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Abstract
The topography of a rough surface determinesmany of its physical properties, for instance, tribology,
contactmechanics, optical properties etc. Nowadays, a deep understanding of such physical
phenomena requires the knowledge of the topography at appropriate length scales. Apart from
performingmulti-scalemeasurements of the surface topography, it also requires the use of proper
statistical estimators for the analysis of such topographymaps.Moreover, when dealingwith light
scattering in the visible spectral range, the scale at which the estimators of local topography properties
are defined is extremely important. Here we present amulti-scale and statistical study of the surface
topography of blasted aluminum samples which all have rather different visual appearance. Various
statistical estimators of surface topography are examined, including estimators related to the height
distribution, the lateral correlation and local topology. The combination of these various estimators
unveils a scale separation between amicro-scale roughness inherited from the initial cold-rolled
aluminum surface and a large scale roughness fully controlled by the blasting process. A special
emphasis is given to the crucial importance of length scales in the estimation of local slopes. The
present analysis establishes a quantitative link between the statistical properties of the surface
topography and the blasting process used to fabricate the samples.

1. Introduction

Surface morphology influences many physical pro-
cesses taking place at, or close to, the surface of objects.
Therefore, interesting functional properties can be
added to the surface through thoroughly controlled
topography, for example, hydrophobicity [1], friction
[2] and adhesion [3], hazy or glossy appearance
governed by light scattering [4]. Furthermore, nowa-
days the aesthetics of an object is an important criteria
for the development of industrial products, even if their
primary function has nothing to dowith optics. Surface
topography can also deteriorate mechanical and elec-
trical properties, as for instance the variation of contact
stiffnesswith the true area of contact at interface [5, 6].

The impact of the morphology of randomly rough
surfaces on their optical properties has been in the
focus of physical optics since the 1900s [7, 8]. In the
small roughness limit, also referred to as smooth

surface limit, a unique analytic solution exists, known
as the Rayleigh-Rice vector perturbation theory model
[4, 7], and allows one to directly link optical properties
of the surface to the statistical properties of its surface
morphology [4]. Thoroughmorphological and optical
studies [9–11] of random surfaces exhibiting small
roughness proved the applicability of the Rayleigh-
Rice theory to real life surfaces of various origin [4].
On the other hand, if the surface roughness is moder-
ately large compared to the wavelength of illumina-
tion, light scattering at small angles by samples while
illuminated at small incidence angles, can be described
with the Kirchhoff model [4]. In other cases, no gen-
eral analytical model is available and the use of direct
numerical solution of Maxwell equations for given
surface morphology remains the only general
approach.

To some extent, the moderately large and large
roughness cases can be approximately treated with
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geometrical optics laws. Such a phenomenological
approach, the microfacet theory, was introduced in
1963 [12] and adopted in early 1970s by the computer
graphics community [13, 14] for the physico-realistic
rendering. In this approach the surfaces are seen as
ensembles of micrometer-scale facets and light scat-
tering is described through the statistics of facet orien-
tations with respect to the macroscopic surfaces. The
3D distribution of scattered light is then used to create
a virtual image of the object. Since the microfacet the-
ory was introduced [12], numerous models have been
developed which are able to fit various 3D distribu-
tions of scattered light of real surfaces [13–18]. Today
an untrained eye can seldom recognize the virtual rea-
lity image. Yet, existing rendering tools should still be
developed further in order to account for light polar-
ization [19] and diffraction-related effects [20, 21] that
are observed in real life.

Interestingly, in contrast to the small roughness
case, very few thorough studies of surface morphology
have been reported for the moderately large and large
roughness cases, probably due to the necessity of a
multi-scale surface analysis. Therefore, strong
assumptions on surface statistics were made in both
physical optics and computer graphics models. For
instance, both approaches rely on the assumption that
rough surfaces follow Gaussian statistics. Although
this hypothesis is widely used, it remains unclear to
which extent real-world surfaces with spatial fre-
quencies at sub-milimeter scale exhibit Gaussian sta-
tistics. More importantly, in contrast to the case of
physical optics [9, 10, 12, 22], the achievement of a
quantitative link between surface roughness char-
acterization and scattering properties in the frame-
work of micro-facets models remains elusive. It
should be mentioned that measured angular light
intensity distributions scattered from randomly rough
surfaces were recently used to successfully predict the
statistical properties of a broad class of rough surfaces
using several physical optics approaches [23, 24].

It was found in the 2000s that even for surfaces
with prominent micro-scale roughness the nano-scale
component can significantly impact the physical prop-
erties [2], for example, the super-hydrophobicity for
which the lotus leaf is a classic natural example [1]
requires a combined micro- and nano-scale rough-
ness. Prominent nano-scale roughness can also alter
the optical properties of surfaces with micro-scale
roughness. In order to address this problem from the
experimental side, not only angle-resolved scattering
experiments are necessary but also detailed knowledge
of the surface topography is required.

The scope of this paper is to address these ques-
tions through a thorough analysis of the topography of
micro-scale rough surfaces with notable difference in
visual appearance. Blasting technique was chosen for
sample fabrication due to its inherent versatility in
terms of treatable materials and ability to alter the sur-
face topography [25–29], and as a result the electrical

[5, 6], mechanical [5, 6, 30] and optical properties of
the sample. For instance, blasting can provide very dif-
ferent finish [31] and thereby aesthetics to the same
bare surface. The micro-topography induced by blast-
ing process depends on the plastic properties of the
material composing the surface as well as on the mat-
erial and shape of the blasting medium [32, 33]. In the
case of aluminum, plastic deformation often takes
place [26]. The surface erosion depends on material
ductility [34], the angle of incidence [35] and other
parameters such as size and shape of blasting media
[33]. Surface blasting is often considered a random
process since it is produced by a large number of ran-
dom independent impact events [36].

Numerous papers reported surface topography
studies of blasted surfaces [25–28, 33, 35, 37, 38]. Yet,
very few publications contained topography datamea-
sured at different scales [28], and moreover statistical
topography parameters analyzed in previous studies
often focused on arithmetical mean (Ra) or root-mean
square (rms also known as Rq) deviations [25–27] and
seldom other parameters such as curvature [38] or
apparent slopes [37] and even less auto-correlation
function or power spectral density. In this study we
focus on several surface estimators which are essential
for the analysis of optical properties and linking them
to the fabrication process. A more exhaustive list of
surface estimators reported to be used on multi-scale
analysis of surface topography can be found in [36,
39–42] , in particular on less widespread techniques to
estimate lateral correlations (wavelet andmodal analy-
sis) as well as closing and opening morphological fil-
ters [42, 43].

This paper presents a thorough multi-scale study
of the morphology of blasted aluminum plates.
Section 2 provides the details on fabrication and visual
assessment of samples examined in this work. The sec-
ond part of section 2 describes how the statistically
representative topography data of those samples were
gathered from three different experimental setups.
Section 3 introduces the statistical aspects of the analy-
sis of morphology of randomly rough surfaces.
Sections 4–7 focus on morphology parameters related
to height distribution, spatial correlations, surface
slopes and local topology respectively. The analysis of
statistical parameters of surface morphology given in
sections 4–7 allow to understand how themorphology
of the surfaces is beingmodified through blasting. And
last but not the least, provided analysis allows to estab-
lish a link between the micro-scale features of exam-
ined surfaces and parameters of fabrication process.

2.Materials andmethods

2.1. Fabrication anddescription of samples
The samples that we will be concerned with in this
work are four 5× 5 cm2 aluminum (6061) plates
treated by different industrial processes. Figure 1
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provides photographs of all four samples taken in a
light booth (Spectralight QC X-Rite) under controlled
illumination (D65 illumination). The photos taken at
grazing observation angle are shown in figure 1(a),
while macro photos taken close to the surface normal
are presented infigure 1(b).

The first sample is a cold rolled aluminum plate
which we hereafter will refer to as the untreated sam-
ple. From figure 1 it clearly appears that this untreated
sample is strikingly anisotropic. The direction of the
grooves of the surface coincides with the rolling direc-
tion used during the manufacturing. The surface
roughness of cold-rolled aluminum is known to exhi-
bit self-affine surface statistics [44, 45]. Many natural
andmachined fault surfaces exhibit self-affinity within
at least several decades of spatial frequencies. Some
recent works suggest that the self-affinity can be pro-
duced during adhesive wear due to the interplay
between brittle and ductile mechanisms [46]. The
remaining three samples were fabricated from such
cold rolled aluminum plates (untreated samples) by
blasting them by ceramic beads of different sizes; in
the following, these bead sizes will be referred to as
small, medium or large beads. More specifically, sphe-
rical ceramic beads commercialized by ZirPro were
used in the blasting process. Their average diameters
of the beads were 70 ± 20 μm (small), 200 ± 50 μm
(medium), and 500 ± 150 μm (large). The uncertain-
ties reported on these numbers are the full-width at
half maximum (FWHM) of the respective diameter
distributions. The blasting process was performed in
an air suction blasting machine at normal incidence to
the mean surface of the sample. The pressure of the
venturi type blasting source was 2 bar, and each of the
samples were blasted for 50 s, twice the time necessary
to completely cover the surfacewith blasting impacts.

