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ABSTRACT

On the basis of the geometrical optics limit of the Kirchhoff approximation we design a one-dimensional random
interface between two dielectric media that refracts p− or s−polarized light incident on it at an arbitrary angle
of incidence θ0 from one of them into the other at an arbitrary but specified angle of transmission θt that is not
defined in terms of θ0 by Snell’s law. We call such transmission nonstandard refraction.

1. INTRODUCTION

In recent theoretical studies it has been shown how to design one-dimensional randomly rough surfaces that
transmit an electromagnetic wave with a prescribed angular dependence of the mean differential transmission
coefficient.1, 2 The results of these studies suggest that it should be possible to design a one-dimensional
randomly rough interface that refracts light falling on it at a given angle of incidence θ0 from a dielectric
medium characterized by a dielectric constant ε1 through an arbitrary but specified angle θt in a dielectric
medium with a dielectric constant ε2. We will call this type of refraction nonstandard refraction because it is
free from the constraint of Snell’s law sin θt/ sin θ0 =

√
ε1/ε2. It encompasses negative refraction,3 for example.

In this paper we show that it is indeed possible to design a one-dimensional randomly rough surface that
produces nonstandard refraction. Our theoretical treatment, however, is more general than its application to
nonstandard refraction, and the results obtained here could be useful for the solution of other problems involving
the transmission of light through a randomly rough interface.

The results of our investigations are validated by rigorous computer simulation calculations of the transmis-
sion of light from the surfaces designed by the approach presented here.

2. SCATTERING THEORY

The scattering system we consider in this work consists of a dielectric medium whose dielectric constant is ε1
in the region x3 > ζ(x1), and a dielectric medium whose dielectric constant is ε2 in the region x3 < ζ(x1). We
assume that ε1 and ε2 are both real, positive, and frequency independent. The surface profile function ζ(x1)
is a single-valued function of x1 and constitutes a random process, but not necessarily a stationary one. The
surface x3 = ζ(x1) is illuminated from the region x3 > ζ(x1) by a p− or s−polarized plane wave of frequency
ω, whose plane of incidence is the x1x3 plane. There is no cross-polarized scattering in this geometry.

We can deal with the cases of p- and s-polarized incident light simultaneously by working with the func-
tion Fν(x1, x3|ω), which is H2(x1, x2|ω) when ν = p, and is E2(x1, x3|ω) when ν = s. Here H2(x1, x3|ω)
(E2(x1, x3|ω)) is the single nonzero component of the magnetic (electric) field in the system in the case of p(s)
polarization.

The field F>
ν (x1, x3|ω) in the region x3 > ζ(x1) satisfies the Helmholtz equation

(
∂2

∂x2
1

+
∂2

∂x2
3

+ ε1
ω2

c2

)
F>

ν (x1, x3|ω) = 0. (2.1)

Reflection, Scattering, and Diffraction from Surfaces, edited by Zu-Han Gu,
Leonard M. Hanssen, Proc. of SPIE Vol. 7065, 706506, (2008)

0277-786X/08/$18 · doi: 10.1117/12.796093

Proc. of SPIE Vol. 7065  706506-1



The field F<
ν (x1, x3|ω) in the region x3 < ζ(x1) satisfies the Helmholtz equation

(
∂2

∂x2
1

+
∂2

∂x2
3

+ ε2
ω2

c2

)
F<

ν (x1, x3|ω) = 0. (2.2)

The boundary conditions at the interface x3 = ζ(x1) require the continuity of the tangential components of the
electric and magnetic fields across it, and can be written as

F>
ν (x1, x3|ω)

∣
∣
∣
∣
x3=ζ(x1)

= F<
ν (x1, x3|ω)

∣
∣
∣
∣
x3=ζ(x1)

(2.3a)

1
κν

∂

∂n
F>

ν (x1, x3|ω)
∣
∣
∣
∣
x3=ζ(x1)

=
1
µν

∂

∂n
F<

ν (x1, x3|ω)
∣
∣
∣
∣
x3=ζ(x1)

. (2.3b)

In these equations κp = ε1, κs = 1, and µp = ε2, µs = 1, and ∂/∂n is the derivative along the normal to the
surface x3 = ζ(x1) at each point of it directed from medium 2 into medium 1,

∂

∂n
=

1
[1 + (ζ′(x1))2]

1
2

(
−ζ′(x1)

∂

∂x1
+

∂

∂x3

)
. (2.4)

In addition, F>
ν (x1, x3|ω) consists of an incoming incident plane wave and outgoing scattered waves at x3 = ∞,

and F<
ν (x1, x3|ω) consists of outgoing transmitted waves at x3 = −∞.

