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ABSTRACT

The contribution to the mean differential reflection coefficient from the in-plane, co-polarized scattering of p-
polarized light from a two-dimensional randomly rough dielectric surface is used to invert scattering data to obtain
the normalized surface height autocorrelation function of the surface. Within phase perturbation theory this
contribution to the mean differential reflection coefficient possesses singularities (poles) when the polar scattering
angle θs equals ±θB = ± tan−1

√
ε, where ε is the dielectric constant of the dielectric medium and θB is the

Brewster angle. Nevertheless, we show in this paper that if the mean differential reflection coefficient is measured
only in the angular range |θs| < θB , these data can be inverted to yield accurate results for the normalized surface
height correlation function for weakly rough surfaces. Several parameterized forms of this correlation function,
and the minimization of a cost function with respect to the parameters defining these representations, are used
in the inversion scheme. This approach also yields the rms height of the surface roughness, and the dielectric
constant of the scattering medium if it is not known in advance. The input data used in this minimization
procedure consist of computer simulation results for surfaces defined by exponential and Gaussian surface height
correlation functions, without and with the addition of multiplicative noise. The proposed inversion scheme is
computationally efficient.

1. INTRODUCTION

In a recent paper by the present authors and their colleagues,1 a method based on second-order phase perturbation
theory2 was presented for inverting experimental scattering data to obtain certain statistical properties of the
roughness of a two-dimensional randomly rough dielectric surface. The scattering data set used in this inversion
scheme was the dependence on the polar scattering angle of the contribution to the mean differential reflection
coefficient from the in-plane co-polarized component of the light scattered diffusely from the surface when the
latter is illuminated by s-polarized light. The statistical properties of the random surface obtained by this
approach were the normalized surface height autocorrelation function, the rms height of the surface roughness,
the transverse correlation length of the surface roughness, and the dielectric constant of the substrate if it is not
known in advance. The determination of these parameters was quite accurate, for weakly rough surfaces.

It therefore seemed worthwhile to explore the inversion of the contribution to the mean differential reflection
coefficient from the in-plane, co-polarized light of p polarization scattered from a two-dimensional randomly rough
dielectric surface to obtain the normalized surface height autocorrelation function. Within phase perturbation
theory this contribution to the mean differential reflection coefficient possesses poles when the polar angle of
scattering θs equals ±θB = ± tan−1

√
ε, where ε is the dielectric constant of the dielectric medium and θB is the

Brewster angle. Nevertheless, we show in this paper that if the mean differential reflection coefficient is measured
only in the angular interval |θs| < θB , these data can be inverted to yield accurate results for the normalized
surface height autocorrelation function of weakly rough surfaces.
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The inversion is carried out by creating several parameterized forms of the surface height autocorrelation
functions and minimizing a cost function with respect to the parameters defining these forms. The input scat-
tering data used in the minimization of the cost function consist of computer simulation results obtained with
the assumption of exponential and Gaussian surface height autocorrelation functions, with and without the
addition of multiplicative noise. The use of a mean differential reflection coefficient generated by a known nor-
malized surface height autocorrelation function in our inversion approach enables us to assess the quality of the
reconstructions we obtain.

This approach also yields the rms height of the surface roughness, and the dielectric constant of the scattering
medium if it is not known in advance. It is computationally efficient.

2. THE SYSTEM STUDIED

The physical system we study in this paper consists of vacuum in the region x3 > ζ(x‖), and a dielectric medium,
whose dielectric constant is ε, in the region x3 < ζ(x‖) (Fig. 1). Here x‖ = (x1, x2, 0) is a position vector in
the plane x3 = 0. The surface profile function ζ(x‖) is assumed to be a single-valued function of x‖ that is
differentiable with respect to x1 and x2. It is also assumed to constitute a stationary, zero-mean, isotropic,
Gaussian random process defined by 〈

ζ(x‖)ζ(x′‖)
〉

= δ2W (|x‖ − x′‖|) (1a)〈
ζ2(x‖)

〉
= δ2, (1b)

where the angle brackets denote an average over the ensemble of realizations of ζ(x‖), δ is the rms height of
the surface, and W (|x‖|) is the normalized surface height autocorrelation function. It has the property that
W (0) = 1.

We introduce the Fourier integral representation of the surface profile function

ζ(x‖) =

∫
d2Q‖
(2π)2

ζ̂(Q‖) exp(iQ‖ · x‖), (2)

where Q‖ = (Q1, Q2, 0), so that

ζ̂(Q‖) =

∫
d2x‖ζ(x‖) exp(−iQ‖ · x‖). (3a)

We also introduce the function

ζ̂(n)(Q‖) =

∫
d2x‖ζ

n(x‖) exp(−iQ‖ · x‖), (3b)

so that ζ̂(0)(Q‖) = (2π)2δ
(
Q‖
)

and ζ̂(1)(Q‖) = ζ̂(Q‖).

