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Abstract
We describe a method for designing a one-dimensional random surface that
acts as a Lambertian diffuser. The method is tested using rigorous computer
simulations and is shown to yield the desired scattering pattern.

Optical devices that give rise to a scattered intensity that is proportional to the cosine
of the scattering angle are frequently used in the optical industry, e.g. for calibrating
scatterometers [1]. Such diffusers have the property that their radiance or luminance is the same
in all scattering directions. Due to this angular dependence such devices are often referred
to as Lambertian diffusers. In the visible region of the optical spectrum volume disordered
media, e.g. compacted powdered barium sulfate, and freshly smoked magnesium oxide [2] are
used as Lambertian diffusers. However, this type of diffuser is inapplicable in the infrared
region due to its strong absorption and the presence of a specular component in the scattered
light, in this frequency range.

The design of a random surface that acts as a Lambertian diffuser, especially in the infrared
region of the optical spectrum, is therefore a desirable goal, and one that has been regarded
as difficult to achieve [3]. In this paper we present a solution to this problem that is based
on an approach used in several recent papers to design one-dimensional random surfaces with
specified scattering properties [4–6], and to fabricate them in the laboratory [5,7]. The design
of a two-dimensional random surface that acts as a Lambertian diffuser will be described
elsewhere [8].

To motivate the calculations that follow we begin by considering the scattering of s-
polarized light of frequency ω from a one-dimensional, randomly rough, perfectly conducting
surface defined by x3 = ζ(x1). The region x3 > ζ(x1) is vacuum, the region x3 < ζ(x1) is
the perfect conductor (figure 1). The plane of incidence is the x1x3-plane. The surface profile
function ζ(x1) is assumed to be a single-valued function of x1 that is differentiable, and to
constitute a random process.
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Figure 1. The scattering geometry assumed in this paper.

The mean differential reflection coefficient 〈∂R/∂θs〉, where the angle brackets denote
an average over the ensemble of realizations of the surface profile function, is defined such
that 〈∂R/∂θs〉 dθs is the fraction of the total time-averaged flux incident on the surface that is
scattered into the angular interval (θs, θs + dθs) in the limit as dθs → 0. In the geometrical
optics limit of the Kirchhoff approximation it is given by [5]〈
∂R

∂θs

〉
= 1

L1

ω

2πc

1

cos θ0

[
1 + cos(θ0 + θs)

cos θ0 + cos θs

]2 ∫ ∞

−∞
dx1

∫ ∞

−∞
du exp[i(q − k)u]

×〈exp[iauζ ′(x1)]〉. (1)

In this expression L1 is the length of the x1-axis covered by the random surface, θ0 and
θs are the angles of incidence and scattering, respectively, a = (ω/c)(cos θ0 + cos θs), and
q = (ω/c) sin θs, k = (ω/c) sin θ0. In the following, we will restrict ourselves to the case of
normal incidence (θ0 = 0◦), in which case equation (1) simplifies to〈
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where a is now given by a = (ω/c)(1 + cos θs).
We wish to find a surface profile function ζ(x1) for which the mean differential reflection

coefficient has the form〈
∂R

∂θs

〉
= 1

2
cos θs. (3)

To this end we write ζ(x1) in the form [5]

ζ(x1) =
∞∑

�=−∞
c� s(x1 − �2b). (4)
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Here the c� are independent, positive, random deviates, b is a characteristic length, and the
function s(x1) is defined by [5]

s(x1) =




0 x1 � −(m + 1)b

−(m + 1)bh− hx1 −(m + 1)b � x1 � −mb
−bh −mb � x1 � mb

−(m + 1)bh + hx1 mb � x1 � (m + 1)b

0 (m + 1)b � x1

(5)

wherem is a positive integer. Such trapezoidal grooves can be generated experimentally [5,7].
Since the c� are positive random deviates, their probability density function (PDF)

f (γ ) = 〈δ(γ − c�)〉 is non-zero only for positive values of γ .
It has been shown [5] that when the surface profile function is given by equations (4)

and (5), the expression (2) for the mean differential reflection coefficient becomes〈
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Thus, we find that in the geometrical optics limit of the Kirchhoff approximation the mean
differential reflection coefficient is determined by the PDF of the coefficients c� entering the
expansion (4), and is independent of the wavelength of the incident light. If we make the
change of variable tan(θs/2) = γ h, 0 � γ h � 1, so that 1