The four samples have rather different visual
appearances. The untreated sample looks very glossy

at grazing angle (figure 1(a)). In contrast, the three
blasted samples have completely different visual
aspects. For instance, they appear significantly less
glossy at grazing angles (figure 1(a)). Meanwhile, their
gloss seems to be different, which is in agreement with
the apparent differences in the morphology of the
blasted samples seen on the photographs in
figure 1(b). From these figures several observations
should be made. First, the change in apparent grain
size from small to large (figure 1(b)) is consistent with
the size of the beads used in the blasting process (smal-
lest grains in the case of treatment by small beads and
largest grains for the large beads). Second, the blasting
process reduces the degree of anisotropy of the result-
ing surfaces relative to the surface of the untreated
sample. To the naked eye, the blasted surfaces appear
to be almost isotropic; these observations we will later
confirm when performing the detailed analysis of the
measured surfacemorphologies.

2.2.Description of topographymeasurements
In order to provide amulti-scale analysis of the surface
morphology, the interfaces of all four samples were
measured by three different experimental setups
exploiting different measurement principles and cov-
ering different ranges of spatial frequencies: an optical
profilometer (a chromatic confocal sensor, CCS
Prima, STIL), and two scanning probe profilometers,
where the first is a stylus profilometer (Dektak XT,
Bruker) and the second an atomic force
microscope (AFM, Icon, Bruker). The optical profil-
ometer provides a non-contact scan, and the surface
height is determined from optical coherence of the
wide-spectrum probe light reflected by the surface. In
the case of scanning probe profilometers the surface
scan is performed by a solid tip and the surface height
is defined from tip deflection (in AFM a nano-tip is
used). Surface topography analysis performed with

Figure 1.Photographs of the studied aluminum samples observed underD65 illumination: (a) at grazing observation angle; (b) at
observation direction close to surface normal.
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setups covering different but overlapping ranges of
spatial frequencies also allows avoiding the measure-
ment-related variation of estimators [47].

The surface profile function z= h(r) was obtained
from such measurements. Here we have defined a
coordinate system where the mean surface, assumed
to be planar, coincides with the plane z= 0 and the
positive z-axis is pointing upward. The vector r= (x,
y) denotes an arbitrary in-plane position vector. Fur-
thermore, the in-plane orientation of the coordinate
system is chosen so that the unit vector ex= (1, 0)
coincides with the rolling direction used when produ-
cing the untreated sample. In other words, the x-axis
of the coordinate system is parallel to the grooves of
the untreated samples like the one presented in e.g.
figure 1(b).

With the use of optical profilometer and an AFM
the two-dimensional (2D) surface morphology of the
samples were measured at the set of N×N points
h x y,n nx y

{ ( )} withe a measurement step Δ, corresp-

onding to a rectangular grid in a square region of area
L× L of the mean plane (z = 0) covered by the rough
surface. The values of L,Δ and N used in performing
these measurements are summarized in table 1. This
table also provides information on minimum resol-
vable height variation δh and the diameter D of the
measurement element. The latter stands for the tip
diameter in case of AFM and stylus profilometer and
the diameter of light spot produced by the optical pen-
cil in the optical profilometer. These values are large
compared to the uncertainty of the displacement of
the precision motors used in these setups and provide
more realistic estimates of the high-frequency cut-offs
for the horizontal displacements. Moreover, the finite
diameter of the stylus tip does imply a high-frequency
cut-off. The latter depends on both tip diameter and
surface roughness [48–50] and is especially relevant
for the analysis of fractal surfaces [51, 52]. To ensure
sufficient statistics, the measurements were repeated
several times at different locations on the sample for
each setup that was used. One-dimensional (1D) line-
scan measurements were performed using a stylus
profilometer. The spatial length of the each of the line-

scan was L and the number of points used was N. The
measurements were done either along the x or the y
direction the coordinate system, and in this way we
obtained h x , 0nx

{ ( )} or h y0, ny
{ ( )}, respectively. In

measurements performed with optical and stylus pro-
filometers the scan ranges used for each sample were
chosen in such a way as to have sufficient statistics and
to be sufficiently long compared to the measured cor-
relation length of the sample [53].

3. Characterization of randomly rough
surfaces

Randomly rough surfaces can be considered as realiza-
tions of an underlying random process [36, 54, 55].
Then it is customary to describe the surface roughness
through various statistical estimators and probability
distribution functions. The statistical analysis implies
several strong assumptions on the surface profile
function h(r). The most central of these assumptions
for h(r) is that it is (i) a single-valued function of r that
is differential with respect to x and y and constitutes an
(ii) ergodic, (iii) stationary and (iv) zero-mean random
process [55].

(i) Numerous real-life surfaces, including rolled and
blasted surfaces, exhibit single-valued height
distribution.

(ii) Statistics of random process uses the averaging
over the ensemble of realizations. The ergodicity
of the random process allows to equivalently
interpret Aá ñ, the average of a given quantity A
over the ensemble of realizations, as a spatial
average within a single realization of the process
provided the spatial average A is taken over a
sufficiently large region of the mean surface. The
latter interpretation of the average is the most
convenient when dealingwithmeasured data.

(iii) The stationarity condition implies here that no
trend can be identified along the spatial coordi-
nates i.e. the statistical properties of the surface

Table 1. Summary of the parameters assumed in performing the topographymeasurements.* 1D scanswere performed in two
orthogonal directions for each of the 25 examined locations.

Map Sample L[mm] N Δ[μm] D[μm] δh[nm] #maps

Optical 2D Untreated 5 2501 2 2 300 8

profilometer Small beads 1 501 9

Mediumbeads 2 1001 8

Large beads 3 1501 6

Stylus 1D Untreated 6 60001 0.1 10 10 25*

profilometer Small beads 6 60001 0.1 20*

Mediumbeads 15 75001 0.2 20*

Large beads 15 45001 0.33 25*

AFM 2D Untreated 0.02 512 0.02 0.04 2 4

Blasted 0.03 512 0.06 3
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roughness remain independent of the spatial
region that is probed.

(iv) Finally, the experimental data are usually
acquired in the coordinate system related to the
measurement setup. Thereby, prior to any statis-
tical data analysis a detrending step has to be
performed to bring the height profile to a
coordinate system relative to the mean sample
surface. This may imply the correction of a
possible systematic trend (e.g. tilt or macroscopic
curvature) correction in addition of the simple
deduction of the average height.

Some of these assumptions may not be respected by
the real-life surfaces due to the variation in machining
factors such as imperfections in treatment parameters
or local fluctuations of chemical composition in
materials [56, 57]. Yet statistical tools for description
of a more general case remain to be developed.
Therefore, the analysis provided in this paper mostly
relies on these assumptions. Moreover, since the
sandblasted surfaces are produced by a large number

of independent impacts [32, 33], they are generally
considered randomly rough [36].

We show in figure 2 height maps measured with
the optical profilometer over an area of 1× 1 mm2 in
each examined sample. This series of height maps is to
be compared with the series of photographs shown in
figure 1. The figure illustrates that the micro-scale
morphology of the aluminum plate is drastically mod-
ified by the blasting process. The anisotropy of the
untreated sample is apparent even without any statis-
tical data analysis, yet the blasted samples show no
obvious anisotropy. The apparent graininess of the
blasted samples at the macro-scale (figure 1) can be
associated to the characteristic micro-scale crater-like
patterns visible in the height maps (figure 2). The lat-
eral dimension of the craters as well as their depth
increase with the size of beads used in the blasting. In
the following of the paper we discuss how to use differ-
ent statistical estimators to give a quantitative support
to these qualitative observations.

Some man-made surfaces are obtained as a
sequence of surface modification steps, where the first

Figure 2.Contour plots of the 2D topographymaps of the examined samples obtained from anoptical profilometer: untreated sample
(a), and samples blastedwith small (b), medium (c) and large (d) beads. The dimensions of eachmapwere 1 × 1 mm2 and the lateral
resolutionwas 2 μm.The color-scale gives the height inmicronswith respect to themean surface (z = 0) and the range of the color-
scale is±2.5σ for each sample.
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step provides for the coarse finish and the subsequent
steps result into the refinement of the surface finish.
Such surfaces are often referred to as interrupted fin-
ishes or stratified surfaces or multi-process surfaces
[33, 58]. Although our examined samples were
obtained within two fabrication steps, each of which
impacted surface topography at different scales, they
do not perfectly match the definition of multi-process
surfaces as given in [36] since, as will be shown in this
paper, the coarse finish was obtained by the surface
blasting –the last surface treatment step.

For the sake of clarity, the analysis of the statistical
descriptors given in this paper is separated in four sepa-
rate sections, each focusing on a different type of statis-
tical descriptors, similarly to amplitude, spatial, hybrid
and functional parameters suggested by [41]. First, in
section 4 the height distribution and related estimators
are discussed. The analysis of spatial correlations are
presented in section 5. Then the local slopes calculated
at different scales are discussed in section 6. Finally, esti-
mators of the local curvature are analyzed and pre-
sented in section 7. Each section briefly introduces the
definitions of the statistical estimators of interest and
then illustrates their use on the morphology measure-
ments for the examined aluminumsamples.

4.Height distribution

4.1. Theoretical context
A randomly rough surface and its corresponding
surface profile function h(r), can be assumed to
constitute a stochastic random process [54]. A first
characterization of such a process is given by the
probability distribution function (pdf) of the height
values, p(h). This distribution gives us information
about the (vertical) height fluctuations of the surface
but naturally ignores the possible spatial correlations.