We next introduce two Green’s functions Gj(x1, x3|x′
1, x

′
3) (j = 1, 2) that satisfy the equations

(
∂2

∂x2
1

+
∂2

∂x2
3

+ εj
ω2

c2

)
Gj(x1, x3|x′

1, x
′
3) = −4πδ(x1 − x′

1)δ(x3 − x′
3) (2.5)

in all space, subject to outgoing wave boundary conditions at infinity. These functions have the representations

Gj(x1, x3|x′
1, x

′
3) = iπH

(1)
0 (nj(ω/c)[(x1 − x′

1)
2 + (x3 − x′

3)
2]

1
2 ) (2.6a)

=

∞∫

−∞

dq

2π

2πi

αj(q)
exp[iq(x1 − x′

1) + iαj(q)|x3 − x′
3|], (2.6b)

where H
(1)
0 (z) is a Hankel function of the first kind and zero order, nj is the index of refraction of medium j,

nj = (εj)
1
2 , and

αj(q) = [εj(ω/c)2 − q2]
1
2 Reαj(q) > 0, Imαj(q) > 0. (2.7)

We now invoke Green’s second integral identity in the plane,4 which applies to a bounded, planar, singly-
connected region R of the x1x3 plane, whose boundary is a closed regular curve C. Thus, let u(x1, x3) and
v(x1, x3) be two arbitrary functions of x1 and x3, which together with their first partial derivatives are continuous
in the region R and on the curve C. The theorem states that

∫

R

∫
dx1dx3(u∇2v − v∇2u) =

∫

C

ds

(
u

∂v

∂ν
− v

∂u

∂ν

)
, (2.8)

where ∇2 = (∂2/∂x2
1 + ∂2/∂x2

3), ds is the element of arc length along the curve C, and ∂/∂ν is the derivative
along the curve C at each point of it, directed away from the region R.

We apply Green’s second integral identity in the plane, Eq. (2.8), to the region x3 < ζ(x1). In this region we
set u(x1, x3) = F<

ν (x1, x3|ω) and v(x1, x3) = G2(x1, x3|x′
1, x

′
3). For the curve C we take the union of the curve
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x3 = ζ(x1), which we denote by s, and a semicircle of infinite radius in the region x3 < ζ(x1), which we denote
by C(−∞). Because the transmitted field satisfies a radiation condition at infinity, and there is no incident field
in the region x3 < ζ(x1), the integral along the semicircle C(−∞) vanishes. The equation for F<

ν (x1, x3|ω) can
therefore be rewritten as

θ(ζ(x1) − x3)F<
ν (x1, x3|ω) = − 1

4π

∫

s

ds′
[(

∂

∂n′G2(x1, x3|x′
1, x

′
3)

)
F<

ν (x′
1, x

′
3|ω)

−G2(x1, x3|x′
1, x

′
3)

∂

∂n′F
<
ν (x′

1, x
′
3|ω)

]
. (2.9)

The field transmitted through the surface is given by the right hand side of Eq. (2.9), which we rewrite with
the use of the boundary conditions (2.3) as

Fν(x1, x3|ω)tr = − 1
4π

∫

s

ds′
[(

∂

∂n′G2(x, x3|x′
1, x

′
3)

)
F>

ν (x′
1, x

′
3|ω)

− µν

κν
G2(x1, x3|x′

1, x
′
3)

∂

∂n′F
>
ν (x′

1, x
′
3|ω)

]
. (2.10)

With the use of the representation (2.6b) for the Green’s function G2(x1, x3|x′
1, x

′
3) the transmitted field in

the case that |x3| � |x′
3| can be written as

Fν(x1, x3|ω)tr =

∞∫

−∞

dq

2π
Tν(q|k) exp[iqx1 − iα2(q)x3], (2.11)

where the transmission amplitude Tν(q|k) is

Tν(q|k) = − i

2α2(q)

∫

s

ds exp[−iqx1 + iα2(q)x3]

×
{

i[qζ′(x1) + α2(q)]
[1 + (ζ′(x1))2]

1
2

F>
ν (x1, x3|ω) − µν

κν

∂

∂n
F>

ν (x1, x3|ω)
}

. (2.12)

The dependence of the transmission amplitude on a wavenumber k arises from the dependence on this wavenum-
ber of the incident field, which we write in the form

Fν(x1, x3|ω)inc = exp[ikx1 − iα1(k)x3]. (2.13)

3. THE MEAN DIFFERENTIAL TRANSMISSION COEFFICIENT

The transmission amplitude Tν(q|k) plays a central role in the present work, because the mean differential trans-
mission coefficient is expressed in terms of this amplitude. The differential transmission coefficient (∂Tν/∂θt) is
defined such that (∂Tν/∂θt))dθt is the fraction of the total time-averaged incident flux that is transmitted into
the angular interval (θt, θt + dθt) about the direction of transmission defined by the angle of transmission θt.

