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ABSTRACT

An approach to inverting experimental light scattering data for obtaining the normalized surface height autocor-
relation function of a two-dimensional randomly rough dielectric surface, and its rms height is presented. It is
based on the expression for the contribution to the mean differential reflection coefficient from the in-plane, co-
polarized, light of s-polarization scattered diffusely from such a surface, obtained by phase perturbation theory.
For weakly rough surfaces the reconstructions obtained by this approach are quite accurate.
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1. INTRODUCTION

Statistical properties of randomly rough surfaces, such as the normalized surface height autocorrelation function,1

its Fourier transform, the power spectrum of the surface roughness,2 the probability density function of surface
heights,3 and the root-mean-square (rms) height of the surface,4 are very useful characteristics of such surfaces.
Efforts to determine these properties by inverting experimental measurements of light scattered into the far field
from them, have been studied for many years because of the contactless nature of this approach, and because
measurements in the far field are easier to make than measurements in the near field.

In this paper we present an approach to the determination of the normalized surface height autocorrelation
function of a two-dimensional randomly rough dielectric surface from measurements of the angular dependence
of the contribution to the mean differential reflection coefficient from the in-plane co-polarized light scattered
incoherently (diffusely) from it. Our approach also enables us to obtain an estimate of the rms height of the
surface from these data, as well as the dielectric constant of the scattering medium, if it is not known a priori.

This problem has been studied earlier by Chandley1 and by Marx and Vorburger.5 In the former work scalar
diffraction theory and a thin random phase screen approximation6 were used to describe the interaction of light
with the randomly rough surface. The use of this model allowed the inversion of the angular dependence of
the mean intensity of the scattered light in the far field to be carried out by means of a Fourier transformation.
However, the dielectric constant of the scattering medium does not appear in Chandley’s theory, so that it cannot
be used to determine it from scattering data if it is not known in advance. In their work Marx and Vorburger
applied the Kirchhoff approximation for the scattering of a plane wave from a two-dimensional randomly rough
perfectly conducting surface to obtain the mean intensity of the scattered field. This expression was evaluated
with the use of an expression for the surface height autocorrelation function of a particular analytical form, and
the determination of the parameters defining it was carried out by a least squares fit of the theoretical mean
intensity to the experimental result.
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In contrast, in this paper we use a vector theory of rough surface scattering, namely phase perturbation
theory,7 to calculate the contribution to the mean differential reflection coefficient from the in-plane, co-polarized
incoherently scattered light of s polarization incident normally on a two-dimensional randomly rough dielectric
surface. The dielectric constant of the scattering medium is taken into account in this approach. This expression
is evaluated with the use of an expression for the normalized surface height autocorrelation function that contains
adjustable parameters. The values of these parameters are then determined through a least squares fit of the
resulting expression to the corresponding experimental scattering data. The use of s-polarized light in this
approach is prompted by the fact that it leads to a simpler expression for the mean differential reflection coefficient
than does the use of p-polarized light, and because there is no Brewster effect in s polarization. Consequently a
smoother function of the scattering angle is being inverted in s polarization than in p polarization.

2. THE SCATTERING SYSTEM

The system we study consists of vacuum in the region x3 > ζ(x‖) and a dielectric medium, characterized by a
dielectric constant ε, in the region x3 < ζ(x‖). It is assumed that ε is real, positive, and frequency independent.
The vector x‖ = (x1, x2, 0) is a position vector in the plane x3 = 0. The surface profile function ζ(x‖) is a single-
valued function of x‖ that is differentiable with respect to x1 and x2, and constitutes a stationary, zero-mean,
isotropic, Gaussian random process defined by

〈ζ(x‖)ζ(x ′‖)〉 = δ2W (|x‖ − x′‖|) (1a)

〈ζ2(x‖)〉 = δ2. (1b)

Here the angle brackets denote an average over the ensemble of realizations of ζ(x‖), δ is the rms height of
the surface, and W (|x‖|) is the normalized surface height autocorrelation function. It has the property that
W (0) = 1.