The Fourier coefficient ζ̂(Q‖) is a zero-mean Gaussian random process defined by〈
ζ̂(Q‖)ζ̂(Q′‖)

〉
=(2π)2δ(Q‖ + Q′‖)δ

2g(Q‖), (4)

where g(Q‖), the power spectrum of the surface roughness, is defined by

g(Q‖) =

∫
d2x‖W (|x‖|) exp(−iQ‖ · x‖). (5)

It follows from Eqs. (1) and (5) that g(Q‖) is normalized to unity,∫
d2Q‖
(2π)2

g(Q‖) = 1. (6)
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Figure 1. A schematic depiction of the scattering geometry considered in this work.

3. SCATTERING THEORY

The surface x3 = ζ(x‖) is illuminated from the vacuum by an electromagnetic field of frequency ω. The electric

field in the vacuum above the surface is the sum of an incident and a scattered field, E(x, t) = [E(i)(x|ω) +
E(s)(x|ω)] exp(−iωt), where

E(i)(x|ω) =
{
− c

ω

[
k̂‖α0(k‖) + x̂3k‖

]
Bp(k‖) +

[
x̂3 × k̂‖

]
Bs(k‖)

}
exp

[
i{k‖ − x̂3α0(k‖)} · x

]
(7a)

E(s)(x|ω) =

∫
d2q‖
(2π)2

{ c
ω

[
q̂‖α0(q‖)− x̂3q‖

]
Ap(q‖) +

[
x̂3 × q̂‖

]
As(q‖)

}
exp

[
i{q‖ + x̂3α0(q‖)} · x

]
. (7b)

The subscripts p and s denote the p-polarized (TM) and s-polarized (TE) components of each of these fields,
respectively. A caret over a vector indicates it is a unit vector. In writing Eqs. (7) we have introduced the
function α0(q‖) defined by

α0(q‖) =

[(ω
c

)2
− q2‖

] 1
2

, Reα0(q‖) > 0, Imα0(q‖) > 0. (8)

Maxwell’s equations imply linear relations between Aα(q‖) and Bβ(k‖), which we write in the form (α =
p, s, β = p, s)

Aα(q‖) =
∑
β

α
1
2
0 (q‖)

α
1
2
0 (k‖)

Sαβ(q‖|k‖)Bβ(k‖), (9)

where S(q‖|k‖) is the scattering matrix. The elements of the scattering matrix play a significant role in the
present theory because the mean differential reflection coefficient is expressed in terms of them. The differential
reflection coefficient (∂Rαβ(q‖|k‖)/∂Ωs) is defined such that [∂Rαβ(q‖|k‖)/∂Ωs]dΩs is the fraction of the total
time-averaged flux in an incident field of β polarization, the projection of whose wave vector on the mean
scattering plane is k‖, that is scattered into a field of α polarization, the projection of whose wave vector on the
mean scattering plane is q‖, within an element of solid angle dΩs about the scattering direction defined by the
polar and azimuthal scattering angles (θs, φs). It is given by3

∂Rαβ(q‖|k‖)
∂Ωs

=
1

S

( ω

2πc

)2
cos θs

∣∣Sαβ(q‖|k‖)
∣∣2 , (10)
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with (see Fig. 1)

k‖ =
ω

c
sin θ0(cosφ0, sinφ0, 0) (11a)

q‖ =
ω

c
sin θs(cosφs, sinφs, 0), (11b)

where (θ0, φ0) and (θs, φs) are the polar and azimuthal angles of incidence and scattering, respectively. S is the
area of the plane x3 = 0 covered by the rough surface. Since we are dealing with scattering from a randomly
rough surface, it is the average of this function over the ensemble of realizations of the surface profile function
that we have to calculate. The contribution to this average from the light scattered incoherently (diffusely) is〈

∂Rαβ(q‖|k‖)
∂Ωs

〉
incoh

=
1

S

( ω

2πc

)2
cos θs

[
〈|Sαβ(q‖|k‖)|2〉 − |〈Sαβ(q‖|k‖)〉|2

]
. (12)

The definition of the mean differential reflection coefficient in terms of the elements of the scattering matrix is
useful. Because they satisfy the reciprocity relations4

Spp(q‖|k‖) = Spp(−k‖| − q‖) (13a)

Sss(q‖|k‖) = Sss(−k‖| − q‖) (13b)

Sps(q‖|k‖) = −Ssp(−k‖| − q‖), (13c)

their satisfaction serves as a check on the correctness of their derivation.

It is shown in Ref. 5 that the pp element of the expression given by Eq. (12) obtained on the basis of second
order phase perturbation theory can be written as〈

∂Rpp(q‖|k‖)
∂Ωs

〉
incoh

= 2π
( ω

2πc

)2
(ε− 1)2

|f(q‖)f(k‖)|
|dp(q‖)dp(k‖)|2

cos θs exp[−2M(q‖|k‖)]

×
∞∑
n=1

1

n!