The real part of the 3-component of the complex Poynting vector in the region x3 > ζ(x1) is

Re (Sc
3)ν = Re

(
−i

c2

8πωκν

∂Fν

∂x3
F ∗

ν

)
. (3.1)
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When the incident field is a plane wave, Eq. (2.13), the magnitude of the time-averaged flux incident on the
region |x1| < L1/2, |x2| < L2/2 of the plane x3 = 0 is

(Pinc)ν = −
L1
2∫

−L1
2

dx1

L2
2∫

−L2
2

dx2Re

[
−i

c2

8πωκν
(−iα1(k))

]

= L1L2
c2α1(k)
8πωκν

. (3.2)

The minus sign in front of the integral on the right-hand side of Eq. (3.2) compensates for the fact that the
3-component of the Poynting vector of the incident field is negative.

We introduce the angle of incidence θ0, measured counterclockwise from the x3 axis, by

k =
√

ε1(ω/c) sin θ0. (3.3)

The total time-averaged incident flux then becomes

(Pinc(θ0))ν = L1L2
c

8π

√
ε1

κν
cos θ0. (3.4)

The real part of the 3-component of the complex Poynting vector in the region x3 < ζ(x1) is

Re(Sc
3)ν = Re

(
−i

c2

8πωµν

∂Fν

∂x3
F ∗

ν

)
. (3.5)

The transmitted field in the region x3 < ζ(x1) is given by Eq. (2.11). The magnitude of the total time-averaged
flux transmitted through the region |x1| < L1/2, |x2| < L2/2 of the plane x3 = 0 is given by

(Ptr)ν = −
L1
2∫

−L1
2

dx1

L2
2∫

−L2
2

dx2Re

(
−i

c2

8πωµν

) ∞∫

−∞

dq

2π

∞∫

−∞

dq′

2π

×(−iα2(q))Tν(q|k)T ∗
ν (q′|k) exp[−i(q − q′)x1] exp[−i(α2(q) − α∗

2(q
′))x3]

= L2
c2

16π2ωµν

√
ε2(ω/c)∫

−√
ε2(ω/c)

dq α2(q)|Tν(q|k)|2, (3.6)

when we let L1 tend to infinity. Again, the minus sign in front of the integral on the right-hand side of Eq.
(3.6) compensates for the fact that the 3-component of the Poynting vector of the transmitted field is negative.

We now introduce the angle of transmission θt, measured counterclockwise from the negative x3 axis by

q =
√

ε2(ω/c) sin θt. (3.7)

The total time-averaged transmitted flux then takes the form

(Ptr)ν =

π
2∫

−π
2

dθt(Ptr(θt))ν , (3.8)
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where

(Ptr(θt))ν = L2
ωε2

16π2µν
cos2 θt|Tν(q|k)|2. (3.9)

By definition the differential transmission coefficient is then given by
(

∂Tν

∂θt

)
(θt, θ0) =

(Ptr(θt))ν

(Pinc(θ0))ν
=

1
L1

ε2√
ε1

κν

µν

ω

2πc

cos2 θt

cos θ0
|Tν(q|k)|2, (3.10)

where q and k are now given by Eqs. (3.7) and (3.3), respectively. Since we are dealing with transmission
through a randomly rough surface, it is the mean differential transmission coefficient that is of interest to us,
which is given by

〈
∂Tν

∂θt

〉
(θt, θ0) =

1
L1

ε2√
ε1

κν

µν

ω

2πc

cos2 θt

cos θ0
〈|Tν(q|k)|2〉. (3.11)

4. THE KIRCHHOFF APPROXIMATION

The transmission amplitude Tν(q|k), Eq. (2.12), needs to be known analytically if we are to be able to solve
the inverse problem of finding a surface profile function ζ(x1) that produces a mean differential transmission
coefficient with a specified dependence on θt for a given value of θ0. The Kirchhoff approximation5 provides such
a result, and we use it in this work. By applying the approach of Voronovich5 to the problem of of transmission
through a one-dimensional rough surface we find that the transmission amplitude is given by

Tν(q|k) = T (0)
ν (q|k)

∞∫

−∞
dx1 exp{−i(q − k)x1 + i[α2(q) − α1(k)]ζ(x1)}, (4.1a)

where

T (0)
ν (q|k) =

1
2α2(q)

1
α2(q) − α1(k)

{[(
ε2 − µν

κν
ε1

)
ω2

c2
−

(
1 − µν

κν

)
(qk + α2(q)α1(k))

]

+
[(

ε2 +
µν

κν
ε1

)
ω2

c2
−

(
1 +

µν

κν

)
(qk + α2(q)α1(k))

]
Rν(α�(k|x1i)

}
, (4.1b)

and Rν(α�(k|x1i)) is the Fresnel reflection amplitude evaluated at the local angle of incidence, i.e. the angle of
incidence measured from the normal to the surface at each point,

Rν(α�(k|xi�)) =
µνα�(k|x1i) − κν [(ε2 − ε1)(ω/c)2 + α2

� (k|x1i)]
1
2

µνα�(k|x1i) + κν [(ε2 − ε1)(ω/c)2 + α2
� (k|x1i))]

1
2
, (4.2a)

with

α�(k|x1i) =
|α2(q) − α1(k)|
α2(q) − α1(k)