Because of its ubiquity and its analytical simplicity,
theGaussian (or normal) form for the height distribution
function is widely used in analytical and computational
studies of light scattering fromrough surfaces [59]:

p h
h h1

2
exp

2
, 1

2

2ps s
= -

- á ñ⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )

with h 0á ñ = . Many real-life surfaces can indeed be
reasonably well approximated by Gaussian statistics,
as for instance fault surfaces, surfaces obtained
through blasting or ion sputtering [60]. In theory,
processes like grinding are supposed to provide for
Gaussian statistics aswell, but due to process imperfec-
tions it is not always the case [56, 57]. However, the
assumption of Gaussian statistics is definitely not
applicable in the case of surfaces obtained by fracture
followed by slight polishing [60] or growing interfaces
with less than onemonolayer of atoms [39]. In the case
of Gaussian statistics the height fluctuations of the
surface are fully characterized by a single scalar
parameter, the height standard deviation σ i.e. root-
mean-square (RMS) height (also referred to asRq):

h r ; 22 1 2s = á ñ( ) ( )

Historically, due to simplicity of calculation, another
surface parameter, namely the average roughness Ra
(the deviation of the surface from the mean height),
was often used in experimental surface characteriza-
tion. Although this parameter does not intervene in
physical models, we provide it for the sake of
comparison. However not all rough surfaces can
accurately be described by a Gaussian height distribu-
tion, for example surfaces prepared by fracture
followed by slight polishing [60]. In the non-Gaussian
case, all the moments mn= 〈hn(r)〉 are theoretically
required to get a full knowledge of the height distribu-
tion p(h). Herem1= 〈h(r)〉 is themean h̄ that we set to
zero by convention and m2= 〈h2(r)〉= σ2 is the
variance of the height distribution (i.e. rms roughness
squared). The numerical estimate of the moments of
higher order is however highly dependent of the tails
of the distribution. Such a characterization requires a
large statistics to reduce the uncertainty on the
estimated moments [61, 62]. Moreover, the associated
dependence on extreme values often induces a high
sensitivity to measurement artifacts [62]. For surfaces
withmulti-scale roughness, statistically-representative
measurements should be performed at each scale of
relevance for the physical properties of interest.

It is thus customary to limit the additional char-
acterization of the height distribution to only two
parameters, associated with the moments of third and
forth order, respectively the skewness and the kurtosis:

• The skewness of the surface (γ3) expresses the
asymmetry of the height distribution with respect to
the mean level (here conventionally taken as zero
h 0á ñ = ). It is expressed as:

h r
1

; 33 3
3g

s
= á ñ( ) ( )

• The kurtosis of a surface (γ4), describes the tails of
the distribution, and is expressed as:

h r
1

. 44 4
4g

s
= á ñ( ) ( )

In summary, when dealing with the real-life rough
surfaces, the very common assumption of Gaussian
statistics should be handled with caution [36]. In
addition of the computation of the RMS roughness,
the estimates of the skewness and the kurtosis (whose
expected values are respectively γ3= 0 and γ4= 3 for a
Gaussian distribution) allow to test quantitatively the
distance of the height distribution to Gaussianity. But
such evaluation requires a significant amount of
measured points [62].

4.2. Experimental results
Table 2 summarizes the values of the RMS, skewness
and kurtosis calculated on the basis of the expressions
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presented in the previous section and applied to data
sets obtained with optical and stylus profilometers.
The values reported in table 2 are averaged over the
number of available maps (see table 1 for number of
scans), while the uncertainty indicates the mean
deviation from the average value. The evolution of
these statistical estimators with bead size is also
reported in figure 3. The AFM data are purposely not
reported here—the RMS roughness measured at sub
micrometer scale is by definition smaller than that
measured at micro-meter scale (as will be detailed in
next section [?]). Figure 3(a) shows a striking depend-
ence of the roughness fluctuations, here estimated by
the RMS value σ on the size d of the beads used for the
blasting process. As shown by the dashed line, the
RMS data are consistent with an affine evolution of the
RMSwith the bead size, from 0.5 μm for the untreated
samples tomore than 5 μmfor the sample blastedwith
the larger beads. This apparent additive evolution
suggests that the surface roughness of the final blasted
samples results from the superposition of the height
fluctuations induced by the blasting process and of
part of the height fluctuations of the initial un-treated
surface. We thus get a clear impact of the size of beads

used during the blasting process, the increase of the
beads size results inmore profound impacts which sets
the scale of the height fluctuations.

We note that only the value of the RMS of the
initial sampled measured by optical profilometry does
not follow this trend. This value actually grossly over-
estimates the results obtained by stylus profilometry.
The roughness level of the cold rolled surface about
500 nm is actually very close to the detection limit
δh= 300 nm of the optical profilometer. Moreover,
the discrepancy in roughness measured with stylus
profilometers and optical profilometers for sub-
micrometer roughness have been already reported
[63]. The height measurement obtained with the opti-
cal technique on the initial surface have thus to be
taken with caution. They are labeled with a star in
table 2.

As shown in figures 3(b) and (b), skewness and
kurtosis values of the blasted samples slightly differ
from the values expected for a normal distribution,
γ3= 0 and γ4= 3, respectively. Unlike the evolution
observed for the RMS roughness, neither the skewness
nor the kurtosis show clear dependence on the bead
size. We only observe a trend for negative skewness

Figure 3. (a)RMS, (b) Skewness and (c)Kurtosis of the initial cold rolled aluminum surfaces and after blasting with particles of sizes.

Table 2. Statistical estimators of height distribution (RMS, skewness and kurtosis) parameters extracted from
experimental characterization of blasted samples aluminumplate and reference untreated plate.

Estimator Profilometer Untreated sample Small beads Mediumbeads Large beads

RMS (μm) Optical 0.98 ± 0.02* 1.18 ± 0.04 2.52 ± 0.02 5.11 ± 0.06

Stylus 0.51 ± 0.02 1.21 ± 0.04 2.64 ± 0.04 5.20 ± 0.14

AFM 0.052 ± 0.011* 0.32 ± 0.03 0.10 ± 0.04 0.065 ± 0.016

Ra (μm) Optical 0.79 ± 0.01* 0.93 ± 0.02 1.99 ± 0.01 4.05 ± 0.04

Stylus 0.42 ± 0.01* 1.01 ± 0.03 2.1 ± 0.03 4.67 ± 0.28

AFM 0.042 ± 0.009* 0.24 ± 0.02 0.071 ± 0.025 0.047 ± 0.012

Skewness Optical −0.11 ± 0.01* −0.12 ± 0.02 −0.13 ± 0.02 -0.17 ± 0.02

Stylus 0.04 ± 0.15 −0.05 ± 0.05 0.01 ± 0.05 −0.10 ± 0.09

AFM 0.25 ± 0.25* 0.39 ± 0.17 1.56 ± 1.28 4.56 ± 3.6

Kurtosis Optical 2.72 ± 0.04* 3.53 ± 0.12 3.54 ± 0.07 3.55 ± 0.14

Stylus 2.48 ± 0.10 2.89 ± 0.09 3.24 ± 0.19 3.22 ± 0.22

AFM 3.02 ± 0.33* 5.0 ± 0.7 22.9 ± 12.6 453 ± 388
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and high kurtosis for the blasted samples in contrast to
positive skewness /low kurtosis seen for the un-trea-
ted sample. Kurtosis 3 have already been reported for
hard-turned surfaces [64], while slightly negative
skewness and kurtosis 3are common for sand-blasted
samples [28, 36]. The slight negative skewness
observed for the blasted samples is amark of the asym-
metry of the surface and may reflect the presence of a
superposition of craters, the positive kurtosis attests of
a relative domination of the peak of the tails on the
medium values of the distribution. These deviations to
Gaussianity are however not spectacular and also
appear to depend on the experimental technique of
measurements.

It is thus of interest to give a closer look at the dis-
tributions of height fluctuations. In figures 4(a) and
(c), we show the distributions obtained with the opti-
cal profilometer ans the stylus profilometer, respec-
tively. Consistently with the RMS measurements
reported in table 2 we observe that the blasting of the
aluminum surface induces a clear bead size dependent
broadening of the height distribution functions. Toge-
ther with the measured height distributions, we also
show Gaussian fits together with the measured dis-
tributions. An excellent agreement is observed.

In figures 4(b) and (d), the same data andGaussian
fits are plotted in semi-logarithmic scale. Small devia-
tion fromGaussianity can now be identified in the tails

for the blasted samples. Interestingly we note that
deviations appear to bemore significant for the optical
measurements than for the stylusmeasurements.

Before discussing more quantitative aspects, note
that it is not that surprising that skewness and kurtosis
are slightly dependent on the measurement techni-
ques. Stylus profilometry relies on the contact between
a smooth convex tip and the surface. The resulting
height field can thus be seen as a kind of complex con-
volution of the surface with the tip shape with the very
hard condition of non-penetrability. The latter con-
straint induces contrasting effects on peak and valleys
and even surprising long-range correlations [65].

Yet, extremities of pdf tails are likely to be altered
by measurement artifacts. No profilometer device
allows for accurate measurement of steep walls or
spikes, and the adjacent points can get artificially large
or small values, which produces clearly non-Gaussian
extremities of pdf in figures 4(a)–(b). In particular, the
confocal optical profilometer has a limited accessi-
bility range for the slopes, since the latter may not be
independent of the heights, the exclusion of even a
very small fraction of non-measurable points is sus-
ceptible to affect the estimates of high moments such
as the skewness and the kurtosis.