The surface profile function has a Fourier integral representation,

ζ(x‖) =

∫
d2Q‖

(2π)2
ζ̂(Q‖) exp(iQ‖ · x‖), (2)

where Q‖ = (Q1, Q2, 0), so that

ζ̂(Q‖) =

∫
d2x‖ζ(x‖) exp(−iQ‖ · x‖). (3)

The Fourier coefficient ζ̂(Q‖) is a zero-mean Gaussian random process defined by

〈ζ̂(Q‖)ζ̂(Q′‖)〉 = (2π)2δ(Q‖ + Q′‖)δ
2g(|Q‖|), (4)

where g(|Q‖|), the power spectrum of the surface roughness, is given by

g(|Q‖|) =

∫
d2x‖W (|x‖|) exp(−iQ‖ · x‖). (5)

3. PHASE PERTURBATION THEORY

The surface x3 = ζ(x‖) is illuminated from the vacuum by an electromagnetic field of frequency ω. The

total electric field in the vacuum region is the sum of an incident and a scattered field E(x; t) = [E(i)(x|ω) +
E(s)(x|ω)] exp(−iωt), where

E(i)(x|ω) =
{
− c
ω

[
k̂‖α0(k‖) + x̂3k‖

]
Bp(k‖) + (x̂3 × k‖)Bs(k‖)

}
exp[i(k‖ − x̂3α0(k‖)) · x] (6a)

E(s)(x|ω) =

∫
d2q‖

(2π)2

{ c
ω

[
q̂‖α0(q‖)− x̂3q‖

]
Ap(q‖) + (x̂3 × q̂‖)As(q‖)

}
exp[i(q‖ + x̂3α0(q‖)) · x]. (6b)
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The subscripts p and s denote the p-polarized (TM) and s-polarized (TE) components of each of these fields

with respect to the plane of incidence, defined by k̂‖ and x̂3, and the local plane of scattering, defined by q̂‖ and

x̂3, respectively. The function α0(q‖) in Eqs. (6) is α0(q‖) = [(ω/c2)− q2‖]
1
2 , with Reα0(q‖) > 0, Imα0(q‖) > 0.

Maxwell’s equations and the associated boundary conditions imply linear relations between Aα(q‖) and
Bβ(k‖)(α = p, s, β = p, s)

Aα(q‖) =
∑
β

Rαβ(q‖|k‖)Bβ(k‖). (7)

The scattering amplitudes {Rαβ(q‖|k‖)} play a central role in the present theory because the mean differential
reflection coefficient is expressed in terms of them.

The differential reflection coefficient (∂Rαβ(q‖|k‖)/∂Ωs) is defined such that (∂Rαβ(q‖|k‖)/∂Ωs) dΩs is the
fraction of the total time-averaged flux in an incident field of β polarization, the projection of whose wave vector
on the mean scattering plane is k‖, that is scattered into a field of α polarization, the projection of whose wave
vector on the mean scattering plane is q‖, within an element of solid angle dΩs about the scattering direction
defined by the polar and azimuthal angles (θs, φs). It is given by8

∂Rαβ(q‖|k‖)
∂Ωs

=
1

S

( ω

2πc

)2 cos2 θs
cos θ0

∣∣Rαβ(q‖|k‖)
∣∣2 , (8)

with q‖ = (ω/c) sin θs(cosφs, sinφs, 0) and k‖ = (ω/c) sin θ0(cosφ0, sinφ0, 0), where (θs, φs) and (θ0, φ0) are the
polar and azimuthal angles of scattering and incidence, respectively. S is the area of the plane x3 = 0 covered
by the rough surface. Since we are dealing with scattering from a randomly rough surface we need the average
of this function over the ensemble of realizations of the surface profile function. The contribution to this average
from the light scattered incoherently is8〈

∂Rαβ(q‖|k‖)
∂Ωs

〉
incoh

=
1

S

( ω

2πc

)2 cos2 θs
cos θ0

[〈∣∣Rαβ(q‖|k‖)
∣∣2〉− ∣∣〈Rαβ(q‖|k‖)