[
4δ2

∣∣∣∣α0(q‖)α0(k‖)

f(q‖)f(k‖)

∣∣∣∣ ∣∣Hp(q‖|k‖)
∣∣2]n ∞∫

0

du‖u‖J0(|q‖ − k‖|u‖)Wn(u‖), (14)

where J0(z) is the Bessel function of the first kind and order zero. In writing this expression we have introduced
the functions

dp(q‖) = εα0(q‖) + α(q‖) (15a)

ds(q‖) = α0(q‖) + α(q‖), (15b)

where

α(q‖) =

[
ε
(ω
c

)2
− q2‖

] 1
2

, Reα(q‖) > 0 Imα(q‖) > 0, (16)

and

f(q‖) = ε
(ω
c

)2
− (ε+ 1)q2‖. (17)

The function 2M(q‖|k‖) is given by

2M(q‖|k‖) = −4δ2Re

[
α0(q‖)α0(k‖)

f(q‖)f(k‖)

] 1
2
∫

d2p‖
(2π)2

Fp(q‖|p‖|k‖)g(|p‖ − k‖|), (18)
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where

Fp(q‖|p‖|k‖) =
1

2

[
α(q‖) + α(k‖)

] [
q‖k‖ − α(q‖)q̂‖ · k̂‖α(k‖)

]
+

(
ε− 1

ε

){
α(q‖)q̂‖ · p̂‖α(p‖)p̂‖ · k̂‖α(k‖)

−
[
εq‖p‖ − α(q‖)q̂‖ · p̂‖α(p‖)

] [
εp‖k‖ − α(p‖)p̂‖ · k̂‖α(k‖)

]
dp(p‖)

− ε
(ω
c

)2 α(q‖)[q̂‖ × p̂‖]3[p̂‖ × k̂‖]3α(k‖)

ds(p‖)

}
. (19)

The function Hp(q‖|k‖) is defined by

Hp(q‖|k‖) = εq‖k‖ − α(q‖)q̂‖ · k̂‖α(k‖). (20)

We can rewrite the expression for 2M(q‖|k‖) in terms of W (|x‖|) in the following way. We begin by writing
g(|q‖ − k‖) with the aid of Eq. (5) as

g(|q‖ − k‖|) =

∫
d2x‖W (x‖) exp

[
−i(q‖ − k‖) · x‖

]
=

∞∑
m=−∞

gm(q‖|k‖) exp [im(φq − φk)] , (21a)

where

gm(q‖|k‖) = 2π

∞∫
0

dx‖ x‖W (x‖)Jm(q‖x‖)Jm(k‖x‖)

= g−m(q‖|k‖). (21b)

In Eq. (21) φq and φk are the azimuthal angles of the unit vectors q̂‖ and k̂‖, respectively, measured from the
positive x1 axis (see Fig. 1). When Eq. (21a) is substituted into Eq. (18) and the angular integrals are carried
out, we obtain the result

2M(q‖|k‖) = −4δ2Re

[
α0(q‖)α0(k‖)

f(q‖)f(k‖)

] 1
2

I(q‖|k‖), (22)

where

I(q‖|k‖) =
1

2
q‖[α(q‖) + α(k‖)]k‖

+
1

4π

∞∫
0

dp‖p‖

{
−
(
ε− 1

ε

)
1

dp(p‖)

[
2ε2q‖p

2
‖k‖g0(p‖|k‖)− 2εq‖p‖α(p‖)α(k‖)g1(p‖|k‖)

]}

+
(
q̂‖ · k̂‖

)[
− 1

2
α(q‖)

[
α(q‖) + α(k‖)

]
α(k‖)

+
1

4π

∞∫
0

dp‖p‖

{(
ε− 1

ε

)
α(q‖)α(p‖)α(k‖)

[
g0(p‖|k‖) + g2(p‖|k‖)

]
+ 2(ε− 1)

α(q‖)p‖α(p‖)k‖
dp(p‖)

g1(p‖|k‖)−
(
ε− 1

ε

)
α(q‖)α2(p‖)α(k‖)

dp(p‖)

[
g0(p‖|k‖) + g2(p‖|k‖)

]
+ (ε− 1)

(ω
c

)2 α(q‖)α(k‖)

ds(p‖)

[
g0(p‖|k‖)− g2(p‖|k‖)

]}]
. (23)
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Figure 2. The contribution to the mean differential reflection coefficient from the in-plane, co-polarized p-polarized light
scattered incoherently from a Gaussianly-correlated two-dimensional randomly rough dielectric surface as a function of
the polar angle of scattering, obtained from computer simulations (circles) and from second-order phase perturbation
theory (solid curve). The values of the surface roughness parameters assumed in these calculations are δ = 15.8 nm,
a = 158.20 nm, while the dielectric constant of the scattering medium is ε = 2.64, the wavelength of the p-polarized light
incident on the surface is λ = 632.8 nm, and the polar angle of incidence is θ = 1.6◦.