To illustrate this point let us consider a distribu-
tion that perfectly follow the Gaussian expression (1)
in the range [−3σ, 3σ] and thus represent 99.73% of

Figure 4.Height distribution of the four samples, obtained frommeasurements with (a), (b) optical profilometer and (c,d) stylus
profilometer plotted in linear (a), (c) and logarithmic scale (b), (d). Rectangles with dash red border indicate the data points impacted
bymeasurement artifacts.
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the sampled values and let’s complete it by one peak at
3σthat gathers the complementary 0.27% of the sam-
pled values. the symmetric part gives a zero contrib-
ution to the skewness s. The latter is thus entirely
controlled by the peak at 3σ : s= 0.027× 33= 0.0729.
The same exercise can be performed for the kurtosis
when we now consider that 99.73% of the sampled
values are distributed according to a Gaussian dis-
tribution and that the remaining part is concentrated
on two symmetric peaks at±3σ. We get for the kurto-
sis κ= 0.9973× 3+ 0.0027× 34≈ 3.21. Such values
are not far from those estimated for our experimental
data which are reasonably described by a Gaussian dis-
tribution in the range [−3σ, 3σ].

4.3.Discussion onheight distributions
In conclusion, for the examined blasted samples their
height distribution and statistical parameters provide
some differentiation between samples and some basic
understanding of the impact of blasting on surface
topography. But the way in which this asymmetry is
induced by fabrication process remains to be captured.

Despite extensive measurements, the estimate of
even the first higher moments remains fragile. In part-
icular the dependence of kurtosis and skewness on the
distribution tails makes them both statistically
demanding and sensitive to instrumental artifacts. In
the present case the crater-like morpology of the blas-
ted surfaces suggests a negative skewness. Our mea-
surements (see table 2) are indeed consistent with this
expectation but the dependence of the results on the
instrumental technique and the significant uncer-
tainty forbid us to take this observation as a strong and
robust result. Hence, it is of interest to perform com-
plementary characterizations.

5. Spatial correlation

5.1. Theoretical context
The height distribution function of the surface pro-
vides information on the vertical fluctuation of the
surface but it does not bring a full knowledge of the
surface slopes. In the context of light scattering, the
amplitude of the height fluctuations, typically speci-
fied by the ratio of the RMS roughness to the
wavelength (σ/λ), controls the fraction of light
scattered out of the specular direction but conveys no
information about the angular range of the scattering
[54]. The latter requires some knowledge of the spatial
organization of the surface roughness.

In physics the classical tools used to access this
information are in real space the surface height auto-
covariance rD( ) and its normalized version, the
auto-correlation function rD( ). In the Fourier

space, the power spectrum density function q
~
 ( ) is

the counterpart of the auto-covariance. Here the vec-
tor q= (qx, qy) represents the in-plane wave vector
(which is parallel to the mean surface). Note that in

surface metrology the spatial correlations are eval-
uated through slightly different parameters—the fast-
est decay auto-correlation length (Sal) and texture
aspect ratio of the surface (Str), density of summits Sds
etc. These parameters are used for the assessment of
surface topography as for example described in [41].
But in this work we focus on surface estimators which
can be used in physicalmodels.

5.1.1. Auto-correlation function
The surface height auto-correlation functionmeasures
the resemblance of the height field to itself over a in-
plane distance r rD = D∣ ∣:

h hr
r

0
r r r

1
. 5

2s
D =

D
= á + D ñ




( ) ( )

( )
( ) ( ) ( )

The prefactor 1/σ2 ensures normalization: 0 1=( )
which also gives the maximum value of correlation.
For randomly rough surface r 1D <( ) as soon as
|Δr|> 0 and r 0D ( ) when |Δr|→∞ . In the
case of an isotropic surface, the function rD( )
depends on Δr only through it length Δr= |Δr| and
not on its direction. In such cases it is customary to
define a correlation length ℓc that estimates the
(lateral) length scale above which correlation is
significant. Developed for the exponential and Gaus-
sian forms of the auto-correlation function, a typical
definition consists of taking the length for which the
auto-correlation function has dropped to 1/e (from its
value of one atΔr= 0):

1

e
. 6c = ℓ( ) ( )

This conventional definition of the correlation length
ℓc implicitly assumes a Gaussian or exponential form
of the auto-correlation function. Although these forms
of the auto-correlation function are the most com-
monly used in theoretical description of randomly
rough surfaces, they do not exhaust the variety of the
functional forms (Lorentzian, Bessel, etc.) which can
be encountered on real rough surfaces [39]. Note that
in metrological definition of the auto-correlation
length Sal may differ from the physical definition of
correlation length. In metrology, Sal is defined from
3D surface scan as the fastest decay reaching a given
value—often 0.2 [66] or 1/e [67].

In particular, a rough surface can be characterized
by several length scales. A microscopic length scale
associated with the structure of the material can coex-
ist with a larger length scale associated with a forming
process, etc. An example is given by the correlation of
mounded surfaces which combine a fast decay with an
oscillatory behavior. The auto-correlation function of
such surfaces is typically written as follows [39, 68]:

r
r r

exp cos
2

, 7
0

2 p
D = -

D D
L
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⎢

⎛
⎝
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⎤
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⎥
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⎝
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( ) ( )

where α denotes the roughness exponent which
usually takes a value between 0 and 1 (0� α� 1).
While the decay can be described by a stretched or a
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compressed exponential, we see that two characteristic
length scales emerge from this definition. The first
one, ℓ0 is associated with the fast decay and gives an
estimate of the size of the mounds. The second length
scale, Λ gives the period of the attenuated oscillations
and is related to the average distance betweenmounds.
In the case ofmounded surfaces, the correlation length
scale ℓc as conventionally defined in equation (6)
depends jointly onℓ0 andΛ.

More generally, the above definition of ℓc does not
ensure the absence of correlations for lags beyond ℓc.
In the example of mounded surfaces, due to the expo-
nential form of the decay, the correlations are short-
ranged. In theory, height correlations may be char-
acterized by amultiplicity of length scales. An interest-
ing limit is obtained in the case of power-law
correlations which can also be considered as a con-
tinuum of characteristic length scales. This case of
long-ranged height correlations corresponds to self-
affine surfaces [39, 69–71]. Such surfaces have the
particular property to remain statistically invariant by
the family of anisotropic transformations: r→ λr,
z→ λHzwhere λ is a positive real scaling factor andH
an exponent usually in the range [0, 1]. In the case of
long-range correlations, it is usually more convenient
to work with the statistics of height increments rather
than with the classical auto-correlation function. In
particular, the self-affine invariance induces a power
law scaling of the second moment of the height incre-
ments [71]:

h h rr r r . 8H H2
0
2 1 2á + D - ñ = D-ℓ∣ ( ) ( )∣ ( )( )

Here the length scale ℓ0 sets the amplitude of the
height fluctuations. This length scale, also known as
the topothesy, is defined so that the average slope
measured over a distance ℓ0 is of the order unity. Note
that the scaling behavior usually only holds within a
finite range of length scales rmin max< D <ℓ ℓ . When
the macroscopic length of measurements L lies within
this range, this means, in particular, that the exper-
imental RMS roughness becomes length scale depen-
dent [71]:

L L . 9H H
0
1s µ -ℓ( ) ( )

The surfaces obtained throughmechanical interaction
between solids are expected to have fractal properties
with H= 0.85± 0.15 [72]. In the above definitions,
the rough surface was considered to be isotropic. In
the case of anisotropic surfaces, it is generally possible
to distinguish two principal directions which can be
characterized by different correlation lengths (for
short-ranged correlations) or self-affine parameters
(for long-ranged correlations).

5.1.2. Power spectral density
The surface height auto-correlation function provides
a rather intuitive insight into over which regions the
surface heights are correlated. Many physical models
rather rely on its counterpart in the Fourier space,
namely the power spectrum of the surface roughness,

q
~
 ( ), also known as the power spectral density (PSD).
For example, in mechanics the PSD is used to
characterize adhesion, true contact area, or contact
stiffness [60], while in optics of very weakly rough
surface the diffusely scattered light is proportional to
the PSD [12, 54, 59]. The PSD is related to the surface
height auto-covariance function by a Fourier trans-
form (a direct consequence of the Wiener-Khinchin
theorem [73]):

d r iq r q rexp , 102ò= -
~
 ( ) ( ) ( · ) ( )

and from the inverse Fourier transform it follows
that the auto-correlation r r 2s= ( ) ( ) can be
expressed as:

d q
ir q q r

1

2
exp . 11

2

2

2òs p
=

~
 ( )

( )
( ) ( · ) ( )

In terms of the Fourier transform of the surface
roughness

h d rh iq r q rexp , 122ò= -( ) ( ) ( · ) ( )

the power spectrum of the surface roughness, can
equivalently be defined as [10]:

h
S

q
q

, 13
2

=
á ñ~

 ( ) ∣ ( )∣ ( )

where S is the area of the mean surface covered
by the random surface. The latter form of q

~
 ( )

(equation (13)) does not require one to first calculate
the correlation function. Due to this practical conve-
nience, equation (13) is preferred over the form in
equation (10) while dealing with experimental data.
Moreover, it is of a common practice to first calculate
the power spectrum via equation (13) and then to use
this result in equation (11) to obtainA(r).

Yet, contrary to the ACF, some care has to be taken
while comparing PSD of surface morphology mea-
sured over an area (two-dimensional scan) or a line
(one-dimensional scan) of the mean plane [4, 74].
From Parseval’s theorem [12] the integral of the PSD
equals the variance of the height distribution (σ2) lead-
ing to different normalization for the PSD obtained
from one-dimensional and two-dimensional scans,
referred here-after as 1D-PSD and 2D-PSD respec-
tively:

dq
q

d q
q

2
;

2
,

14

x
D x D1

2
2

2 2
2ò òp

s
p

s= =
~ ~
 ( )

( )
( )

( )

where for the sake of simplicity, the line is assumed to
be oriented along the x-axis, and the corresponding
line-scans, or one-dimensional surface profiles, are
denoted h(x, 0). Note that 1D and 2D-PSD have
different units, namelym3 andm4, respectively.