〉∣∣2] . (9)

When some typographical errors in the results presented in Ref. 7 are corrected, it is found that in the case of
normal incidence (k‖ = 0) and in-plane scattering (q̂‖ = k̂‖), the contribution to the mean differential reflection
coefficient from the incoherent scattering of s-polarized light is given in phase perturbation theory by〈

∂Rss(q‖|0)

∂Ωs

〉
incoh

≡
〈
∂Rss(θs)

∂Ωs

〉
incoh

=
(ε− 1)2

(2π)2

(ω
c

)6 cos θs
[ds(q‖)ds(0)]2

exp[−2M(q‖|0)]

×
∞∑
n=1

[4δ2α0(q‖)α0(0)]n

n!

∫
d2u‖W

n(u‖) exp(−iq‖ · u‖), (10)

when the phase is calculated to second order in the surface profile function. The exponent 2M(q‖|0) is defined
by

2M(q‖|0) = 2δ2[α0(q‖)α0(0)]
1
2

{
[α(q‖) + α(0)]

−(ε− 1)Re

∫ ∞
0

dp‖p‖

[
α0(p‖)α(p‖)

dp(p‖)
+

(ω/c)2

ds(p‖)

] ∫ ∞
0

dx‖x‖J0(p‖x‖)W (x‖)

}
, (11)

and J0(x) is a Bessel function of the first kind and order zero. In writing these equations we have introduced
the functions

dp(q‖) = εα0(q‖) + α(q‖), ds(q‖) = α0(q‖) + α(q‖), (12)

where the function α(q‖) is defined by α(q‖) = [ε(ω/c)2 − q2‖]
1
2 , with Reα(q‖) > 0, Imα(q‖) > 0.
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4. THE INVERSE PROBLEM

To use the preceding results to obtain W (|x‖|) from scattering data for 〈∂Rss(θs)/∂Ωs〉incoh,input, we calculate
〈∂Rss(θs)/∂Ωs〉incoh,calc for an expression for W (|x‖|) that contains adjustable parameters. The values of these
parameters are determined by minimizing a cost function with respect to variation of these parameters. The
cost function we use is

χ2(P) =

∫ π
2

−π
2

dθs

[〈
∂Rss(θs)

∂Ωs

〉
incoh,input

−
〈
∂Rss(θs)

∂Ωs

〉
incoh,calc

]2
, (13)

where P denotes a set of variational parameters used to characterize 〈∂Rss(θs)/∂Ωs〉incoh,calc. The minimization
of this function with respect to the elements of P was carried out using a FORTRAN implementation of the
Levenberg-Marquardt algorithm, contained in the package MINPACK.

The trial function for W (x‖) used in our reconstructions has the Gaussian form

W (|x‖|) = exp
[
−(x‖/a

?)2
]
. (14)

In this case the variational parameters are δ?, a? and potentially also ε?. This is not an overly restrictive form
for the trial function, since the surface height autocorrelation function for non-fractal surfaces generally has the
form W (|x‖|) = 1− (x‖/a

?)2 in the limit x‖ → 0,9 which is captured by Eq. (14), or has a Gaussian form in this
limit.10

For the function 〈∂Rss(θs)/∂Ωs〉incoh,input we used the results of rigorous, non-perturbative, purely numerical
solutions of the reduced Rayleigh equation for the scattering of polarized light from a two-dimensional randomly
rough penetrable surface.11 These calculations were carried out for an ensemble of random surfaces generated12

on the basis of an expression for W (|x‖|) of Gaussian form

W (|x‖|) = exp
[
−(x‖/a)2

]
. (15)

The value of the rms height of the surface assumed in these calculations was δ = 9.50 nm, while the value of the
transverse correlation length was chosen to be a = 158.20 nm. The calculations were carried out for two values
of the dielectric constant ε, namely ε = 2.64 (photoresist) and ε = 12 (silicon). The wavelength (in vacuum)
of the s-polarized light incident normally∗ onto the mean surface was λ = 632.8 nm, and the co-polarized mean
differential reflection coefficients were obtained after averaging over (at least) 5, 000 surface realizations. The
use of mean differential reflection coefficients generated by the use of a known W (|x‖|) in our inversion approach
enables us to assess the quality of the reconstructions we obtain.

