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Abstract
We study the statistical properties of the scattering matrixS(q|k) for the problem
of the scattering of light of frequencyω from a randomly rough one-dimensional
surface, defined by the equation x3 = ζ(x1), where the surface profile function
ζ(x1) constitutes a zero-mean, stationary, Gaussian random process. This is
done by studying the effects of S(q|k) on the angular intensity correlation
function C(q, k|q ′, k′) = 〈I (q|k)I (q ′|k′)〉 −〈I (q|k)〉〈I (q ′|k′)〉, where the
intensity I (q|k) is defined in terms of S(q|k) by I (q|k) = L−1

1 (ω/c)|S(q|k)|2,
with L1 the length of the x1 axis covered by the random surface. We focus our
attention on theC(1) andC(10) correlation functions, which are the contributions
to C(q, k|q ′, k′) proportional to δ(q − k − q ′ + k′) and δ(q − k + q ′ − k′),
respectively. The existence of both of these correlation functions is consistent
with the amplitude of the scattered field obeying complex Gaussian statistics in
the limit of a long surface and in the presence of weak surface roughness. We
show that the deviation of the statistics of the scattering matrix from complex
circular Gaussian statistics and theC(10) correlation function are determined by
exactly the same statistical moment of S(q|k). As the random surface becomes
rougher, the amplitude of the scattered field no longer obeys complex Gaussian
statistics but obeys complex circular Gaussian statistics instead. In this case
the C(10) correlation function should therefore vanish. This result is confirmed
by numerical simulation calculations.

1. Introduction

The scattering of light from randomly rough surfaces has attracted attention over many years.
The majority of the theoretical and experimental studies of such scattering has been devoted to
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coherent interference effects occurring in the multiple scattering of electromagnetic waves
from randomly rough surfaces and the related backscattering enhancement phenomenon.
These effects are contained in the angular distribution of the intensity of the light scattered
incoherently, i.e. in the second moment of the scattered field.

Recently, attention has begun to be directed toward theoretical [1–12] and experimental
[2,7,8,12,13] studies of multiple-scattering effects on higher moments of the scattered field, in
particular on angular intensity correlation functions. These correlation functions describe how
the speckle pattern, formed through the interference of randomly scattered waves, changes
when one or more parameters of the scattering system are varied.

The interest in these correlations has been stimulated by the expectation that, just as
the inclusion of multiple-scattering processes in the calculation of the angular dependence
of the intensity of the light that has been scattered incoherently from, or incoherently
through, a randomly rough surface, led to the prediction of enhanced backscattering [14]
and enhanced transmission [15], their inclusion in the calculation of higher-order moments of
the scattered or transmitted field would also lead to the prediction of new physical effects. This
expectation was prompted by the results of earlier theoretical [16,17] and experimental [18–20]
investigations of angular intensity correlation functions in the scattering of classical waves
from volume disordered media. In a theoretical investigation [9] it was predicted that
three types of correlations occur in such scattering, namely short-range correlations, long-
range correlations and infinite-range correlations. These were termed the C(1), C(2) and C(3)

correlations, respectively. The C(1) correlation function includes both the ‘memory effect’
and the ‘reciprocal memory effect’ [9, 10], so named because of the wavevector conservation
conditions they satisfy. Both of these effects have now been observed in volume scattering
experiments [16,17]. TheC(2) correlation function has also been observed in volume scattering
experiments [18, 19], as has the C(3) correlation function [20].

Until recently, only the C(1) correlation function arising in the scattering of light from a
randomly rough surface had been studied theoretically and experimentally [1–8]. In a recent
series of papers devoted to theoretical studies of angular correlation functions of the intensity of
light scattered from one-dimensional [9, 10] and two-dimensional [10] randomly rough metal
surfaces the long-range C(2) and infinite-range C(3) correlation functions were calculated,
and two additional types of correlation functions, a short-range correlation function, named
C(10), and a long-range correlation function, named C(1.5), were predicted. In very recent
experimental work [12] the envelopes of theC(1) andC(10) correlation functions were measured
experimentally for the scattering of p-polarized light from weakly rough, one-dimensional gold
surfaces. TheC(1.5), C(2) andC(3) correlation functions have yet to be observed experimentally.