In the special case of an isotropic surface it can be
demonstrated that the one-dimensional power spec-

trum of the surface profile, qD x1
~
 ( ), is related to the

power spectrum of the two-dimensional surface pro-

file qD2
~
 (∣ ∣) by the relation [4, 48]:
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q dq q
1

, 15D x y D1
0

2òp
=

~ ~¥
 ( ) (∣ ∣) ( )

where q qq x y
2 2= +∣ ∣ and qx, qy� 0.

In the case of self-affine surfaces the 1D-PSD fol-
lows the scaling relation [39]:

q q
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where we considered an anisotropic surface with two
different roughness exponents Hx and Hy along the x-
axis and the y-axis respectively.

In the case of mounded surfaces with roughness
exponentα= 1 [39]:
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In practice, power spectrum densities often exhibit
distributions close to that of a low-pass filter [4].
Interestingly, the spatial frequency of the breakpoint
qB between the constant low-frequency part and

decaying high-frequency part is related to the correla-
tion length. For instance, in surfaces with exponential
ACF, qB= 1/(2πℓc).

In summary, while dealing with experimental sur-
face profile data, the power spectrum density is eval-
uated on the basis of equation (13), but direct
comparison of the PSD obtained from one-dimen-
sional and two-dimensional data is delicate due to the
difference in normalization of the PSD. Therefore, in
order to make the PSD master-curve combining data
from different setups for height measurements, the
PSD curves must be brought to one-dimensional or
two-dimensional case. In this work, one-dimensional
PSDswere chosen as themaster curves.

5.2. Experimental results
5.2.1. Power spectral density
The 1D-PSDmaster curves [9, 74] for the three blasted
samples are shown in figure 5. Figure 5(a) shows a
superposition of the PSDs obtained with stylus profi-
lometry for the three blasted samples. The

Figure 5. 1D-PSD curves of examined blasted samples: (a) superposition of 1D-PSDobtainedwith stylus profilometer for three
blasted samples; andmaster curves for sample blastedwith small (b), medium (c) and large beads (d). Eachmaster curve contains 1D-
PSDs calculated fromdata obtainedwith stylus profilometer (orange circles), optical profilometer (blue triangles) andAFM (green
squares). Each plotted 1D-PSD curve is an average over the number ofmeasurements (see table 1). PSDs of topography data from
stylus profilometer are 1D-PSDby construction. PSDs based on data fromoptical profilometer andAFMare originally 2D-PSD and
are converted to 1D-PSD (equation (15)), except for untreated samplewhich is represented by a cut of the 2DPSD in direction
orthogonal to the grooves. The red vertical line on (b-d) indicates the breakpoint frequency of each sample. For the sake of readability,
gray rectangles indicate typical lower and upper limits of spatial frequencies that participate into the optical response of the surface in
scattering experiment in the visible spectral range under normal incidence. The lower limit is related to the size of beamused in light
scattering experiment, 1/Dspotwith D 0.3; 1.0 cmspot Î [ ] . The upper limit 1 sin incq l+( ) is plotted for normal incidence and visible
spectral range 480; 780 nml Î [ ] .
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construction of 1D-PSD master curve from data
measured with different techniques is illustrated in
figures 5(b)–(d) for blasted samples. The 1D-PSDwere
directly obtained from one dimensional profiles,
measured with stylus profilometer. Meanwhile, 2D-
PSD were calculated based on 2D topography data
from optical profilometer and AFM. Since the blasted
samples had isotropic 2D-PSDs, the latter were
converted to 1D-PSDs according to equation (15). The
results shown in figures 5(b)–(d) illustrate the interest
and the difficulty of the present multiscale character-
ization. With the three experimental techniques used
in thus study (optical profilometry, stylus profilome-
try, AFM), the measurements span 5 orders of
magnitude for the spatial frequencies. This allows us to
access contrasting correlation regimes and to give a full
characterization of the surface roughness. While the
consistency of the different measurement techniques
is overall very good, some discrepancies can be
observed, especially at the bounds of the range of
accessible spatial frequencies of each technique. High
frequencies are sensitive to the nature of the local
probe (mechanical tip vs optical probe) while low
frequencies typically suffer from a relative lack of
statistics. Beyond these classical issues we remark that
the collapse between the different measurements for
the surface blasted with small beads is of lesser quality
than for those blasted with medium and large beads.
This raises the question of statistical representativity of
small scale measurements (her AFM) when compared
to large scale measurements and more generally the
effective stationarity of the height fluctuations over the
surface.

In light scattering experiments within the visible
spectral range the spatial frequencies of the surface
roughness higher than 1 sin incq l+( ) (where θinc is
the angle of incidence of the incoming light of wave-
length λ) do not participate in the optical response
[22]. This upper spatial frequency limit is presented
in figure 5 for the visible spectral range
( 480, 780 nml Î [ ] ) in the case of normal incidence
by a gray rectangle on the right side of each figure.
Meanwhile, the sizeDspot of the illumination spot used
in the optical experiment defines the lowest limit
1/Dspot of spatial frequencies that contribute to the
optical response [22]. This lower spatial frequency
limit is indicated in figure 5 by a gray rectangle on the
left side of each figure for D 0.3, 1.0 cmspot Î [ ] , order
of magnitude of spot size generally used in angle
resolved light scattering experiments.

Blasted samples exhibit a constant PSD of value 0
~


at low spatial frequencies and a decay of PSD for
higher spatial frequencies. The breakpoint between
these two regimes provides for each sample a char-
acteristic spatial frequency, referred hereafter as
breakpoint spatial frequency qb, at which the PSD
values is decreased by a factor of 2 as compared to the

constant low-frequency value q 2D b1 0=
~ ~
 ( ) [4]. In

examined samples ( 0
~
 , qb/(2π)) = (25 μm3,

0.026 μm−1) for samples blasted with small beads,
(251 μm3, 0.011 μm−1) and (1995 μm3, 0.0053 μm−1)
for samples blasted with medium and large beads
respectively. Interestingly, the inverse of the break-
point spatial frequencies match rather well with the
average radius of the beads used during the blasting:
(2π/qb,d) = (38 μm, 35 μm) for samples blasted with
small beads, (89 μm, 100 μm) and (186 μm, 250 μm)
for samples blasted with medium and large beads
respectively.

In conclusion, in the case of blasted metallic sur-
faces, characteristic features of the PSD happen to
appear exactly within the spatial frequency range,
which features their optical response. Moreover, there
seems to be a direct link between the features in the
PSD and the parameters of fabrication process. While
the low spatial frequency part of the PSDs strongly
depends on the bead size, we note that the 3 PSDs col-
lapse on the same power-law like behavior in the high
spatial frequency regions. This suggests that the high-
frequency roughness either stems from the untreated
surface or from themicro-roughness of the beads.

5.2.2. Auto-correlation function
Figures 6(a) and (b) show the 2D anisotropic auto-
correlation functions of the untreated sample calcu-
lated from the height maps obtained with the optical
profilometer (figure 6(a)) and the AFM (figure 6(b)).
Both figures show a striking anisotropy. Here the ACF
along the x axis (along the grooves) is slowly decaying
in both graphs, while the ACF along the y axis
(orthogonal to the grooves) exhibits a steeper decay
and a bump in both graphs.

The ACF along the y axis in figure 6(a) is character-
ized by ℓc = 3.0 ± 0.05 μm and has a peak at ℓp
= 10.0 ± 0.5 μm, which corresponds to the average
distance between the groves. Meanwhile, the fine-
resolution measurements with AFM allow to observe
ℓc= 1.8 ± 0.6 μmand the anti-correlation features at
5.1 ± 2.4 μm, which corresponds to half a distance
between the grooves. The incertitude indicates the
standard deviation over the measurements. The mea-
surement step of the optical profilometer and stylus
profilometer are too large to resolve this anti-
correlation.

We will now analyze the ACF of the blasted sam-
ples, starting with the large-scale measurements,
namely data obtained with the optical profilometer,
and then focusing on the data obtained at small-scale
(AFM). For all the blasted samples the 2D ACF
obtained from the optical profilometer exhibit radial
symmetry for spatial frequencies within the correla-
tion length, as illustrated by figure 6(c) for sample
blastedwith large beads. The radial average of these 2D
ACFs are presented in figure 7. None of them follow
exponential orGaussian forms The correlation lengths
ℓc were estimated from the conventional definition
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given by equation (6) and the results are summarized
in table 4. In fact, for all three samples the ACF exhibits
anti-correlation features, which are seen as local nega-
tive-valued minimum of the ACFs, referred hereafter
as ℓac. For measurements with the optical profil-
ometer, it appears at approximately 42.9 μm, 78.2 μm

and 146.2 μm for small, medium and large beads,
respectively. Interestingly, for data obtained with the
optical profilometer all three blasted samples
ℓac/ℓc≅ 3. Contact profilometer provides similar
values, but the authors find averaging over 2D profiles
more accurate and thereby rely hereafter on the data

Figure 6. 2D-ACF of the untreated sample (a), (b) and sample blastedwith large beads (c,d) calculated from2Dheightmaps obtained
with optical profilometer (a), (c) andAFM (b), (d).

Figure 7.Radial ACFs of blasted aluminum samples, averaged over number of topographymaps, obtainedwith optical profilometer. .
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obtained with the optical profilometer for the analysis
of the ACF.