5. RESULTS

To illustrate the inversion method developed here, we consider the reconstruction of W (|x‖|) with the use of the
trial function (14). First we assume δ = 9.50 nm, a = 158.20 nm, and ε = 2.64 with the remaining experimental
parameters as given in Sec. 4. For these parameters, we perform computer simulations of the mean differential
reflection coefficients, and the in-plane variation of its s-to-s-polarized incoherent component is presented as open
symbols in Fig. 1(a). This data set will serve as the input data, 〈∂Rss(θs)/∂Ωs〉incoh,input, for the reconstruction.
The corresponding correlation function assumed in obtaining the simulation result is presented as open symbols
in Fig. 1(b). As a first example we assume that the variational parameters are P = {δ?, a?}. Under this
assumption, a reconstruction of the surface parameters was performed by minimizing the cost function χ2(P),
Eq. (13), with respect to the elements of P. The solid lines in Fig. 1 represent the (phase perturbation theory)
reconstructed 〈∂Rss/∂Ωs〉incoh [Fig. 1(a)] and W (|x‖|) [Fig. 1(b)]. From Fig. 1 one observes a quite accurate
inversion; for instance, the reconstructed W (|x‖|) is nearly superimposed on the input W (|x‖|). In particular,
the gray region of Fig. 1(b) represents 10 times the absolute difference between the input and reconstructed
W (|x‖|). This minimization procedure estimated the surface parameters to be δ? = 9.49 nm and a? = 158.83 nm
which should be compared to the parameters δ = 9.50 nm and a = 158.20 nm used to generate the input data.

∗In the simulations, the polar angle of incidence was for technical reasons not zero, but instead θ0 = 1.18◦.
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Figure 1: Reconstruction of the rms-roughess δ? and correlation length a? from scattering data: (a) The inco-
herent components of the in-plane, (s-to-s) co-polarized mean differential reflection coefficient 〈∂Rss/∂Ωs〉incoh
as a function of the polar angle of scattering θs obtained from computer simulations (open symbols) and from
second-order phase perturbation theory assuming reconstructed surface roughness parameters (solid curve) for
a two-dimensional randomly rough dielectric surface defined by Eq. (15). The surface roughness parameters
assumed in the computer simulations were δ = 9.50 nm and a = 158.20 nm, while the reconstructed surface
roughness parameters were δ? = 9.49 nm and a? = 158.83 nm. Moreover, the dielectric constant of the sub-
strate was ε = 2.64 and the wavelength of the s-polarized light incident normally onto the mean surface was
λ = 632.8 nm. (b) The input (open symbols) and reconstructed (solid curve) correlation function W (|x‖|) for
this random surface; the shaded gray region represents (10 times) the absolute error between the input and
reconstructed correlation functions.

These inversion results were found to be robust in the sense that the estimated values for the elements of P did
show little, or no, sensitivity towards the initial guess used to start the minimization procedure.

In the preceding example it was assumed that the dielectric constant ε of the scattering medium was known.
As a second example we take the input data from our first example, open symbols in Fig. 1, but in addition to
the roughness parameters now also assume that the dielectric constant of the substrate is unknown. Therefore
the variational parameter set now is P = {δ?, a?, ε?}. The results of the inversion are presented as solid lines
in Fig. 2, and also in this case a rather good reconstruction is obtained. The parameters estimated in this way
resulted in the values δ? = 9.52 nm (9.50 nm), a? = 159.2 nm (158.20 nm), and ε? = 2.62 (2.64), where the values
in parentheses are the corresponding input values. A comparison of the absolute errors in the reconstruction
of W (|x‖|) from Figs. 1(b) and 2(b) shows that the error is larger in the latter case than in the former case.
This is also to be expected since in the latter case, compared to the former, one inverts with respect to one
additional parameter. However, what should be noticed, is that the addition of one extra variational parameter
only slightly increase the error in the reconstruction of W (|x‖|).