α2(q)α1(k) + qk − ε1(ω/c)2√
2[ 12 (ε1 + ε2)(ω/c)2 − α2(q)α1(k) − qk]

1
2
. (4.2b)

Equation (4.1) is the tangent plane or Kirchhoff approximation to the transmission amplitude Tν(q|k).
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The expression for T
(0)
ν (q|k) can be rewritten in terms of the angles θ0 and θt, through the use of Eqs. (3.3)

and (3.7) together with Eqs. (4.2). The result is

T (0)
ν (q|k) =

µν
√

ε1

cos θt

√
ε2 cos(θt − θ0) −√

ε1√
ε2 cos θt −√

ε1 cos θ0

× s[
√

ε2 −√
ε1 cos(θt − θ0)] + |√ε2 −√

ε1 cos(θt − θ0)|
sµν

√
ε1[

√
ε2 cos(θt − θ0) −√

ε1] + κν
√

ε2|√ε1 cos(θt − θ0) −√
ε2|

≡ t(0)ν (θt|θ0), (4.3)

where

s ≡ sgn(
√

ε2 cos θt −√
ε1 cos θ0). (4.4)

5. THE INVERSE PROBLEM

The results obtained in the preceding sections enable us now to solve the inverse problem of determining the
surface profile function ζ(x1) that gives rise to a transmitted field with a specified mean differential transmission
coefficient 〈∂Tν/∂θt〉(θt, θ0).

The mean differential transmission coefficient in the Kirchhoff approximation is obtained from Eqs. (3.11),
(4.1a), and (4.3) in the form

〈
∂Tν

∂θt

〉
(θt, θ0) =

1
L1

ε2√
ε1

κν

µν

ω

2πc

cos2 θt

cos θ0
|t(0)ν (θt|θ0)|2

×
∞∫

−∞
dx1

∞∫

−∞
dx′

1 exp[−i(q − k)(x1 − x′
1)]〈exp{i[α2(q) − α1(k)][ζ(x1) − ζ(x′

1)]}〉. (5.1)

As it stands, Eq. (5.1) is too complicated to invert to obtain ζ(x1) in terms of 〈∂Tν/∂θt〉(θt, θ0). To obtain an
expression that can be inverted, we pass to the geometrical optics limit of Eq. (5.1). This is done by expanding
ζ(x1) about x′

1,

ζ(x1) = ζ(x′
1) + (x1 − x′

1)ζ
′(x′

1) + · · · , (5.2)

and retaining only the first two terms in this expansion. In this way we obtain the result
〈

∂Tν

∂θt

〉
(θt, θ0) =

1
L1

ε2√
ε1

κν

µν

ω

2πc

cos2 θt

cos θ0
|t(0)ν (θt|θ0)|2

×
∞∫

−∞
dx1

∞∫

−∞
dx′

1 exp[−i(q − k)(x1 − x′
1)]〈exp{i[α2(q) − α1(k)](x1 − x′

1)ζ
′(x′

1)}〉. (5.3)

To evaluate the double integral in Eq. (5.3) we recall that we assumed that the surface profile function ζ(x1)
is nonzero only for x1 within an interval of length L1 of the x1 axis. Within this interval we represent ζ(x1) in
the form

ζ(x1) = an(x1 − nb), nb < x1 < (n + 1)b, n = −N,−N = 1, . . . , N − 1, (5.4)
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where {an} are independent, identically distributed random deviates, b is a characteristic length, and N is a
large positive integer. The length L1 is therefore L1 = 2Nb. Because the {an} are independent and identically
distributed random deviates, the probability density function (pdf) of an,

f(γ) = 〈δ(γ − an)〉, (5.5)

is independent of n.

With the definition a(q, k) = α2(q) − α1(k) the double integral in Eq. (5.3) can be evaluated as

I = 4(Nb)2
∞∫

−∞
dγf(γ)[sinc(q − k − aγ)Nb]2, (5.6)

where sincx = sinx/x. In the limit as N → ∞ we have

(sincNx)2 → π

N
δ(x). (5.7)

It follows, then, that Eq. (5.6) becomes

I =
4πNb

|a| f

(
q − k

a

)

=
2πL1

|α2(q) − α1(k)|f
(

q − k

α2(q) − α1(k)

)
. (5.8)

When this result is substituted into Eq.(5.3), and use is made of Eqs. (3.3) and (3.7), we obtain the mean
differential transmission coefficient in the form

〈
∂Tν

∂θt

〉
(θt, θ0) =

ε2√
ε1

κν

µν

cos2 θt

cos θ0

|t(0)ν (θt|θ0)|2
|√ε2 cos θt −√

ε1 cos θ0|fν

( √
ε2 sin θt −√

ε1 sin θ0√
ε2 cos θt −√

ε1 cos θ0

)
. (5.9)

The addition of the subscript to f(γ) emphasizes the result that the surface profile now depends on the polar-
ization of the incident light. We now make the change of variable

