtain sin Ot and cos Ut as functions of #y. Equation (4.5) can be quite easily
inverted with the result

7hIReFo(0)f
1f3 — e2e3 72h2IReFo(0)12(e2 — e3)2 ' (4.6)tanOt =

e3+t2h2lReFo(0)I2(e2—e3) L

from which sin O and cos O, can be obtained. On inverting Eq. (4.4) with the aid of these results we find that

\/i s(yh) /ÔT\1(7) + f(-) = 2h)T((,)(h)IO)I2 7hc2(7h) ) (v), (4.7)

where sin Gt = s(-yh) and cos O = c(yh) = [1 —s2(7h)] .
Thus, if we wish to design a surface for which (oT/aO) has the form

laT) = A9(600 - lOtI), (4.8)

where A is a constant and G(x) is the Heaviside unit step function, we can use the fact that Ot is a single-valued
function of 7h that increases monotonically with increasing 7h, to rewrite Eq. (4.8) as

I UT \() () = AO(7m — I7I) (4.9)

where

1 ft(w/c) sin Om
(4.10)7m

lFi((wIc) sin G000)I
If we substitute Eq. (4.9) into Eq. (4.7) and assume that y is positive, we obtain finally that the pdf of c is given
by

\/: s(yh)1(7) = 2hfT((/)(h)fO)I2 hc2(h)
AO(700 -)9(). (4.11)

The constant A is then obtained from the normalization condition

2h11A 1 (4.12)J d7
s(7h) —

\/7• yhc2 (yh) To (/i(w/c)s(yh) 0) 12
0
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or
hym

A21 I dx s(x) = 1. (4.13)I xc2(x)ITo(J(w/c)s(x)IO)I2
0

If we note from Eq. (4.10) that

h — ft(w/c) sin Gm
4 147m —

IFi((w/c)sin9mIO)t'
we find that the constant A is independent of the parameter h. For the parameters used to define the surface, we
find that fey) is nearly a constant function of y, but decreases slowly and monotonically over the range 0 < y <

5. Results

An ensemble of one-dimensional random surfaces was generated on the basis of the preceding results. For each
member of the ensemble a sequence of the coefficients {ct} was obtained by the rejection method [6] ,and the surface
profile function generated by the use of Eqs. (4.1) and (4.2). The values of the parameters m, b, h entering Eq. (4.2)
were chosen to be in = 1, b = 55prn, h = 0.01, while °m 7 The film structure depicted in Fig. 1 was characterized
by the values H = 5iirn, and e = 2.25 (glass), e2 = 2.69 (photoresist), e3 = 1 (vacuum).

This system was illuminated at normal incidence by an s-polarized plane wave of wavelength A = 612.7nrn (in vac-
uum) . The mean differential transmission coefficient was then calculated by the use of a rigorous numerical approach
based on the use of Green's second integral identity in the plane.7 The length of the x1-axis covered by the random
surface was L = 606pm = 98.9A, and the sampling length was Lx A/1O. The results from N = 2972 realizations
of the random surface were averaged in obtaining the mean differential transmission coefficient. We note that the
surfaces studied were sufficiently rough that the contribution to the mean differential transmission coefficient from
the light transmitted coherently was negligible compared to the contribution from the light transmitted incoherently.
Consequently, it sufficed to calculate only the mean differential transmission coefficient.

The surface profiles generated according to Eq. (4.1) do not have a vanishing mean. Therefore, for each realization
of the surface used in the numerical simulation calculations, its mean was adjusted to zero in order to have a well-
defined mean film thickness H , independent of the parameters used to generate the surface profile function.

The result for the mean differential transmission coefficient is plotted in Fig. 2a as a function of the angle of
transmission O . it is seen to be very well band-limited, being nonzero only for —7° < Ot < 7° . It is also reasonably
uniform within this interval of angles of transmission.

It should be mentioned that in order to obtain the numerical result presented in Fig. 2a we had to shift the lower
limit of f() slightly away from zero, y —+y — c, e = 0.1, in order to avoid a small specular peak that is due to the
tails of the two distributions in Eq. (4.4) caused by diffraction effects. This procedure has been described in detail
in Ref. 2, and the arguments for doing so will not be repeated here.