The question arises as to whether it possible to determine the relative magnitudes of the
different correlation functions from a knowledge of the experimental parameters of the surface
roughness and its statistical properties. This question had been raised earlier in [12, 16], but
not answered definitively. We therefore address it here for the case of a one-dimensional
random surface defined by the equation x3 = ζ(x1), on the basis of the single assumption
that the surface profile function ζ(x1) is a single-valued function of x1 that constitutes a zero-
mean, stationary, Gaussian random process. At the same time we address the question of how
the statistical properties of the amplitude of the scattered field are reflected in the symmetry
properties of the speckle pattern to which it gives rise.

The outline of this paper is as follows. In section 2 we introduce the angular intensity
correlation function and analyse it in terms of the possible statistics of the scattering matrix. In
section 3 we illustrate the conclusions of section 2 for the simple example of the scattering of
light from the randomly rough surface of a perfect conductor. Finally, in section 4 we present
the conclusions drawn from the results obtained in this paper.
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2. The angular intensity correlation function

The general angular intensity correlation functionC(q, k|q ′, k′)we study in this work is defined
by

C(q, k|q ′, k′) = 〈I (q|k)I (q ′|k′)〉 − 〈I (q|k)〉〈I (q ′|k′)〉, (2.1)

where the angle brackets denote an average over the ensemble of realizations of the surface
profile function. The intensity I (q|k) entering this expression is defined in terms of the
scattering matrix S(q|k) for the scattering of light of frequency ω from a one-dimensional
random surface by

I (q|k) = 1

L1

(
ω

c

)
|S(q|k)|2, (2.2)

whereL1 is the length of the x1 axis covered by the random surface, and the wavenumbers k and
q are related to the angles of incidence and scattering, θ0 and θs , measured counterclockwise
and clockwise from the normal to the mean scattering surface, respectively, by k = (ω/c) sin θ0

and q = (ω/c) sin θs .
From equations (2.1) and (2.2) we see that, because the correlation of I (q|k) with itself

should generally be stronger than the correlation of I (q|k) with I (q ′|k′) when q ′ �= q and
k′ �= k, a peak in C(q, k|q ′, k′) is expected when q ′ = q and k′ = k. This peak is called
the memory effect peak for the reason that is explained below. In addition, because S(q|k) is
reciprocal, S(q|k) = S(−k| − q), a peak in C(q, k|q ′, k′) is also expected when q ′ = −k and
k′ = −q. This peak is called the reciprocal memory effect peak.

In terms of the scattering matrix S(q|k) the correlation function C(q, k|q ′, k′) becomes

C(q, k|q ′, k′) = 1

L2
1

ω2

c2
[〈S(q|k)S∗(q|k)S(q ′|k′)S∗(q ′|k′)〉

− 〈S(q|k)S∗(q|k)〉〈S(q ′|k′)S∗(q ′|k′)〉]. (2.3)

Since, due to the stationarity of the surface profile function, 〈S(q|k)〉 is diagonal in q and
k, 〈S(q|k)〉 = 2πδ(q − k)S(k), we introduce the incoherent part of the scattering matrix
δS(q|k) = S(q|k) − 〈S(q|k)〉. Then, from the relations between averages of the products
of random functions and the corresponding cumulant averages [21,22] and omitting all terms
proportional to 2πδ(q−k) and/or 2πδ(q ′−k′) as uninteresting specular effects, equation (2.3)
can be rewritten in the form

C(q, k|q ′, k′) = 1

L2
1

ω2

c2
[|〈δS(q|k)δS∗(q ′|k′)〉|2 + |〈δS(q|k)δS(q ′|k′〉|2

+ 〈δS(q|k)δS∗(q|k)δS(q ′|k′)δS∗(q ′|k′)〉c], (2.4)

where 〈· · ·〉c denotes the cumulant average.
Due to the stationarity of the surface profile function ζ(x1), 〈δS(q|k)δS∗(q ′|k′)〉 is

proportional to 2πδ(q − k − q ′ + k′). It gives rise to the contribution to C(q, k|q ′, k′) called
C(1)(q, k|q ′, k′) [9,10] and describes the memory effect and the reciprocal memory effect. The
property of a speckle pattern that is characterized by the presence of the factor 2πδ(q−k−q ′+k′)
in C(1)(q, k|q ′, k′) is that, if we change the angle of incidence in such a way that k goes into
k′ = k +�k, the entire speckle pattern shifts in such a way that any feature initially at q moves
to q ′ = q + �k. This is the reason why the C(1) correlation function was originally named
the memory effect. In terms of the angles of incidence and scattering, we have that, if θ0 is
changed into θ ′