√
ε2 sin θt −√

ε1 sin θ0√
ε2 cos θt −√

ε1 cos θ0
= −γ, (5.10)

and obtain the results

cos θt =
√

ε1
ε2

(sin θ0 + γ cos θ0)γ
1 + γ2

+
A(γ, θ0)
1 + γ2

(5.11)

sin θt =
√

ε1
ε2

sin θ0 + γ cos θ0

1 + γ2
− γA(γ, θ0)

1 + γ2
(5.12)

cos(θt − θ0) =
√

ε1
ε2

(sin θ0 + γ cos θ0)2

1 + γ2
+ A(γ, θ0)

cos θ0 − γ sin θ0

1 + γ2
, (5.13)

where

A(γ, θ0) = [1 + γ2 − (ε1/ε2)(sin θ0 + γ cos θ0)2]
1
2 . (5.14)

In what follows, to simplify the notation, we will omit the arguments of A(γ, θ0) except where the result depends
on the sign of γ.
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In order for cos θt and sin θt to be real, we see that A has to be real. This requires that the inequality

1 + γ2 ≥ (ε1/ε2)(sin θ0 + γ cos θ0)2 (5.15)

be satisfied. This inequality is satisfied for all γ when ε1 < ε2, because 0 ≤ (sin θ0 + γ cos θ0)2 ≤ 1 + γ2.

In the case where ε1 > ε2 we have to proceed carefully. It is convenient to rewrite the inequality (5.15) in
the form

aγ2 − 2bγ + c ≥ 0, (5.16)

where

a = 1 − ε cos2 θ0 (5.17a)

b = ε sin θ0 cos θ0 (5.17b)

c = 1 − ε sin2 θ0 (5.17c)

ε = ε1/ε2 > 1. (5.17d)

We next write the inequality (5.16) as

a(γ − γ1)(γ − γ2) > 0. (5.18)

where

γ1 =
b

a
+

√
ε − 1
|a| (5.19a)

γ2 =
b

a
−

√
ε − 1
|a| . (5.19b)

We see that γ1 > γ2 regardless of the signs of a and b.

We now consider the case a > 0, so that cos2 θ0 < 1/ε. In this case the inequality (5.18) is satisfied if

γ > γ1, γ > γ2 (5.20a)

and if

γ < γ1, γ < γ2. (5.20b)

Because γ1 > γ2, the pair of inequalities (5.20a) yields the constraint

γ > γ1, (5.21)

while the pair of inequalities (5.20b) yields

γ < γ2. (5.22)

Thus, when a > 0 A is real when γ > γ1 and when γ < γ2.

In the case that a < 0 so that cos2 θ0 > 1/ε, we see from the inequality (5.18) that it is satisfied if

γ < γ1, γ > γ2 (5.23a)
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and if

γ > γ1, γ < γ2. (5.23b)

Since γ1 is larger than γ2, the second pair of inequalities cannot be satisfied simultaneously, so that the con-
straints on γ become

γ2 < γ < γ1. (5.24)

The constraints (5.21), (5.22), and (5.24) have to be kept in mind in what follows. Their important consequence
is that when they are satisfied the function A defined by Eq. (5.14) is real and positive when ε > 1.

We now apply the preceding results to invert Eq. (5.9) to obtain fν(γ) in terms of 〈∂Tν/∂θt〉(γ, θ0), where
〈∂Tν/∂θt〉(γ, θ0) is the form that 〈∂Tν/∂θt〉(θt, θ0) takes when θt is expressed in terms of γ and θ0 through the
use of Eqs. (5.11)-(5.14). We consider the cases ε < 1 and ε > 1 in turn.

ε < 1

When ε < 1,
√

ε2 cos θt −√
ε1 cos θ0 becomes

√
ε2 cos θt −√

ε1 cos θ0 =
√

ε2
1 + γ2

[A −√
ε(cos θ0 − γ sin θ0)] (5.25)

with the use of Eq. (5.11). From the definition of A, Eq. (5.14), we find that

A >
√

ε(cos θ0 − γ sin θ0). (5.26)

As a result we obtain from Eq. (4.4) that

s = 1. (5.27)

We also obtain the results that

cos(θt − θ0) −
√

ε =
1

1 + γ2
(cos θ0 − γ sin θ0)[A −√

ε(cos θ0 − γ sin θ0)] (5.28)

√
1/ε − cos(θt − θ0) =

1
1 + γ2

{(
1√
ε
−√

ε

)
(1 + γ2) − (cos θ0 − γ sin θ0)

×[A −√
ε(cos θ0 − γ sin θ0)]

}
> 0. (5.29)

If we denote by t
(0)
ν (γ|θ0) the form t

(0)
ν (θt|θ0) takes when θt is expressed in terms of γ and θ0 through the

use of Eqs. (5.11)-(5.14), we obtain from the preceding results that

t(0)ν (γ|θ0) =
2
√

εµν

cos θt
(cos θ0 − γ sin θ0)τ (0)