The results obtained in Ref. 7 enables us to calculate the mean differential reflection coefficient, (aR8/803), from
the structure depicted in Fig. 1. In Fig. 2b we present a plot of (DR3/D03) as a function of the scattering angle O.
The experimental, material, and computational parameters assumed in obtaining this result are exactly the same as
the ones assumed in obtaining the result plotted in Fig. 2a. It is seen to be band-limited, being nonzero only for IO I
smaller then approximately 23° , and reasonably constant within this interval. An argument based on the application
of Snell's law at each interface yields the following relation between the maximum angle defining the angular region
within which the mean differential reflection coefficient is nonzero and 0m:

sin 0 = (- 2 sin Om (/ — cos °m )
(5 1S

\\El) e2+1—2\flcosOm
For a value of Cm 7° , this expression yields O = 23.4° , which agrees well with the result depicted in Fig. 2b. This
angle is indicated by vertical dashed lines in this figure. The dip at O = 0° is caused by the shift of f(y), and could
be reduced or eliminated by varying the shift parameter e. In view of the fact that the surface profile function ((x1)
was not designed to produce a band-limited uniform diffuser in reflection, but only in transmission, the result for
(aR/ac3) depicted in Fig. 2b is felt to be quite satisfactory.
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Figure 2. (a) The mean differential transmission coefficient for s-polarized (plane wave) light of wavelength A =
612.7nm (in vacuum) incident normally on the structure depicted in Fig. 1. The dielectric constants of the layers
consituting this structure are e = 2.25, e2 = 2.69, (3 = 1, and the mean thickness of the film is H = 5gm. The
solid curve is the result of rigorous Monte Carlo simulations, while the dashed curve is the result given by Eqs.
(4.8) and (4.12). The length of the surface used in the simulations was L1 = 606pm = 98.9A, and the number of
surface realizations over which OT/O6 , was averaged was N = 2972. The number of sampling points used was
N = 1000 (x A/b). The random surface was characterized by the parameters in = 1, b = 55pm, h = 0.01, °m
70 . (b) The same as (a) , but now showing the rigorous Monte Carlo simulations for the mean differential reflection
coefficient. The vertical dashed lines are the predictions obtained from Eq. (5.1).

6. Conclusions
In this paper we have derived the reduced Rayleigh equation, Eq. (2.12), for the transmission amplitude T(qk) in
the case that the structure depicted in Fig. 1 is illuminated from the region x3 >H by s-polarized light whose plane
of incidence is normal to the generators of the random surface x3 = C(xi). The phase perturbation theory solution
of this equation, Eq. (2.22), has been obtained to the lowest nonzero order in the surface profile function C(xi). The
use of this solution in the expression (3.9) for the mean differential transmission coefficient enabled this coefficient
to be calculated in the geometrical optics limit of phase perturbation theory, Eq. (3. 14) . These three results by
themselves could be useful in future studies of the transmission of light through the multilayer structure presented
in Fig. 1.

The result for the mean differential transmission coefficient in the geometrical optics limit of phase perturbation
theory has then been used to design the random surface X3 = C(xi) in Fig. 1 in such a way that the resulting
structure acts as a band-limited uniform diffuser. That is, the angular dependence of the intensity of the transmitted
light is constant within a specified range of the angle of transmission, and vanishes outside that region. The results of
numerical simulations of the transmission of s-polarized light through the structure in Fig. 1 whose random surface
has been defined in this way show that it indeed acts as a band-limited diffuser. The transmitted intensity, although
reasonably uniform, is not quite as uniform as the input mean differential transmission coefficient given by Eq.
(4.8) . We believe that this feature of our result can be improved by using more realizations of the random surface
in our computer simulations, and by using a larger value of the length b, and hence of the length of the random
surface L1 , in these simulations. However, the computational time for obtaining (DT/093 ) when both of these steps
are implemented is increased very significantly over the length of what are already lengthy calculations. We have
therefore not implemented them. We have also shown that the very same structure and the very same random
surface, also acts as a band-limited uniform diffuser in reflection, when s-polarized light is incident normally on it.
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The angular interval within which the intensity of the scattered light is nonzero is wider than it is in transmission, and
a relation between the angular width of the mean differential reflection coefficient and that of the mean differential
transmission coefficient has been presented. Thus, the results obtained in this paper show that the approach used
in our earlier papers to generate one-dimensional random surfaces that act as one-dimensional band-limited uniform
diffusers in reflection can be applied to solve the same problem in transmission as well.
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