0 = θ0 + �θ0, any feature in the speckle pattern originally at θs is shifted to
θ ′
s = θs +�θs , where �θs = �θ0 (cos θ0/ cos θs) to first order in �θ0.
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Similarly 〈δS(q|k)δS(q ′|k′)〉 is proportional to 2πδ(q−k +q ′ −k′) and contributes to the
correlation functionC(10)(q, k|q ′, k′) toC(q, k|q ′, k′) [9,10]. The property of a speckle pattern
that is characterized by the presence of the factor 2πδ(q − k + q ′ − k′) in C(10)(q, k|q ′, k′) is
that, if we change the angle of incidence in such a way that k goes into k′ = k +�k, a feature
at q = k −�q will be shifted to q ′ = k′ +�q, i.e. to a point as much to one side of the new
specular direction as the original point was on the other side of the original specular direction
(in wavenumber space). For one and the same incident beam the C(10) correlation function
therefore reflects the ‘symmetry’ of the speckle pattern with respect to the specular direction.

The third term on the right-hand side of equation (2.4), 〈δS(q|k)δS∗(q|k)δS(q ′|k′)
δS∗(q ′|k′)〉c, is proportional to 2πδ(0) = L1, due to the stationarity of the surface profile
function ζ(x1) and gives rise to the long-range and infinite-range contributions toC(q, k|q ′, k′)
given by the sum C(1.5)(q, k|q ′, k′)+C(2)(q, k|q ′, k′)+C(3)(q, k|q ′, k′) [9,10]. Thus, we have
separated out explicitly the contributions toC(q, k|q ′, k′) that have been calledC(1)(q, k|q ′, k′)
and C(10)(q, k|q ′, k′).

What is more, from equation (2.4) we can easily estimate the relative magnitudes of
the different contributions to the general correlation function. Indeed, since 2πδ(0) = L1,

when the arguments of the δ functions vanish the C(1)(q, k|q ′, k′) and C(10)(q, k|q ′, k′)
correlation functions are independent of the length of the surface L1, because they contain
[2πδ(0)]2. At the same time the remaining term in equation (2.4), which yields the sum
C(1.5)(q, k|q ′, k′) + C(2)(q, k|q ′, k′) + C(3)(q, k|q ′|k′), is inversely proportional to the surface
length, due to the lack of a second delta function. Therefore, in the limit of a long surface or
a large illumination area the long-range and infinite-range correlations are small compared to
short-range correlation functions and vanish in the limit of an infinitely long surface. Thus,
the experimental observation of the C(1.5), C(2) and C(3) correlation functions requires the use
of a short segment of random surface and/or the use of a beam of narrow width for the incident
field. A detailed discussion of the conditions under which they may be observed will therefore
be deferred to a separate paper.

The preceding results are consistent with the usual assumptions and conclusions
encountered in conventional speckle theory [23–25]. Thus, when the surface profile function is
assumed to be a stationary random process, and the random surface is assumed to be infinitely
long, the scattering matrix S(q|k) becomes the sum of a very large number of independent
contributions from different points on the surface. On invoking the central limit theorem, it
is found that S(q|k) obeys complex Gaussian statistics. In this case equation (2.4) becomes
rigorously [23]

C(q, k|q ′, k′) = 1

L2
1

ω2

c2
[|〈δS(q|k)δS∗(q ′|k′)〉|2 + |〈δS(q|k)δS(q ′|k′)〉|2] (2.5)

= C(1)(q, k|q ′, k′) + C(10)(q, k|q ′, k′), (2.6)

because all cumulant averages of products of more than two Gaussian random processes vanish.
The last term on the right-hand side of equation (2.4) therefore gives the correction to the
prediction of the central limit theorem due to the finite length of the random surface.