Meanwhile, data obtained with the AFM
(figures 6(b) and 6(d) for the untreated sample and the
sample blasted with large beads, respectively) suggest
that the surface profiles of all four samples exhibit ani-
sotropic anti-correlation behavior at length scale of
the order of 10 μm: about 7 μm for the untreated sam-
ple and the samples blasted with small and medium
beads, a slightly larger value for sample blasted with
large beads. Thereby the blasting process induces a
50–100 μm scale micropattern on the surface of the
aluminum plates, but it fails to completely erase the
anisotropic 10 μm scale pattern induced by the rolling
process during the fabrication of bare aluminum
plates.

The empirical ACFs were fitted with the functional
form given by equation (7). In this way one obtained
the values (ℓ0,Λ,α)= (11 μm, 166 μm, 0.50) for sam-
ples blasted with small beads; (35 μm, 222 μm, 0.55)
for samples blasted with medium beads; and finally
(80 μm, 397 μm, 0.60) for samples blasted with large
beads (table 4).

The correlation length ℓc and anti-correlation
length ℓac vary linearly with the average bead size,
same does the RMS value. The ratio RMS to ℓc is how-
ever constant with bead size and one would expect
similar slope distributions. Yet, due to the difference
in the shape of impacts and as will be shown in
section 6, the distributions of slope angles of these
samples are not the same. Conventional definition of
ℓc (see equation (6)) may seem less convincing in the
case of surfaces with non-exponential and non-Gaus-
sian ACFs. Yet, for all examined blasted samples
2π/qb≅ 3.7ℓc, while in surfaces with exponential
auto-corellation function 2π/qb≅ 2πℓc. In order to
avoid errors in the interpretation, both ℓc and qb
should be analyzed.

5.3.Discussion onheight correlations
In contrast to the height distribution, which often is
found to be Gaussian, the surface height correlation
function shows a wide variety in the functional form
that it exhibits. Moreover, rough surfaces can exhibit
multiscale correlations. For example, the blasted
samples examined in this work the multiscale correla-
tion is evident from the two following features: (i) the
emergence of a characteristic length associated to the
impact of the blasting beads (as shown by figure 7 and
the optical and stylus profilometer data in table 3) and
(ii) the persisting long-range correlation in the high-
frequency tail (figure 5 and AFM data in table 3),
possibly originating from the self-affine character of
the initial surfaces before blasting.

In particular, as shown in figure 8(a), we observe
that large scale measurements show the existence of
two characteristic length scales (correlation and anti-
correlation) that grow linearly with the bead size. Still,

as suggested by the collapse of the high frequency parts
of the PSDs (Figure 5) and the persistence of aniso-
tropic patterns in the ACFs obtained by AFM on blas-
ted samples (figure 7) the microscale roughness as
measured by AFM shows a contrasting trend. As
shown in figure 8(b), in this range of small lateral
scales, the correlation length c

AFMℓ and the anti-corre-
lation length ac

AFMℓ appear to stay unaffected by the
blasting process.

6. Surface slopes

In some cases it is more convenient to characterize the
surface roughness through the slopes rather than the
heights, as for example in geometrical optics and
mechanics [49]. Indeed, themicrofacet theory [14–16]
on which the computer graphics is based, represents a
rough surface as a collection of planar facets. The size
of an individual facet is assumed to be larger than the
wavelength of the incident light so that the geometrical
optics description can be applied. The macrosurface is
assumed to be flat on average, and the orientation of
themean surface in space is defined by the unit normal
vector n= (0, 0, 1), which points from the surface
towards the ambient medium. The orientation of a
single microfacet is described through a unit normal
vector m, while its angle θm with respect to n can be
rather large. In optical models based on themicrofacet
theory, light scattering from rough surfaces is strongly
dependent on the statistics assumed for the orientation
of individual facets, referred to as microfacet distribu-
tion p(θm).

6.1. Theoretical context
The knowledge of surface slopes is thus of primary
interest for the determination of the optical properties
of the surface. However, their determination, a priori
immediate from the knowledge of height profiles is
more subtle than is commonly believed. The definition
of local slopes in a physical context usually suffers
from ambiguity. Mathematically the slopes of the
surface are easily defined through the height gradients
provided that the height profile respects the required
conditions of regularity. Many different algorithms
have been developed for estimating the slope of a
surface from experimental topography data sets [75].
Those algorithms involve slope definition on different
amount of points. However, in a physical context,
local slopes should be defined over a typical length
scale. To give a simple example, the angular width of
the light reflected by a moderately rough surface is
controlled by the average slope s(ℓ) estimated over a
lateral length scale of ℓ∼ λ [45, 54, 71]. Such local
slopes depend on the length scale over which they are
defined. For instance, consider rough surfaces char-
acterized by a correlation length ℓc. One naturally
expects the slopes s(ℓ) to reach a maximum for ℓ< ℓc
and to vanish for ℓ? ℓc. Moreover as will be
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discussed below, this size-dependence of the local
slopes is also impacted by the nature of the form of the
height auto-correlation function. For a given form of
the correlation function, one can calculate the form of
s(ℓ) aswill be shown in the following.

6.1.1. From height correlation to slope distribution
The sum or difference of two Gaussianly distributed
random variables is itself a random Guassian variable.
In the case of a Gaussian height distribution, we can
thus define the height difference Δh(Δr)= h
(r+Δr)− h(r) over Δr as a random Gaussian vari-
able. The variance 〈|Δrh|

2〉 naturally depends on the
distanceΔr= |Δr| through the height autocorrelation
function rD( ). In the case of isotropic short-range
correlations, we thus get:

h r r2 1 . 182 2sá D ñ D = - D∣ ∣ ( ) [ ( )] ( )

In one dimension, the local slopes sℓ over the
length scaleℓ are thus immediately defined as:

s
h h

r

r r r
,

r r;

=
+ D -

D D =

( ) ( )
ℓ

ℓ∣ ∣

where we average over r and the orientation of Δr. If
the height distribution is Gaussian, we get immediately
for the slope distribution:
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where the standard deviation of local slopes is given
by:

2 1 . 20s,s
s

= - 
ℓ

ℓ( ) ( )ℓ

The knowledge of the height auto-correlation 
thus gives us access to the statistics of the local slopes
and the behaviour of σs,ℓ when ℓ→ 0. We illustrate
below the effect of the nature of the correlation on the
standard deviation σs,ℓ of the local slopes and present
them infigure 9:

• Gaussian correlation—If the length scale ℓ is small
with respect to the correlation length ℓc (ℓ= ℓc), a
simple Taylor expansion of the exponential

function can be used to get:

2 1 exp 2 . 21s
G

c
c

,
2 2s

s s
= - - »

ℓ
ℓ ℓ

ℓ
( ) ( )ℓ

We note that this value is independent of ℓ:
sufficiently well below the correlation length ℓc the
statistics of local slopes do not depend on the length
scale ℓ over which the slope is estimated. As
depicted on figure 9(a), the statistics of the local
slopes can be defined at a length scales ℓ< ℓc/5. In
particular the variance ss¢ of the height gradients
(corresponding to the limit of vanishing ℓ) should
give the very same result 2s

G
cs s¢ = ℓ .

• Exponential correlation—In this case, the Taylor
expansion valid forℓ= ℓc gives:

2 1 exp

22

s
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c s
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s

s= - - »
ℓ

ℓ ℓ ℓ ℓ( )

( )

ℓ ℓ

Here the standard deviation of local slopes σs,ℓ
shows a strong dependence on the length scale ℓ

and is even expected to diverge in the limit of
vanishing ℓ; This is seen in figure 9(a). Strictly
speaking the standard deviation ss¢ of height
gradients is thus no longer defined in the case of
exponential correlation. In practice we expect the
latter to be controlled by a cut-off scale minℓ , either
defined as the scale below which the height correla-
tion recovers a more regular Gaussian-like behavior
or as a lower cut-off imposed by the instrument (tip
diameter, optical wavelength) or by the sampling.
The divergent behavior of the typical slope high-
lights the need to precise the length scale over which
slopes are computed.

• The ACF of mounded surfaces— This particular
class of surfaces has two characteristic length scales.
They are the parameter ℓ0, which defines how the
correlation function decays (see equation (7)), and
the average distance between mounds Λ, where
ℓ0<Λ. Here we will focus on the ACF exhibited by
the blasted samples studied in subsequent sections
and which form is given by equation (7), with in our
case ℓc< ℓ0≅ 0.42ℓac<Λ. The standard deviation

Table 3.Correlation lengthℓc and anti-correlation lengthℓac parameters extracted from experimental characterization
of blasted aluminumplates and reference untreated plate. In case ofmeasurements of untreated sample andAFM
measurements of all samples the provided values ofℓc andℓac correspond to themeasurement direction perpendicular
to the grooves. In case ofmeasurements with optical profilometerℓc andℓacwere calculated from radial average of 2D
ACFmaps, while in case ofmeasurements with stylus profilometer as average over 1DACFs obtained from
measurements along x and y directions.

Estimator Setup Untreated sample Small beads Mediumbeads Large beads

ℓc ( μm) Optical profilometer 1.8 ± 0.6 9.0 ± 0.3 25.6 ± 0.3 50.0 ± 0.7

Stylus profilometer 13.4 ± 0.7 10.9 ± 0.5 24.7 ± 0.5 47.3 ± 3.1

AFM 1.6 ± 0.1 2.2 ± 1.1 1.1 ± 0.5 2.2 ± 1.1

ℓac ( μm) Optical profilometer — 42.9 ± 3.8 78.2 ± 2.4 146.2 ± 4.5

Stylus profilometer — 35.6 ± 10.9 76.0 ± 12.0 145 ± 18.4

AFM 5.1 ± 2.4 7.0 ± 3.5 5.8 ± 2.9 7.8 ± 3.9
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of the local slopes in this case is:

2 1 exp cos
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As depicted in figure 9(a) the case α= 1 is similar to
the Gaussian ACF. For ℓ< ℓc/10 the standard
deviation of the local slopes does not depend on the
length scale over which slopes are computed, but
the value is larger compared to the case of the
Gaussian ACF. If α� 0.5, the slope distribution is
very similar to the one of exponential ACF and
standard deviation of local slopes strongly depends
on the length scale.