We now turn to the case of a high index substrate of dielectric constant ε = 12. All other parameters,
including those of the surface roughness, are unchanged. In Fig. 3(a), as open symbols, we plot the numerical
simulation result for the mean differential reflection coefficient, 〈∂Rss(θs)/∂Ωs〉incoh,input, against the polar angle
of scattering θs. By comparing this result to its equivalents in Figs. 1 and 2 it is observed, as expected, that
the incoherent scattering now is significantly increased (by a factor of about five). The solid lines in Fig. 3
correspond to the results for 〈∂Rss(θs)/∂Ωs〉incoh and W (|x‖|) obtained by inversion of the scattering data with
respect to the variational parameters P = {δ?, a?}. In arriving at these results we obtained the reconstructed
surface roughness parameters δ? = 9.71 nm and a? = 154.39 nm. One observes that δ? overestimates the surface
roughness, while the correlation length is slightly underestimated. Even if these results are less accurate than
those found for the ε = 2.64 case, the results are still rather satisfactory. Increasing the dielectric constant of
the scattering medium significantly, making it strongly reflecting, has not seriously degraded the quality of the
reconstruction of W (|x‖|) and the corresponding surface roughness parameters. In passing we stress that also in
this case, the values for δ? and a? were robust to changes in the initial guess used to start the minimization.
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Figure 2: Reconstruction of the rms-roughess δ?, the correlation length a?, and the dielectric constant of the
substrate ε? from scattering data: Same as Fig. 1 except now also the dielectric constant of the substrate is
reconstructed. The reconstructed surface roughness parameters are δ? = 9.52 nm, a? = 159.2 nm, and the
reconstructed dielectric constant is ε? = 2.62.

For the high index substrate case, an inversion of the scattering data with respect to the parameter set
P = {δ?, a?, ε?} based on the cost function (13) has not been successful. This is contrary to what was observed
for the ε = 2.64 case [see Fig. 2]. One may reproduce rather well the input data for some starting parameters
of the minimization algorithm. However, for other choices, one seems to drift off into less physical relevant
parameters while still getting a reasonable reproduction of the input data. At least when using the simple cost
function Eq. (13), we have not been able to obtain robust inversion results with respect to ε? and the surface
roughness parameters δ? and a?. An alternative form of the cost function χ2(P) that, for instance, penalizes less
physical parameters, could potentially cure this problem, but this will be left for further work.
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Figure 3: Reconstruction of the rms-roughess δ? and the correlation length a? from scattering data: Same as
Fig. 1 except that the substrate is a high index material of dielectric constant ε = 12. The reconstructed surface
roughness parameters are δ? = 9.71 nm and a? = 154.39 nm. Note that in Fig. 3(b) the error is multiplied by a
factor of 2 (and not a factor 10 as in Figs. 1(b) and 2(b)).

6. DISCUSSIONS AND CONCLUSIONS

The preliminary results presented here indicate that second-order phase perturbation theory can yield a good ap-
proximation to the mean differential reflection coefficient from light scattered incoherently from a two-dimensional
randomly rough dielectric surface. As a consequence it is expected that it should be effective in the inversion of
experimental light scattering data to obtain the statistical properties of a random surface on which it depends.
For weakly rough two-dimensional random dielectric surfaces this expectation has been borne out, as we have
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used it to determine the normalized surface height autocorrelation function W (|x‖|), the rms height of the sur-
face δ, the transverse correlation length a, and the dielectric constant ε of the scattering medium. The function
W (|x‖|) has been reconstructed quite accurately. The agreement between the reconstructed values of δ, a, and
ε, and the values used in calculating the input scattering patterns is gratifyingly satisfactory.

The inversion approach outlined here needs to be explored to determine ranges of roughness, wavelength, and
dielectric parameters for which it gives reliable results. Error estimates for the determined parameters should
also be obtained. Moreover, the sensitivity to noise in the input data used in the inversion approach needs to be
investigated. These issues will be explored in subsequent work.
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