For in-plane [q̂‖ ‖ k̂‖] scattering and normal incidence, k‖ = 0, Eq. (14) becomes〈
∂Rpp(q‖|0)

∂Ωs

〉
incoh

=
1

2π

(ω
c

)2 (√
ε− 1

)2 ∣∣f(q‖)
∣∣∣∣dp(q‖)∣∣2 cos θs exp[−2M(q‖|0)]

×
∞∑
n=1

1

n!

[
4δ2

ω

c

α0(q‖)α2(q‖)∣∣f(q‖)
∣∣

]n ∞∫
0

du‖u‖J0(q‖u‖)W
n(u‖), (24)

where

2M(q‖|0) = −4δ2
(
ε
ω

c

)− 1
2

Re

(
α0(q‖)

f(q‖)

) 1
2

I(q‖|0),

with

I(q‖|0) = −1

2
α(q‖)

[
α(q‖) + α(0)

]
α(0) +

1

4π

ε− 1

ε
α(q‖)

∞∫
0

dp‖p‖g0(p‖|0)

[
α(p‖)−

α2(p‖)

dp(p‖)
+ ε

(ω/c)2

ds(p‖)

]
α(0).

(25)

There is a difficulty with the expression for 〈∂Rpp(q‖|k‖)/∂Ωs〉incoh given by Eq. (14). The function f(q‖)

Eq. (17), vanishes when q‖ = (ω/c) sin θs equals (ω/c)[ε/(ε+ 1)]
1
2 , i.e. when θs = sin−1[ε/(ε+ 1)]

1
2 = tan−1

√
ε.

This angle is the Brewster angle θB at which the Fresnel reflection amplitude vanishes when a planar vacuum-
dielectric interface is illuminated from the vacuum by p-polarized light. Because of the presence of f(q‖) in
the denominator of the expression (18) for the function 2M(q‖|k‖), the phase perturbation theory result for
〈Rpp(q‖|k‖)/∂Ωs〉incoh has infinities rather than zeros at θs = ±θB , independently of the angle of incidence θ0.
This is illustrated by the result for 〈∂Rpp(q‖|k‖)〉incoh calculated by second-order phase perturbation theory and
plotted in Fig. 2. For comparison we have also plotted in this figure the result obtained by a rigorous numerical
solution of the reduced Rayleigh equation for this scattering problem.4 It is seen that the result produced by
phase perturbation theory agrees well with the one produced by the solution of the reduced Rayleigh equation,
except in the immediate vicinity of the Brewster angles. In the remainder of this paper we will show that
despite the presence of the singularities in 〈∂Rpp(q‖|k‖)/∂Ωs〉incoh to which it gives rise, second-order phase
perturbation theory can still be used to invert experimental scattering data obtained in the angular interval
|θs| < θB to produce a good reconstruction of W (|x‖|).
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4. THE INVERSE PROBLEM

As was done in Ref. 1, and earlier in Ref. 6, to determine the function W (x‖) from scattering data for
〈∂Rpp(q‖|k‖)/∂Ωs〉incoh, input, we assume an analytic form for it that contains adjustable parameters. The
values of these parameters, as well as the rms height δ, are determined by varying them to minimize a cost
function. The cost function we use is

χ2(P) =

π
2∫

−π2

dθs

[〈
∂Rpp(θs)

∂Ωs

〉
incoh, input

−
〈
∂Rpp(θs)

∂Ωs

〉
incoh, calc

]2
, (26a)

where in-plane scattering data are defined as〈
∂Rpp(θs)

∂Ωs

〉
incoh

=

〈
∂Rpp(q‖|k‖)

∂Ωs

〉
incoh

∣∣∣∣∣
|q̂‖·k̂‖|=1

. (26b)

Here P denotes the set of variational parameters used to characterize 〈∂Rpp(q‖|k‖)/∂Ωs〉incoh,calc. The minimiza-
tion of this function with respect to the elements of P was carried out by the use of the routine “lmdif1” contained
in the Fortran package MINPACK which is part of the general purpose mathematical library SLATEC.7 The
routine lmdif1 implements a modified version of the Levenberg-Marquardt algorithm,8,9 and it calculates the
Jacobian by a forward-difference approximation.