2 cos θs = 1
2 (1 − γ 2h2)/(1 + γ 2h2),

on combining equations (3) and (6) we find that the equation determining f (γ ) is

f (−γ ) + f (γ ) = 2h
1 − γ 2h2

(1 + γ 2h2)2
. (7)

It follows that

f (γ ) = 2h
1 − γ 2h2

(1 + γ 2h2)2
θ

(
1

h
− γ

)
θ(γ ). (8)

The preceding results were obtained in the geometrical optics limit of the Kirchhoff
approximation for a perfectly conducting surface. However, our earlier experience in designing
surfaces with specified scattering properties [4–6] shows that when a surface designed on
the basis of these assumptions is ruled on a lossy metal, the results of rigorous scattering
calculations show that the resulting scattering pattern retains the form prescribed in the
approximate, single-scattering calculations. We now demonstrate that such a result is obtained
in the context of the present problem.

From the form of f (γ ) given in equation (8) a long sequence of c� was generated by
applying the rejection method [9], and the resulting surface profile function ζ(x1)was generated
using equations (4) and (5). We found from numerical experiments that in order to have
a surface that acts as a Lambertian diffuser in reflection the parameter b had to be large.
Physically, this means that the grooves ζ(x1) have to be wide.

In figure 2 we present the results of rigorous numerical Monte Carlo simulations [10]
for the angular dependence of the mean differential reflection coefficient 〈∂R/∂θs〉 for s-
polarized incident light of wavelength λ = 612.7 nm scattered from a randomly rough silver
surface of the type described above (noisy curve). The value of the dielectric constant of
silver at this wavelength is ε(ω) = −17.2 + i0.5. The surface was characterized by the
parameters b = 80λ = 49 µm, h = 0.2 and m = 1, and its length used in the simulation
was L1 = 164λ = 100 µm. Furthermore, the plot in figure 2 was obtained by averaging the
results forNζ = 35 000 realizations of the surface profile function ζ(x1). Such a large number
of surface realizations was needed in order to reduce the noise level sufficiently. The reason
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Figure 2. The noisy curve is 〈∂R/∂θs〉 calculated by a numerical simulation approach for a random
silver surface defined by equations (4) and (5) with b = 80λ, h = 0.2, m = 1, and the PDF (8),
when s-polarized light of wavelength λ = 612.7 nm (ε(ω) = −17.2 + i0.5) is incident normally
on it. The upper full curve is 〈∂R/∂θs〉 given by equation (3). The lower full curve is the error in
the calculated mean differential reflection coefficient as measured by its standard deviation.

(This figure is in colour only in the electronic version)

for the slow convergence of the mean DRC with increasing Nζ we believe is due to the large
value of b used in the simulations. Without compromising the spatial discretization used in
the numerical calculation (!x1 = 0.164λ) needed in order to resolve the oscillations of the
incident field, only a few grooves s(x1) could be included for each realization in the sum (4)
defining the surface.

The lower smooth curve represents an estimate of the error in the calculated 〈∂R/∂θs〉 due
to the use of a finite number of surface realizations for its calculation. This error is obtained
as the standard deviation of the mean differential reflection coefficient (see [10] for details).

The upper smooth full curve in figure 2 represents the geometrical optics limit of the
Kirchhoff approximation, equation (3). As can be readily observed from this figure, the
agreement between the geometrical optics limit of the Kirchhoff approximation for a random
perfectly conducting surface and the result of rigorous numerical simulations for a real random
silver surface is excellent within the noise level. This is indeed the case for all scattering angles
θs , which we find somewhat surprising, since one might have expected the geometrical optics
approximation to break down for the largest scattering angles. That this is not observed in
our simulation results is probably an indication that multiple scattering processes are of minor
importance in the scattering taking place at the random surface even for the largest scattering
angles.

Simulations (results not shown) were also performed where the wavelength of the incident
light was changed by plus and minus 10% from its original value of λ = 612.7 nm. Such
changes did not affect the Lambertian nature of the scattered light in any significant way.
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This weak wavelength sensitivity is consistent with our earlier experience in designing surfaces
with specified scattering properties [4–6]. Surfaces generated on the basis of different b
parameters have also been considered. We found that the scattered intensity showed little
sensitivity to this parameter as long as it is large.
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