If it is further assumed, as is done in speckle theory, where the disorder is presumed
to be strong, that δS(q|k) obeys circular complex Gaussian statistics [24, 25], then
〈δS(q|k)δS(q ′|k′)〉 = 0 and the expression for C(q, k|q ′, k′) simplifies to

C(q, k|q ′, k′) = 1

L2
1

ω2

c2
|〈δS(q|k)δS∗(q ′|k′)|2 (2.7)

= C(1)(q, k|q ′, k′). (2.8)

This approximation is often called the factorization approximation to C(q, k|q ′k′) [17].
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We recall that, if the complex random variables F1 and F2 are jointly circular complex
Gaussian random variables, then the conditions

〈ReF1ReF2〉 = 〈Im F1Im F2〉, (2.9)

〈ReF1Im F2〉 = −〈Im F1ReF2〉, (2.10)

have to be satisfied. To analyse how the scattering matrix transforms from a complex
Gaussian random process into a circular complex Gaussian random process we represent
the scattering matrix in the form δS(q|k) = δS1(q|k) + iδS2(q|k). The expressions for the
averages of the products of the real and imaginary parts of δS(q|k) can be written in terms of
〈δS(q|k)δS∗(q ′|k′)〉 and 〈δS(q|k)δS(q ′|k′)〉:
〈δS1(q|k)δS1(q

′|k′)〉 = 1
2 Re [〈δS(q|k)δS∗(q ′|k′)〉 + 〈δS(q|k)δS(q ′|k′)〉] (2.11)

〈δS2(q|k)δS2(q
′|k′)〉 = 1

2 Re [〈δS(q|k)δS∗(q ′|k′)〉 − 〈δS(q|k)δS(q ′|k′)〉] (2.12)

〈δS1(q|k)δS2(q
′|k′)〉 = − 1

2 Im [〈δS(q|k)δS∗(q ′|k′)〉 − 〈δS(q|k)δS(q ′|k′)〉] (2.13)

〈δS2(q|k)δS1(q
′|k′)〉 = 1

2 Im [〈δS(q|k)δS∗(q ′|k′)〉 + 〈δS(q|k)δS(q ′|k′)〉]. (2.14)

When q = q ′ and k = k′, the average 〈δS(q|k)δS(q|k)〉, which is proportional to 2πδ(2q−2k)
due to the stationarity of the surface profile function, is nonzero only in the specular direction
q = k. Therefore, if the surface is infinitely long, and if we omit the specular direction from
equations (2.9), (2.10) and (2.11)–(2.14) we see that the scattering matrix is a circular complex
Gaussian random process. Consequently, apart from the specular direction, the speckle
contrast ρ =

√
[〈(δS(q|k)δS∗(q|k))2〉/〈δS(q|k)δS∗(q|k)〉2] − 1 is unity [24–26]. This result

contradicts the well known result of [25] and [26] that the statistics of the diffuse component of
the scattered field is highly non-circular when the surface is weakly rough, and only in the limit
of very rough surfaces is the circularity of the statistics restored. The contradiction stems from
the representation of the amplitude of the scattered field as the convolution of a real-valued
amplitude weighting function and a random phase factor in [25, 26]. The assumption of a
real-valued amplitude weighting function, which represents the finite width of the aperture, is
identical to the assumption of a finite length of the randomly rough surface. As a result, the
statistics of the scattering amplitude is nonstationary in [25, 26]. In the present work we are
interested only in the case where the statistics of the surface profile function, as well as of the
scattering matrix, is stationary.

The set of the scattering matrices δS(q|k) is a set of jointly circular complex Gaussian
random variables when 〈δS(q|k)δS(q ′|k′)〉 vanishes. But when 〈δS(q|k)δS(q ′|k′)〉 vanishes
the correlation function C(10) vanishes since, within a coefficient, C(10)(q, k|q ′k′) ∼
|〈δS(q|k)δS(q ′|k′)〉|2.

Thus, calculations and measurements of the correlation function C(q, k|q ′, k′) yield
important information about the statistical properties of the amplitude of the scattered field.
If the random surface is such that only the C(1) and C(10) correlation functions are observed,
then S(q|k) obeys complex Gaussian statistics. If the random surface is such that only C(1)

is observed, then S(q|k) obeys circular complex Gaussian statistics. Finally, if the random
surface is such that C(1.5), C(2) and C(3) are observed in addition to both C(1) and C(10), then
S(q|k) is not a Gaussian random process, but the statistics it obeys in this case are not known
at the present time.