ν (γ|θ0), (5.30)

where

τ (0)
ν (γ|θ0) =

( 1√
ε
−√

ε)(1 + γ2) − (cos θ0 − γ sin θ0)[A −√
ε(cos θ0 − γ sin θ0)]

κν( 1√
ε
−√

ε)(1 + γ2) + (µν − κν)(cos θ0 − γ sin θ0)[A −√
ε(cos θ0 − γ sin θ0]

. (5.31)

The mean differential transmission coefficient, Eq. (5.9), then becomes
〈

∂Tν

∂θt

〉
(γ, θ0) = 4

√
ε
κνµν

cos θ0
(1 + γ2)

(cos θ0 − γ sin θ0)2

[A(γ, θ0) −√
ε(cos θ0 − γ sin θ0)]

|τ (0)
ν (γ|θ0)|2f(−γ). (5.32)

We invert this equation and obtain finally

fν(γ) =
cos θ0

4
√

εκνµν

1
1 + γ2

[A(−γ, θ0) −√
ε(cos θ0 + γ sin θ0)]

(cos θ0 + γ sin θ0)2
1

|τ (0)
ν (−γ|θ0)|2

〈
∂Tν

∂θt

〉
(−γ, θ0). (5.33)
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ε > 1
When ε > 1,

√
ε2 cos θt −√

ε1 cos θ0 is

√
ε2 cos θt −√

ε1 cos θ0 = −
√

ε2
1 + γ2

[
√

ε(cos θ0 − γ sin θ0) − A]. (5.34)

In the present case we find that
√

ε(cos θ0 − γ sin θ0) > A (5.35)

as long as cos θ0 − γ sin θ0 > 0, and γ satisfies either the inequalities (5.21) or (5.22) when a = 1− ε cos2 θ0 > 0,
or the inequalities (5.24) when a = 1 − ε cos2 θ0 < 0. On the assumption that these conditions are satisfied we
obtain from Eq. (4.4) that

s = −1. (5.36)

We also obtain the results that
√

ε − cos(θt − θ0) =
1

1 + γ2
(cos θ0 − γ sin θ0)[

√
ε(cos θ0 − γ sin θ0) − A] (5.37)

cos(θt − θ0) − 1√
ε

=
1

1 + γ2

{(√
ε − 1√

ε

)
(1 + γ2) − (cos θ0 − γ sin θ0)

×[
√

ε(cos θ0 − γ sin θ0) − A]
}

. (5.38)

We can now write t
(0)
ν (γ|θ0) in the form

t(0)ν (γ|θ0) =
2
√

εµν

cos θt
(cos θ0 − γ sin θ0)τ (0)

ν (γ|θ0), (5.39)

where

τ (0)
ν (γ|θ0) =

(
√

ε − 1√
ε
)(1 + γ2) − (cos θ0 − γ sin θ0)[

√
ε(cos θ0 − γ sin θ0) − A]

κν(
√

ε − 1√
ε
)(1 + γ2) + (µν − κν)(cos θ0 − γ sin θ0)[

√
ε(cos θ0 − γ sin θ0) − A]

if cos(θt − θ0) >
1√
ε

(5.40a)

= 0 if cos(θt − θ0) <
1√
ε
. (5.40b)

The mean differential transmission coefficient now becomes
〈

∂Tν

∂θt

〉
(γ, θ0) = 4

√
εκνµν

1 + γ2

cos θ0

(cos θ0 − γ sin θ0)2√
ε(cos θ0 − γ sin θ0) − A

|τ (0)
ν (γ|θ0)|2f(−γ)

if cos(θt − θ0) >
1√
ε

(5.41a)

= 0 if cos(θt − θ0) <
1√
ε
. (5.41b)
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We invert this result to obtain, finally,

fν(γ) =
1

4
√

εκνµν

cos θ0

1 + γ2

√
ε(cos θ0 + γ sin θ0) − A(−γ, θ0)

(cos θ0 + γ sin θ0)2
1

|τ (0)
ν (−γ|θ0)|2

〈
∂Tν

∂θt

〉
(−γ, θ0). (5.42)

6. RESULTS

In this section we apply the results obtained in the preceding section to the determination of the surface profile
function in the case where the mean differential transmission coefficient has the form

〈
∂Tν

∂θt

〉
(θt, θ0) = Bνθ(θt − θ1)θ(θ2 − θt), (6.1)

where Bν is a constant and θ(z) is the Heaviside unit step function. We assume that

θ2 = θ1 + ∆θ, (6.2)

where ∆θ is a small angular interval, which we take to be 1.5◦. Since sin θ is a monotonically increasing function
of θ in the interval (−π/2, π/2), we can rewrite Eq. (6.1) as

〈
∂Tν

∂θt

〉
(θt, θ0) = Bνθ(sin θt − sin θ1)θ(sin θ2 − sin θt)

= Bνθ(
√

ε(sin θ0 + γ cos θ0) − γA(γ, θ0) − (1 + γ2) sin θ1)

×θ((1 + γ2) sin θ2 −
√

ε(sin θ0 + γ cos θ0) + γA(γ, θ0))

=
〈

∂Tν

∂θt

〉
(γ, θ0). (6.3)

We have used Eq. (5.12) in obtaining the second form of this expression. The substitution of Eq. (6.3)
into Eqs. (5.33) and (5.42) yields the probability density function fν(γ) in the case where ε < 1 and ε > 1,
respectively. The coefficient Bν is obtained from the normalization of fν(γ).