• Self-affine correlation—This dependence on length
scales is even more pronounced in the case of self-
affine surfaces. Here we have h 2á D ñ =ℓ∣ ∣ ( )

H H
0
2 2 2-ℓ ℓ where the length scale ℓ0 is an amplitude

parameter and H the roughness or Hurst exponent
usually lying in the range [0, 1] [76]. Such a power-
law behavior is usually only observed in a finite
range of length scales min max-ℓ ℓ[ ]. In the case of
self-affine height correlation, we thus get for the
standard deviation of the local slopes [71]:
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Here again, the typical slope σs,ℓ strongly depends
on the length scale ℓ over which it is estimated and
the height gradient is ill-defined, as shown on
figure 9(b). We note that the maximum slope is
controlled by the lower cut-off minℓ of the self-affine
regime s H

max min 0
1» -ℓ ℓ( ) while the RMS rough-

ness H H
0
1

maxS = -ℓ ℓ is controlled by the upper cut-
off maxℓ [71].

6.1.2. Facets and two-dimensional slope distribution
The probability density distribution of slopes in case of
a 2D surface profile is as follows:
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For an isotropic surface, the variance of the slope
distribution is independent on the axis along which it
is estimated, or s s s, , ,x y

s s s= =ℓ ℓ ℓ as soon as the slopes
are estimated over the same length scaleℓ= ℓx= ℓy.

If we consider a facet defined by its extent ℓ

(the projected distance over the mean plane) and its
normal n sin cos , sin sin , cosm m mq j q j q= ( ), the
slopes which can be estimated over the facet
obviously depend on the direction. In particular,
since slopes are defined here with respect to the hor-
izontal plane, the angle f gives the direction of the
maximum slope sm,ℓ while the slope vanishes along
the orthogonal direction (j+ π/2). In particular we
have:

s s stan . 26m m x y, ,
2

,
2q= = + ( )ℓ ℓ ℓ

The maximum slope sm,ℓ acts here as a norm of the
local slope vector s s,

x y
( )ℓ ℓ and is a positive quantity.

Since the two variables s
xℓ and s

yℓ are Gaussian, the
statistics of sm,ℓ follows theχ-distribution:
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whosemode is located at sm,ℓ= σs,ℓ. Themaximum of
the χ-distribution thus directly gives access to the
standard deviation of the local slopes.

6.1.3. Angular distributions
Finally, the angular-dependent slope distribution of a
2D surface profile can be obtained on the basis of
equation (27) by changing variable to θm in accordance
with equation (26):

Figure 8.Correlation lengthℓc and anti-correlation lengthℓac vs bead size obtained (a) at large scale by stylus and optical profilometry
and (b) at small scale by AFM. The black dashed and continuous line show (a) an indicative linear trend and (b) an average behavior.
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where θm ä [0°, 90°]—the angle between the normal
to the facet surface and the normal to the mean
surface.

In the case of 2D surface profile, the distribution of
the slope angles p2D(θ) reaches its maximum at a non-
zero angle for any value ofσs,l:
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θ0� 45°.
Conversely the variance of slope distribution can

be evaluated from the surface slope angular distribu-
tion using the inverse of equation (29):

tan 1 tan

1 3 tan
. 30s

D D

D
,

2
2

0,2
2

0,2

2
0,2

s
q q

q
=

+
+

( ) ( )ℓ

6.2. Numerical computation of local slopes
In practice, the calculation of the local gradients along
the x and y directions is the simplest way to evaluate
the surface slopes from topography maps. Yet, this
method is rather sensitive to the noise from exper-
imental data and moreover it estimates the slopes at
the lateral scale of themeasurement step. Alternatively,
it is possible to estimate the surface slopes at the scale
of a surface element of size ℓ× ℓ by means of fitting a
linear plane or a quadratic form. In this work, we
compare these three methods (local gradient, linear or
parabolic fits over a finite region of extent ℓ) while
varyingℓ in the range 10–98 μm. Each surface element
of the chosen characteristic size is fitted by the linear
plane:

z c c x c y, 31x y0= + + ( )

and by the quadratic expression:
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In the latter case the plane tangent to the paraboloid at
point (x0, y0) has the following cx, cy coefficients:
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The unit normal vector to the plane describing this
surface elementns can be defined as:
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Finally, the polar angle θ and azimuthal angle f
describing the orientation of such surface element can
be defined as dot products ofnswith unit vectors along
z and x:
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Applied to the whole topography map, such an
analysis provides the full two-dimensional polar plot
of the slope probability density function p(sm,ℓ). The
one-dimensional representation is more convenient
for the comparison of slope distributions of several
samples. In case of isotropic surfaces this can be the
radial average of the 2D polar plot of the slope
probability density function. However, in a more
general case of anisotropic surface a single 1D repre-
sentation is not sufficient and at least two cuts through
the 2D slope probability density function are
necessary.

Figure 9. Standard deviation of local slopes as a function of length scaleℓ overwhich it is defined for surfaces with followingACFs: (a)
comparison of exponential andGaussian ACFs as well as ACFofmounded surface (ℓ0= 35 μm,ℓc= 25.6 μm,Λ= 220μm,
α= 0.1;0.55;0.9); (b)ACFof self-affine surfaces with different values ofHurst exponent.
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6.3. Experimental results
This section is devoted to the analysis of the slope
distribution p(sm,ℓ) and of the distribution of the slope
angles p2D(θm) of the examined samples. Two
approaches are compared: the analysis based on
surface statistics (possible since the height distribution
functions of the examined samples follow Gaussian
statistics) and direct calculations from topography
maps with a particular attention given to the impact of
the length scale ℓ at which the surface elements are
analyzed.

Based on the statistical parameters summarized in
table 4, the standard deviation of the slope distribution
σs was estimated using equation (23) for all three blas-
ted samples and the following values were obtained for
ℓ= 2 μm (ℓ< ℓ0, table 4): 0.34, 0.40 and 0.40 for
samples blasted with small, medium and large beads,
correspondingly. According to equation (29), slope
angle θ0 at which the slope angle distribution reaches
its maximum is θ0= 21° for sample blasted with small
beads, θ0= 25° for sample blasted with medium and
large beads.

In what follows we will focus on the slope distribu-
tions p(sm,ℓ) and distributions of slope angles p2D(θm)
deduced from topography maps measured with opti-
cal profilometer and the results obtained in this way
are presented in figure 2. Figure 10 shows such 2D
slope distributions obtained for the untreated sample
(figure 10(a)) and for sample blasted with medium
beads (figure 10(b)). Slope distributions were obtained
by fitting the surface element, the projection of which

to the mean surface plane is of size
ℓ× ℓ= 10× 10 μm, with paraboloid equation (32)
and defining the plane tangent to this paraboloid at the
center of the surface element equation (33)
(figures 10(c) and (d)). In fact, very similar results were
obtained for fitting with plane and paraboloid. The
slope distributions obtained from local gradients are,
as expected, difficult to exploit due to the noise and
aliasing, in contrast to the slope distributions obtained
by fitting. The slope distribution of the untreated sam-
ple obtained by fitting 10(a) exhibit a clear anisotropy.
Meanwhile, 2D slope distributions of all blasted sam-
ples have radial symmetry, as illustrated on
figure 10(b) for sample blasted with medium beads.
Figure 10(c) compares 1D cuts along cx= 0 and cy= 0
of the 2D slope distribution shown in figure 10(b) and
is obtained from quadratic fits of height measure-
ments on samples blasted with medium beads. The
standard deviation of this slope distribution σs was
estimated with equation (27) to be σs= 0.188, mean-
while analytic expression equation (23) for ℓ= 10 μm
providesσs= 0.191.

Figure 11 illustrates the variation of the standard
deviation of the slope distribution σs,ℓ with the size ℓ
of the fitted surface element. For the sake of compar-
ison σs,ℓ values obtained for each sample are normal-
ized by 2 cs ℓ similar to prefactor in equation (23).
Results obtained from plane and quadratic fits are
shown as filled and empty symbols, respectively. As
expected, the increase of ℓ results in a more narrow
slope distribution. Interestingly, for surface elements

Table 4. Statistical estimators of themorphology of examined blasted aluminum
samples: rms roughness σ, correlation lengthℓc, functionsA(r) used for fitting the
ACFs of the treated samples and theirfit parameterℓ0, anti-correlation lengthℓac,
characteristic length 2π/qb corresponding to the breakpoint of PSD curves, curvature
radii of trough-shaped craters r c and dome-shaped hills r h, variance of slope
distributionσs (obtained from equation (23)usingσ,ℓ0 andα values from this table)
and the slope angle θ0 at which the slope angle distribution reaches itsmaximum
(obtained from equation (29) usingσs values from this table).