To conclude this section we introduce the normalized angular intensity correlation
functions of interest to us, which in terms of δS(q|k) are defined by

�(1)(q, k|q ′, k′) = |〈δS(q|k)δS∗(q ′|k′)〉|2
〈δS(q|k)δS∗(q|k)〉〈δS(q ′|k′)δS∗(q ′|k′)〉 , (2.15)
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and

�(10)(q, k|q ′, k′) = |〈δS(q|k)δS(q ′|k′)〉|2
〈δS(q|k)δS∗(q|k)〉〈δS(q ′|k′)δS∗(q ′|k′)〉 . (2.16)

We also introduce the envelopes C(1)0 and C(10)
0 of the correlation functions C(1) and C(10),

which we define by

C(1)(q, k|q ′, k′) = 2πδ(q − k − q ′ + k′)C(1)0 (q, k|q ′, q ′ − q + k) (2.17)

and

C(10)(q, k|q ′, k′) = 2πδ(q − k + q ′ − k′)C(10)
0 (q, k|q ′q ′ + q − k). (2.18)

3. Light scattering from a perfectly conducting randomly rough surface in the
framework of phase perturbation theory

In this section we study the statistical properties of the scattering matrix for the problem of
the scattering of a scalar plane wave from a randomly rough infinitely long surface defined by
the equation x3 = ζ(x1). The region x3 > ζ(x1) is vacuum, while the region x3 < ζ(x1) is a
perfectly conducting medium. It is assumed that the Dirichlet boundary condition is satisfied
on the surface x3 = ζ(x1).

The surface profile function ζ(x1) is assumed to be a single-valued function of x1 that is
differentiable and constitutes a zero-mean, stationary, Gaussian random process defined by the
properties

〈ζ(x1)〉 = 0, 〈ζ(x1)ζ(x
′
1)〉 = δ2W(|x1 − x ′

1|). (3.1)

In equations (3.1) the angle brackets denote an average over the ensemble of realizations of
ζ(x1), δ = 〈ζ 2(x1)〉1/2 is the rms height of the surface and, W(|x1|) is the surface height
autocorrelation function. In numerical examples we will use the Gaussian form for W(|x1|):

W(|x1|) = exp(−x2
1/a

2), (3.2)

where a is the transverse correlation length of the surface roughness.
A reciprocal phase-perturbation theory for the scattering matrix S(q|k) was constructed

in [27] and [28]. The term of lowest order in the surface profile function was shown to have
the form

S(q|k) =
∫ ∞

−∞
dx1 e−i(q−k)x1 e−2i

√
α0(q)α0(k)ζ(x1). (3.3)

Since

〈S(q|k)〉 = 2πδ(q − k)e−2δ2α0(q)α0(k), (3.4)

we can write the expression for δS(q|k) as

δS(q|k) =
∫ ∞

−∞
dx1 e−i(q−k)x1

[
e−2i

√
α0(q)α0(k)ζ(x1) − e−2δ2α0(q)α0(k)

]
. (3.5)

We calculate the averages 〈δS(q|k)δS∗(q ′|k′)〉 and 〈δS(q|k)δS(q ′|k′)〉 using the
expression (3.5) for the scattering matrix. For 〈δS(q|k)δS∗(q ′|k′)〉 we obtain

〈δS(q|k)δS∗(q ′|k′)〉 =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx ′

1 e−i(q−k)x1+i(q ′−k′)x ′
1

× 〈[
e−2i

√
α0(q)α0(k)ζ(x1) − e−2δ2α0(q)α0(k)

]
× [

e2i
√
α0(q ′)α0(k′)ζ(x ′

1) − e−2δ2α0(q
′)α0(k

′)]〉 (3.6)
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= e−2δ2(α0(q)α0(k)+α0(q
′)α0(k