In the usual approach to transmission through a randomly rough surface1, 2 the rejection method6 is used
to generate a long sequence of {an} from the pdf fν(γ), and a realization of the surface profile function ζ(x1)
is constructed on the basis of Eq. (5.4). The transmission problem is then solved by a rigorous computational
approach7 and the result is used to calculate the differential transmission coefficient on the basis of Eq. (3.11).
This process is repeated for Np realizations of the surface profile function, and an arithmetic average of the Np

results for the differential transmission coefficient yields the mean differential transmission coefficient.

In the present case the form of the mean differential transmission coefficient given by Eqs. (6.1)-(6.2), and the
smallness of ∆θ, have the consequences that such an ensemble average of the differential transmission coefficient
is unnecessary. Transmission through a single realization already produces a differential transmission coefficient
that is in very good agreement with the result obtained by averaging the results obtained for several hundred
realizations of the surface profile function. Consequently in what follows we will mainly present results obtained
for only a single realization of the surface profile function.

In Fig. 1 we present results for the case where ε1 = 1 and ε2 = 2.25, the incident light is p polarized, its
wavelength is λ = 632.8 nm, and the angle of incidence is θ0 = 15◦. If the interface x3 = 0 were planar, the angle
of transmission, calculated from Snell’s law, would be 9.936◦. We choose the angle θ1 to be θ1 = −10.686◦, so
that θ2 = −9.186◦. In Fig. 1(a) we display a short segment of a single realization of the surface profile function
calculated for the values of these parameters from Eq. (5.33). The characteristic length b is b = 100µm and
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Figure 1. (a) A segment of a single realization of the surface profile function, designed to produce negative refraction
of p−polarized light incident on it at an angle of incidence θ0 = 15◦; (b) the differential transmission coefficient as a
function of the angle of transmission, calculated for this realization of the surface profile function by the use of the
Kirchhoff approximation; and (c) a gray level plot of the differential transmission coefficient as a function of the angles
of incidence and transmission.

the value of N entering Eq. (5.4) is N = 1000 (L1 = 20 cm). In Fig. 1(b) we present a plot of the differential
transmission coefficient as a function of the angle of transmission, calculated for this realization of the surface
profile function by the Kirchhoff approximation,8 due to its simplicity and speed. It is seen to consist of a single
narrow peak of width 1.5◦, centered at θt = −9.936◦. Thus, for this angle of incidence the light transmitted
through the random interface undergoes negative refraction. As the angle of incidence is moved away from 15◦,
while the surface remains fixed, the angular position of this peak also moves. In Fig. 1(c) we present a gray-
level plot of the differential transmission coefficient as a function of the angles of incidence and transmission.
The large values of the differential transmission coefficient in Fig. 1(c) trace the dependence of the angle of
refraction θt on the angle of incidence θ0, for θ0 in the vicinity of 15◦. The dashed line also plotted in this
figure is the dependence θt = sin−1(

√
ε1/e2 sin θ0) of the transmission angle on the incidence angle in the case

that the interface x3 = 0 is planar. It is seen that for the surface profile chosen the transmitted light undergoes
nonstandard refraction, including negative refraction, over a wide range of angles of incidence.

In Fig. 2 we present the analogous results for the same values of the material and experimental parameters
assumed in obtaining Fig. 1, but for the case where the incident light is s polarized. The results are qualitatively
and quantitatively similar to those obtained when the incident light is p polarized. The differential transmission
coefficient at its maximum is slightly higher in the case of p−polarized light due to its weaker reflection from
the facets forming the surface.
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Figure 2: The same as in Fig. 1 but for s−polarized incident light.
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Figure 3. (a) A segment of a single realization of the surface profile function, designed to produce negative refraction
of p−polarized light incident on it at an angle of incidence θ0 = 15◦; (b) the differential transmission coefficient as a
function of the angle of transmission, calculated for this realization of the surface profile function by the use of the
Kirchhoff approximation; and (c) a gray level plot of the differential transmission coefficient as a function of the angles
of incidence and transmission.