In our reconstruction calculations for the input function 〈∂Rpp(θs)/∂Ωs〉incoh,input we used results of rigorous
nonperturbative, purely numerical solutions10,11 of the reduced Rayleigh equation for the scattering amplitudes
in the scattering of polarized light from a two-dimensional randomly rough dielectric surface.4 These calculations
were carried out for an ensemble of Np random surfaces generated11 on the basis of expressions for W (x‖) of
either the exponential form

W (x‖) = exp
(
−
x‖
a

)
, (27)

or the Gaussian form

W (x‖) = exp

[
−
(x‖
a

)2]
. (28)

In both of these expressions the characteristic length a is the transverse correlation length of the surface roughness.

For the function 〈∂Rpp(θs)/∂Ωs〉incoh,calc we used the expression for it, obtained by the use of second-order
phase perturbation theory, given by Eq. (14), evaluated for the trial function assumed to represent W (x‖). Three
forms for this trial function were used in our calculations. They are the exponential,

W (x‖) = exp
(
−
x‖
a?

)
, (29a)

the Gaussian,

W (x‖) = exp

[
−
(x‖
a?

)2]
, (29b)

and the stretched exponential,

W (x‖) = exp

[
−
(x‖
a?

)γ?]
. (29c)

In the first two cases the variational parameters for the reconstruction are δ?, a?, and potentially ε?. In the third
case they are δ?, a?, γ?, and potentially ε?.
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Figure 3. Reconstruction of the rms roughness δ? and transverse correlation length a? from scattering data obtained
for an exponentially correlated dielectric surface. (a) The incoherent component of the in-plane, co-polarized (p-to-p)
mean differential reflection coefficient 〈∂Rpp/∂Ωs〉incoh as a function of the polar angle of scattering θs obtained from
computer simulations (circles) and from second-order phase perturbation theory, with the use of the reconstructed surface
roughness parameters (solid curve), for a two-dimensional randomly rough dielectric surface defined by Eq. (27). The trial
function for W (|x‖|) in the reconstruction procedure has the exponential form given by Eq. (29a). The surface roughness
parameters assumed in the computer simulations have the values δ = 9.50 nm, and a = 158.20 nm. The reconstructed
values of these parameters are δ? = 9.45 nm and a? = 160.465 nm. The dielectric constant of the scattering medium
is ε = 2.64, and the wavelength of the incident light is λ = 632.8 nm. The polar angle of incidence is θ0 = 1.6◦. (b)
The input (open circles) and reconstructed (solid curve) surface height autocorrelation function W (|x‖|) for the random
surface. The shaded gray region represents the absolute difference between the input and reconstructed surface height
autocorrelation functions.

5. RESULTS

We illustrate the inversion method presented here by applying it to the reconstruction of W (|x‖).

5.1 Exponentially Correlated Surface Roughness

For the first scattering system we consider it is assumed that the surface height autocorrelation function W (|x‖|)
is exponential, Eq. (27), and is characterized by a transverse correlation length a = 158.20 nm and an rms height
δ = 9.50 nm. The dielectric constant of the scattering medium is ε = 2.64, the corresponding Brewster’s angle
θB = 58.39◦, the wavelength of the incident light is λ = 632.8 nm, and the polar angle of incidence is θ0 = 1.6◦.
By the method of Ref. 11 the mean differential reflection coefficient was calculated as a function of the polar
angle of scattering θs by averaging the results obtained from 5000 realizations of the surface profile function. The
resulting mean differential reflection coefficient is presented by open circles in Fig. 3(a). These data constitute
the input function 〈∂Rpp/∂Ωs〉incoh,input for the first set of reconstruction examples.

In our first example of a reconstruction based on this data set we assume that the trial function has the
exponential form given by Eq. (29a). The set of variational parameters is therefor P = [δ?, a?]. By starting the
minimization procedure with the values δ? = 2.00 nm, a? = 75 nm, the values of these parameters that minimize
the cost function χ2(P), Eq. (26a), were found to be δ? = 9.445 nm and a? = 160.465 nm. A comparison of these
values with the values δ = 9.5 nm and a = 158.20 nm used to generate the input data shows that the inversion is
quite accurate. The function 〈∂Rpp/∂Ωs〉incoh,calc calculated with the reconstructed values of δ? and a? by means
of second-order phase perturbation theory is plotted as the solid curve in Fig. 3(a), together with the input data,
plotted as circles. The portion of the input data used in the inversion is indicated by the filled circles, while the
open circles indicate the input data not used in the inversion. The agreement between the reconstructed and
input data is excellent. The reconstructed W (|x‖|) is nearly superimposed on the input W (|x‖) in Fig. 3(b). The
shaded region in Fig. 3(b), and in the subsequent plots of W (|x‖|), represents the magnitude of the difference
between the input and reconstructed values of this function. It is seen to be very small.