Small beads Mediumbeads Large beads

dbeads (μm) 70 ± 20 200 ± 50 500 ± 150

σ (μm) 1.18 ± 0.04 2.52 ± 0.02 5.05 ± 0.06

ℓc (μm) 9.0 ± 0.3 25.6 ± 0.3 50.0 ± 0.7

rD( ) exp cos
r

r
0

2 2-
a pD

L
⎡
⎣

⎤
⎦( ) ( )ℓ

α (nounits) 0.5 0.55 0.6

ℓ0 (μm) 11 30 80

Λ (μm) 166 222 397

ℓac (μm) 42.9 ± 3.8 78.2 ± 2.4 146.2 ± 4.5

0
~
 (μm3) 25 251 1995

2π/qb (μm) 38 89 186

1/c (μm) 85 ± 10 400 ± 10 872 ± 60

based on statistical estimators

σs 0.34 0.40 0.40

θ0 (°) 21 25 25

local slope analysis

σs 0.31 0.27 0.25

θ0 (°) 18.5 16 15
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Figure 10. 2D slope distribution obtained from2D surfacemaps of untreated sample (a), (c) and sample blastedwithmediumbeads
(b), (d). The slope distributions were obtained from analysis of local gradients (a), (b) or fromfits of the surface element ofℓ × ℓ

dimensionwith a quadratic formover a region of sizeℓ = 10 μm (c), (d). (e) 1D slope distributions along cx and cy obtained from2D
slope distribution in (d). AGaussianfit of these distributions is shown for the reader comfort and results inσs = 0.188, while analytic
expression equation (23) forℓ = 10 μmprovidesσs = 0.191.

Figure 11. Standard deviation of slope distribution as a function ofℓ, the size of fitted surface element. Variance is normalized by
2 cs ℓ , while the size of surface element is normalized byℓc. Results obtained fromparaboloid and plane fit are shownwith filled and

empty symbols respectively. Dash lines show theoretical curve on standard deviations of slope distribution from equation (23) for
samples blastedwith small (blue line), medium (green line) and large (red line) beads.
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of size
2
cℓ ℓ the decay of s,

2s ℓ with ℓ/ℓc perfectly fol-

lows the law given by combination of equations (30)
and (23). In conclusion, slope distributions of all blas-
ted samples can be reasonably well approximated by
the Gaussian form, which allows to use equation (23)
for the analysis and to link the slope distribution with
statistical properties like RMS and ℓc. Figure 12 shows
2D distributions of slope angles θ and f obtained with
equations (35), (36) from 2D slope distribution depic-
ted by figure 10. Even though the slope distribution is
Gaussian, due to normalization the distribution of
slope angles is no more Gaussian and exhibits a max-
imum at θm≈ 7°. A radial average of this distribution,
shown on figure 12(b) follows well the expression
given by equation (28).

In optical models based on the microfacet theory,
there is one more morphology-related parameter,
namely the shadowing/masking term [77, 78]. Yet, in
contrast to the microfacet distribution, masking/sha-
dowing can not be related to surface morphology in a
simple and intuitive way. Analytic expressions for sha-
dowing/masking exist for isotropic surfaces with
Gaussian statistics [77, 78], but to the best of our
knowledge, there is no convention on estimation of
this parameter based directly on topography data.

6.4.Discussion on local surface slopes
As emphasized several times in this section, local
slopes are to be defined with respect to a characteristic
length scale [79](e.g. thewave length in the case of light
scattering [80]). Here we could give a quantitative
account of the size dependence of local slopes. In
particular we could check that in the present case of
Gaussian distribution of height fluctuations, the
distribution of local slopes is also Gaussian and that its
variance is fully determined by the knowledge of its
auto-correlation function. As shown in figure 11 we
observe that after rescaling by the correlation length

ℓc, all blasted samples show the same size dependence
of the local slopes standard deviation. Since ℓc shows
itself a quasi-linear dependence on the bead size, this
means here that we get a full knowledge of the slope
statistics from the process parameters

7. Local curvatures

7.1. Theoretical context
Two rather complementary approaches can be applied
for characterization of local features of surfacemorph-
ology: (i) distribution of all local curvatures and (ii)
analysis of the shape and of the dimensions of
statistically representative surface elements, as for
instance hills and craters.

In order to emphasize the local curvature of the
surface, topography maps can be presented through
the shape index. This topography parameter was intro-
duced by Koenderink & van Doorn [81] as the single
valued measure of both principal local curvatures.
Shape index is derived from the eigenvalues of the
Hessian and can be described as follows:
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index values is set from −1 to 1 and progressively
describes the local curvature from a spherical cup
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the size of the surface element it describes, this
information can be retrieved from curvedness

Figure 12. Slope angle distribution p ,D m m2 q f( ) of sample blastedwithmediumbeads (a) and its radial average (b). Solid line on (b)
shows thefit of data points with equation (28).
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parameter c [81]:
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Curvedness is always positive and is inversely propor-
tional to the size of surface element. Finally, the
probability density function of shape index gives the
qualitative insight on its statistics in a similar way as
the height distribution function describes the height
profile.

The analysis of the average dimensions of local fea-
tures, such as craters and hills in this work, can also be
useful. The suggested procedure is as follows. By com-
bining the shape index map and the curvedness map,
the curvedness pdf is calculated for each shape of
interest, i.e. spherical cup and trough or ridge.

7.2. Experimental results
Obviously, in full analogy with the local slopes, the
analysis of local curvatures can not be performed
disregarding the characteristic length-scales of the
surface. Due to the important scale-dependence of the
local properties of mounded surfaces examined in this
work, the shape index and curvedness calculations

provided were obtained from height maps depicted in
figure 2.

Figure 13 provides a shape index representation of
topography maps from figure 2 and thus allows us to
analyze the local curvature shapes of the surface. Shape
index values were calculated with shape_index func-
tion from scikit-image python library for image pro-
cessing. According to figure 13, spherical cup shapes
corresponding to the craters induced by the blasting
process are dominant on the surface of examined sam-
ples. Those craters are surrounded by crests described
by small positive local curvatures. Finally, the intersec-
tion between several crests results in local maxima
(dome-like shape).

Figure 15(a) shows the probability density func-
tion of shape index, s. It reveals that the surface of non-
treated sample is predominantly composed of two
types of surface curvature elements: ruts (s=− 0.5)
and ridges (s = 0.5). Then blasting with small beads
results in roughly equal amount of surface points
belonging to shapes from rut to ridge. Blasting with
medium and large beads renders the probability den-
sity of shape index asymmetric: troughs (s=− 0.75,
intermediate case between cup-like shape and rut)

Figure 13. Shape index of the raw substrate (a) and surfaces blastedwith small (b)medium (c) and large beads (d). The shape index
progressively describes the local curvature from a spherical cup to a dome (respectively from -1 to 1).
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become dominant and occupy more important sur-
face than ridges.

Figure 14 shows the maps of curvedness, c. Then
figure 15(b) plots the probability density curvedness

times beads radius of all blasted samples. Among exam-
ined samples rolled aluminum has largest predominant
curvedness of 1.3. 10−2 μm−1, while in blasted samples
this value decreases with the beads size and is

Figure 14.Curvedness of the raw substrate (a) and surfaces blastedwith small (b)medium (c) and large beads (d). The curvedness
describes the inverse local radius of curvature.

Figure 15.Probability density function of shape index (a) and curvedness (b).
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1.18. 10−3 μm−1, 2.5. 10−3 μm−1 and 1.16. 10−3 μm−1

for aluminum samples blasted with small, medium and
large beads respectively. The corresponding radii of
curvature of blasted samples are 85 μm, 400 μm and
862 μmfor small,mediumand large beads respectively.

The summary of the different statistical estimators
examined in this work is given in table 4.

7.3.Discussion on local curvatures
In addition to its quantitative interest, the analysis of
local curvatures brings an additional topological
information to the present topographic characteriza-
tion of blasted aluminum surfaces. The maps and the
statistics of the shape index show a spectacular change
between the initial groove geometry of the initial cold-
rolled surfaces and the crater geometry of the blasted
surfaces. In particular a clear asymmetry appears in the
distribution of shape indices between the bottoms and
the ridges of the craters. Such an asymmetry could not
be captured by the correlation or the slope analysis.
Moreover the local curvature analysis appears to be far
more robust than the fragile estimation of the
skewness.

8. Conclusion and outlook

A detailed statistical study of the surface topography
of blasted aluminum samples was performed. Com-
bining three different experimental facilities for
measurement of surface topography allowed for
characterization of surface topography of the samples
within 5 decades of spatial frequency. Several statistical
morphological parameters were extracted from the
experimental data during their analysis. Within the
examined range of beads sizes used during the blasting
process of the sample, the value of the RMS height of
the rough surface is found to increase linearly with the
size of the beads. The obtained values of the skewness
and the kurtosis both reflected slight deviations of the
height distribution from a Gaussian form, consistent
with the presence of ‘blasting’ craters on the surface.
The PSD allows us to identify the size of the beads used
during the fabrication process. The spatial length
scales over which the empirical ACFs display anti-
correlations are related to the sizes of the beads
impacting the surface. Interestingly, while the large
scale roughness appears to be controlled by the
blasting process, we could show that the microscale
roughness inherits from that of the initial samples.We
could show that the slope statistics is fully character-
ized by the knowledge of the quasi-Gaussian distribu-
tion of height fluctuations and of the auto-correlation
functions. On the one hand, local slopes are shown to
be strongly dependent on the length scale. On the
other hand, after a proper rescaling by the bead size,
the slope distributions of the studied surfaces are all
very similar for all three blasted samples.

This study creates a solid foundation for future
work on understanding the light scattering from these
blasted surfaces and how it is related to their surface
topographies. For instance, the experimental topo-
graphy data analyzed in this work will be used as an
input into different light scattering models that will
produce scattering data that can be confronted to opti-
cal experimental data, in order to evaluate their prac-
tical application.
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