We turn now to the case where the medium of incidence is the optically more dense medium, and present
results in Fig. 3 for the case where ε1 = 2.25, ε2 = 1, the incident light is p polarized, its wavelength is
λ = 632.8 nm, and the angle of incidence is θ0 = 15◦. In the case that the interface x3 = 0 is planar, there
is a critical angle for total internal reflection, θc = sin−1

√
ε2/ε1 = 41.81◦, while the angle of transmission

obtained from Snell’s law is 22.844◦. We choose the angle θ1 to be θ1 = −23.594◦, so that θ2 = −22.094◦.
In Fig. 3(a) we plot a segment of one realization of the surface profile function calculated for these values of
the parameters from Eq. (5.42) with b = 100µm and N = 1000. In Fig. 3(b) the differential transmission
coefficient, calculated for this surface profile function by the Kirchhoff approximation8 is plotted as a function
of the angle of transmission. It consists of a single narrow peak of width 1.5◦ centered at θt = −22.844◦. The
surface we have designed therefore negatively refracts light incident on it at an angle θ0 = 15◦. In Fig. 3(c)
we present a gray level plot of the differential transmission coefficient as a function of the angles of incidence
and transmission for this surface profile function for a range of values of θ0 in the vicinity of θ0 = 15◦. The
dashed line also plotted in this figure is the dependence θt = sin−1(

√
ε1/e2 sin θ0) of the transmission angle

on the incidence angle when the interface x3 = 0 is planar, and we see that the transmitted light undergoes
nonstandard refraction, including negative refraction, over a large range of values of the angle of incidence.
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Figure 4: The same as in Fig. 3 but for s−polarized incident light.

Finally, in Fig. 4 we present the analogous results for the same values of the material and experimental
parameters assumed in obtaining Fig. 3, except that the incident light is now s polarized. As in the case of the
results presented in Figs. 1 and 2, the results presented in Fig. 4 are qualitatively similar to those presented
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Figure 5. The differential transmission coefficient for s−polarized light incident at an angle θ0 = 5◦ as a function of the
angle of transmission, calculated by the use of the rigorous simulations (RS) (thick line) and the Kirchhoff approximation
(KA) (circles). The characteristic length b is b = 35λ ≈ 22.15µm and N = 3 (L1 = 130µm).

in Fig. 3, but are quantitatively different. In this case the differential transmission coefficient at its maximum
is considerably higher in the case of p−polarized light. This is because the local angles of incidence are close
to the Brewster angle, so that the reflection from each of the facets forming the surface is considerably weaker
than it is for s−polarized light.

As we have noted above, the results plotted in Figs. 1-4 were calculated by the use of the Kirchhoff
approximation, due to its simplicity and speed. However, this approximation does not take into account the
vertical segments of the surface profile function nor potential multiple-scattering effects. To see how this neglect
influences the results obtained we have also solved the scattering problem by a rigorous approach based on
Green’s second integral identity in the plane4 in which the scattering from these segments is fully taken into
account.9 In Fig. 5 the thick solid black line represents the result of the rigorous numerical simulations for
the case where ε1 = 2.25 and ε2 = 1, the incident light is s polarized, its wavelength is λ = 632.8 nm, and
the angle of incidence is θ0 = 5◦. In this case the angle of transmission obtained from Snell’s law is 7.512◦,
the angle θ1 is θ1 = −8.262◦, so that θ2 = −6.762◦. The characteristic length b is b = 35λ ≈ 22.15µm, and
the value of N entering Eq. (5.4) is N = 3 (L1 = 130µm). Since the short surfaces generated with such small
values of N cannot fully possess the statistics of an infinitely long random surface, averaging over the ensemble
of realizations of the surface was needed in this case. Thus, the curve represented by the thick solid black line
in Fig. 5 is an arithmetic average of the results obtained for Np = 250 realizations of the random surface.
For comparison the circles show the result obtained by the use of the Kirchhoff approximation for the same
values of the parameters, and is also an average over results obtained for Np = 250 realizations of the surface
profile function. The results presented in Fig. 5 shows that the use of the Kirchhoff approximation produces
quantitatively good results.

7. DISCUSSION

On the basis of the geometrical optics limit of the Kirchhoff approximation we have developed an approach to
the design of a one-dimensional randomly rough interface between two different dielectric media that produces
a transmitted field with a specified dependence of the mean differential transmission coefficient on the angle
of transmission for any specified angle of incidence. We have applied this method to the case where the mean
differential transmission coefficient as a function of the angle of transmission has a constant value within a
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very narrow angular interval, centered at the negative of the angle of transmission given by Snell’s law when
the interface between the two media is planar, and vanishes outside this interval. The light incident on the
interface in this case undergoes a form of negative refraction. Although the interface was designed on the basis
of a single-scattering approximation, calculations of the mean differential reflection coefficient by means of a
rigorous numerical approach that takes multiple-scattering processes of all orders into account show that the
interface designed in this way transmits light in the manner it was designed to do.

For the same interfaces we have also investigated the dependence of the angle of transmission on the angle of
incidence, when the latter is in the vicinity of the value for which the interface was designed. This dependence
shows that the interface refracts light negatively for a large range of values of the angle of incidence.

These properties of the interfaces designed here are consequences of their roughness alone, and do not require
the presence of any negative index material. These interfaces could be used in applications requiring negative
refraction.10

Finally, we note that interfaces of this type can be fabricated at the interface between air and photoresist
by the method described in.8
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