In our second example we assume that the dielectric constant of the scattering medium is unknown. We take
the input data from our first example, given by the filled circles in Fig. 3(a), so that the set of variational parame-
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Figure 4. Reconstruction of the rms roughness δ?, transverse correlation length a?, and dielectric constant of the scattering
medium ε? from in-plane co-polarized scattering data. This figure is the same as Fig. 3 except now the dielectric constant
of the scattering medium is also reconstructed. The reconstructed surface roughness parameters are δ? = 5.930 nm,
a? = 166.508 nm, and the reconstructed dielectric constant has the value ε? = 4.556.

ters is now P = [δ?, a?, ε?]. The results of the inversion carried out with the trial function given by Eq. (29a), are
shown in Fig. 4, and it is seen that the resulting reconstruction is poor. By starting the minimization procedure
with the values δ? = 2.00 nm, a? = 75 nm, and ε? = 2.00, the values of these parameters that minimize the cost
function χ2(P) were found to be δ? = 5.930 nm, a? = 166.508 nm, and ε? = 4.556. These are to be compared
with the input values δ = 9.5 nm, a = 158.20 nm, and ε = 2.64. The differences between the input and recon-
structed values of these parameters are significant. Nevertheless, the function 〈∂Rpp/∂Ωs〉incoh,calc calculated
with the reconstructed values of δ?, a?, ε? by means of second-order phase perturbation theory, plotted as the
solid curve in Fig. 4(a), and the reconstructed W (|x‖|) plotted as the solid curve in Fig. 4(b), are in quite good
agreement with the corresponding input curves.

We next consider a case where the trial function for W (|x‖|) has a functional form that differs from the
form assumed in generating the input data being reconstructed. As our third example we present results of
calculations where the trial W (|x‖|) is assumed to have the stretched exponential form given by Eq. (29c). The
set of variational parameters is now P = [δ?, a?, γ?]. We take the input data from our first example (Fig. 3(a)),
and start the minimization procedure with the values δ? = 2.00 nm, a? = 75.00 nm, and γ? = 2.00. The values
of these parameters that minimize the cost function were found to be δ? = 10.545 nm, a? = 128.927 nm, and
γ? = 0.891. For comparison the input values were δ = 9.5 nm, a = 158.20 nm, and γ = 1.00. The values of δ?

and γ? differ from the input values by approximately 10%, the value of a? differs from that of a by approximately
20%. The importance of this example is that it shows that our minimization is able to distinguish a Gaussian
form for the correlation function from an exponential form. The function 〈∂Rpp/∂Ωs〉incoh, calculated by means
of second order phase perturbation theory for the reconstructed values of δ?, a?, γ? is plotted in Fig. 5(a) (solid
curve) together with a plot of the input function (filled circles). The agreement between these two results is
quite good. In Fig. 5(b) we present plots of the input (open circles) and reconstructed (solid curve) correlation
functions W (|x‖|). These two curves differ by less than 10%.

The reconstructed parameters obtained on the basis of in-plane p-to-p scattering of light from an exponentially
correlated surface at a polar angle of incidence θ0 = 1.6◦ are summarized in Table 1.

5.2 Gaussianly-Correlated Surface Roughness

The second scattering system from which we will draw data for the purpose of inversion, is characterized by
a Gaussian surface height autocorrelation function. In comparison with the preceding scattering system, in
addition to the different form of W (|x‖|) the only parameters that have changed are the rms height of the
roughness and the dielectric constant of the scattering medium. They now have the values δ = 15.82 nm and
ε = 2.6896, respectively. The Brewster angle in this case is θB = 58.63◦. Except for the angles of incidence, all
other parameters characterizing the scattering system remain unchanged, i.e. a = 158.20 nm and λ = 632.8 nm.
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Figure 5. Reconstruction of the rms roughness δ?, the transverse correlation length a?, and the exponent γ? from the
in-plane co-polarized scattering data. This figure is the same as Fig. 3 except that now the trial function for W (|x‖|)
has the stretched exponential form given by Eq. (29c). The reconstructed surface roughness parameters have the values
δ? = 10.545 nm, a? = 128.927 nm, and γ? = 0.891.

Table 1. Summary of the values reconstructed from in-plane scattering data obtained for the polar angle of incidence
θ0 = 1.6◦ and corresponding to an exponentially correlated surface characterized by δ = 9.5 nm and a = 158.20 nm. The
dielectric constant of the substrate was ε = 2.64. When inverting for any of the parameters in the set {δ?, a?, ε?, γ?} the
initial values used were {2 nm, 75 nm, 2, 2}, respectively.

δ? [nm] a? [nm] ε? γ? Comments

9.445 160.465 — — Fig. 3
5.930 166.508 4.556 — Fig. 4
10.545 128.927 — 0.891 Fig. 5
10.517 129.057 2.645 0.892 —

For these values of the parameters a computer simulation approach11 was used to generate the input scattering
data. Results for 〈Rpp/∂Ωs〉incoh,input obtained by averaging the results obtained from 5000 realizations of the
surface profile function are presented as circles in Fig. 6(a) for a polar angle of incidence θ0 = 14.8◦. It is these
data on which we base our inversions in this section, i.e. here this data set represents 〈∂Rpp/∂Ωs〉incoh,input

We present in Fig. 6 results for the reconstruction for P[δ?, a?] when the trial function for W (|x‖|) has the
Gaussian form given by Eq. (29b). The reconstructed values of the surface roughness parameters were found to
be δ? = 15.357 nm and a? = 163.178 nm. These values are in good agreement with the values δ = 15.82 nm
and a = 158.20 nm assumed in generating the scattering data used in the inversion. The contribution to the
mean differential reflection coefficient calculated for these reconstructed values of δ? and a? by means of the
second-order phase perturbation theory are depicted by the solid curve in Fig. 6(a).

We next consider the inversion of the input data presented by the filled circles in Fig. 6(a) when the dielectric
constant of the scattering medium is assumed to be unknown. In this case the set of variational parameters
is P = [δ?, a?, ε?]. The inversion of the scattering data generated by data by the use of the Gaussian trial
function for W (|x‖|) defined by Eq. (29b) yielded for the values of δ?, a?, ε?, that minimized the cost function
χ2(P), Eq. (26a), δ? = 13.909 nm, a? = 162.941 nm, and ε? = 2.968. These values differ from the input
values δ = 15.82 nm, a = 158.20 nm, ε = 2.6896, by less than 15%. The mean differential reflection coefficient
〈∂Rpp/∂Ωs〉incoh,calc calculated by second-order phase perturbation theory with the use of the reconstructed
values of δ?, a?, and ε?, is depicted by the solid curve in Fig. 7(a). It is in very good agreement with the input
data. The input and reconstructed correlation functions, as well absolute difference between them, are depicted
in Fig. 7(b). The agreement between the two function is quite good.

For our final example, assuming a Gaussian-correlated surface, we invert the input data depicted by filled
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Figure 6. The same as Fig. 3, but now for a Gaussian-correlated surface, where the polar angle of incidence is θ0 = 14.8◦.
The trial function for W (|x‖|) assumed in the inversion method had the Gaussian form given by Eq. (29b). The values
of the variational parameters obtained in this way were δ? = 15.357 nm, and a? = 163.178 nm. The input data were
characterized by δ = 15.82 nm, a = 158.20 nm, ε = 2.6896, and λ = 632.8 nm.
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Figure 7. The same as Fig. 6, except that it is now assumed that the dielectric constant of the scattering medium is
unknown. The set of variational parameters is now P = [δ?, a?, ε?], and the inversion of the input data represented by
the filled circles in Fig. 6(a) is carried out with the use of the Gaussian trial function given by Eq. (29b). The values
of the variational parameters obtained are δ? = 13.909 nm, a? = 162.941 nm, and ε? = 2.968. The input data were
characterized by δ = 15.82 nm, a = 158.20 nm, and ε = 2.6896.
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Figure 8. The same as Fig. 6, except that a stretched exponential trial function for W (|x‖|) given by Eq. (29c) is used in
carrying out the inversion of the input data represented by the filled circles in Fig. 6(a). The set of variational parameters
is P = [δ?, a?, γ?]. The reconstructed values of these parameters are δ? = 12.211 nm, a? = 212.293 nm, and γ? = 4.307.
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Table 2. Summary of the values reconstructed from in-plane scattering data obtained for the polar angle of incidence
θ0 = 14.8◦ and corresponding to a Gaussian correlated surface characterized by δ = 15.82 nm and a = 158.20 nm. The
dielectric constant of the substrate was ε = 2.6896. When inverting for any of the parameters in the set {δ?, a?, ε?, γ?}
the initial values used were {2 nm, 75 nm, 2, 1}, respectively.

δ? [nm] a? [nm] ε? γ? Comments
15.357 163.178 — — Fig. 6
13.909 162.941 2.968 — Fig. 7
12.211 212.293 — 4.307 Fig. 8
12.028 199.754 2.902 3.202 —

circles in Fig. 6(a) with a trial function for W (|x‖|) possessing the stretched exponential form given by Eq. (29c).
The set of variational parameters in this case is P = [δ?, a?, γ?]. The values of these parameters that minimize the
cost function, Eq. (26a), were found to be δ? = 12.211 nm, a? = 212.293 nm, and γ? = 4.307. These values are
in very poor agreement with the input values of these parameters. Despite this, the mean differential reflection
coefficient 〈∂Rpp/∂Ωs〉incoh,calc calculated by means of second-order phase perturbation theory with the use of
the reconstructed values of δ?, a?, γ?, and represented by the solid curve in Fig. 8(a), is in very good agreement
with the input data represented by the filled circles in this figure. The same is not true of the reconstructed
correlation function W (|x‖|) depicted by the solid curve in Fig. 8(b). It is seen to differ significantly from the
input curve, depicted by the open circles in this figure.

The reconstructed parameters obtained on the basis of in-plane p-to-p scattering of light from a Gaussian-
correlated surface at a polar angle of incidence θ0 = 14.8◦ are summarized in Table 2.

5.3 Sensitivity to Noise

The reconstructions carried out in the preceding section have been based on the assumption that there is no
noise in the input data. However, any experimental data set will contain some level of noise. It is therefore
important to determine how sensitive the parameters reconstructed by the approach developed in this paper are
to noise. We base our investigation of this sensitivity on the results obtained for a surface defined by a Gaussian
height autocorrelation function, defined by the roughness parameters δ = 15.82 nm and a = 158.20 nm, while
the wavelength of the incident light is λ = 632.8 nm, the polar angle of incidence is θ0 = 1.6◦, and the dielectric
constant of the scattering medium is ε = 2.64. The computer simulation result for 〈∂Rpp/∂Ωs〉incoh is depicted
by the circles in Fig. 9(a), which coincide with the circles in Fig. 2. To this result we have added multiplicative
Gaussian white noise of a standard deviation of 5%, (the gray erratic signal oscillating around zero in Fig. 9(a)).
This produces the open squares in Fig. 9(a), that serve as the input data, 〈∂Rpp/∂Ωs〉incoh,input, for the inversion
procedure. The trial function for W (x‖) used in minimizing the cost function, Eq. (26a), has the Gaussian form
given by Eq. (29b). The set of variational parameters is therefore P = (δ?, a?). The values of the parameters that
minimize the cost function were found to be δ? = 16.60 nm and a? = 150.67 nm, both within 10% of the input
values. The initial values of these parameters in the minimization procedure were δ? = 2.0 nm and a? = 75 nm.
The use of these values in the phase perturbation theory expression for 〈∂Rpp/∂Ωs〉incoh,calc, Eq. (14), produces
the solid curve in Fig. 9(a). In Fig. 9(b) we present the input and reconstructed results for W (x‖). The agreement
between them is gratifyingly good.

6. DISCUSSION AND CONCLUSIONS

The contribution to the mean differential reflection coefficient from the in-plane co-polarized, diffuse scattering
of p-polarized light from a two-dimensional randomly rough dielectric surface, calculated by second-order phase
perturbation theory, displays singularities when the angle of scattering θs equals the Brewster angle θB . Nev-
ertheless, we have shown in this paper that when the experimental values for the mean differential reflection
coefficient as a function of θs are taken from only the region |θs| < θB , a good determination of the normalized
surface height autocorrelation function, and other statistical properties of the surface roughness, can be achieved.
The best reconstructions are of W (x‖) itself, in the sense of matching the input data. The reconstructed values

Proc. of SPIE Vol. 9961  99610F-12

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/18/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



-90 -60 -30 0 30 60 90
θ

s
 [deg]

0

2

4

6

8

10

12

〈∂
R

p
p
/∂

Ω
s 
〉 in

co
h
  
  
×

 1
0

4

Org. data

Input

Noise
Reconstructed
θ

s
 = ±θ

Β
 = ±58.63°

(a)

-400 -200 0 200 400
x

||
 [nm]

0.0

0.2

0.4

0.6

0.8

1.0

W
(|

x
|||)

Input

Reconstructed

(b)

Figure 9. The sensitivity of the reconstruction to multiplicative Gaussian white noise of 5% standard deviation. (a) The
contribution to the mean differential reflection coefficient for incoherent in-plane p-to-p scattering from a Gaussianly-
correlated surface roughness. The circles indicate the original data set, which coincides with the data set represented by
the circles in Fig. 2. The open squares represent the result of adding the multiplicative noise to the original data, and
constitute the input data for the inversion. The irregular signal in gray oscillating around zero is the actual noise being
added. The solid curve is the incoherent component of the mean differential reflection coefficient calculated with the
reconstructed values of the variational parameters, δ? = 16.60 nm and a? = 150.67 nm obtained by the use of a Gaussian
trial function, Eq. (29b). (b) The input and reconstructed correlation function W (x‖).

of δ?, a?, γ?, and ε?, agree with their input values less well, with errors as large as 15–20%. This is presumably
due to the use of input values of 〈∂Rpp(θs)/∂Ωs〉incoh,input taken from a limited range of scattering angles, namely
|θs| < θB . The principal conclusion of the present work is therefore that although the inversion of scattering data,
obtained by the use of p-polarized light, by means of second-order perturbation theory can yield good results for
W (x‖), the reconstructions of other statistical properties of a two-dimensional randomly rough dielectric surface
are markedly poorer than those obtained by the use of s-polarized light, as demonstrated in Ref. 1.
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