′))
∫ ∞

−∞
dx1

∫ ∞

−∞
dx ′

1 e−i(q−k)x1+i(q ′−k′)x ′
1

× [
e4δ2√α0(q)α0(q ′)α0(k)α0(k′)W(|x1−x ′

1|) − 1
]

(3.7)

= 2πδ(q − k − q ′ + k′)e−2δ2(α0(q)α0(k)+α0(q
′)α0(k

′))

×
∫ ∞

−∞
du

[
e4δ2√α0(q)α0(q ′)α0(k)α0(k′)W(|u|) − 1

]
e−i(q ′−k′)u, (3.8)

while for 〈δS(q|k)δS(q ′|k′)〉 we have

〈δS(q|k)δS(q ′|k′)〉 =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx ′

1 e−i(q−k)x1−i(q ′−k′)x ′
1

×〈[
e−2i

√
α0(q)α0(k)ζ(x1) − e−2δ2α0(q)α0(k)

]
×[

e−2i
√
α0(q ′)α0(k′)ζ(x ′

1) − e−2δ2α0(q
′)α0(k

′)]〉 (3.9)

= e−δ2(α0(q)α0(k)+α0(q
′)α0(k

′))/2
∫ ∞

−∞
dx1

∫ ∞

−∞
dx ′

1 e−i(q−k)x1−i(q ′−k′)x ′
1

×[
e−4δ2√α0(q)α0(q ′)α0(k)α0(k′)W(|x1−x ′

1|) − 1
]

(3.10)

= 2πδ(q − k + q ′ − k′)e−2δ2(α0(q)α0(k)+α0(q
′)α0(k

′))

×
∫ ∞

−∞
du

[
e−4δ2√α0(q)α0(q ′)α0(k)α0(k′)W(|u|) − 1

]
e−i(q ′−k′)u. (3.11)

It is readily seen that, in contrast to 〈δS(q|k)δS∗(q ′|k′)〉, the average 〈δS(q|k)δS(q ′|k′)〉
vanishes with increasing roughness parameters δ and a, due to the negative exponential under
the integral sign in the last line of equation (3.11). Plots of the normalized correlation functions
�(1)(q, k|q ′, k′) and�(10)(q, k|q ′, k′) as functions of δ for different values of a are presented in
figure 1(a), while plots of the envelopes of the correlation functionsC(1) andC(10) as functions
of δ for different values of a are presented in figure 1(b), for fixed values of q, k and q ′, while k′

is determined by the constraint of the corresponding δ function. When calculating the results
presented in figures 1(a) and (b) the value of q ′ was chosen to produce the same values of
C(1) and C(10) in the limit of a weakly rough surface. From the plots presented in figure 1(a)
we see that �(10)(q, k|q ′, k′) vanishes even for quite moderately weakly rough surfaces for
which �(1)(q, k|q ′, k′) is still about unity. We note that C(1) also decreases with increasing
δ (figure 1(b)). Using equations (2.11)–(2.14), (3.8) and (3.11) we obtain the expressions for
〈(δS1(q|k))2〉, 〈(δS2(q|k))2〉 and 〈δS1(q|k)δS2(q|k)〉:
〈(δS1(q|k))2〉 = e−4δ2α0(q)α0(k)

[
L1

2

∫ ∞

−∞
du cos(q − k)u(eδ

2α0(q)α0(k)W(|u|) − 1)

+ 1
2πδ(q − k)

∫ ∞

−∞
cos(q − k)u(e−δ2α0(q)α0(k)W(|u|) − 1)

]
, (3.12)

and

〈(δS2(q|k))2〉 = e−4δ2α0(q)α0(k)

[
L1

2

∫ ∞

−∞
du cos(q − k)u(eδ

2α0(q)α0(k)W(|u|) − 1)

− 1
2πδ(q − k)

∫ ∞

−∞
cos(q − k)u(e−δ2α0(q)α0(k)W(|u|) − 1)

]
, (3.13)

while

〈δS1(k|k)δS2(k|k)〉 = 0. (3.14)

In figure 2 we present plots of the ratio 〈(δS2(k|k))2〉/〈(δS1(k|k))2〉 as a function of the rms
height of the surface roughness δ. Since this ratio is calculated for the specular direction q = k,
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Figure 1. The normalized correlation functions �(1) (a) and �(10) (c) and the envelopes C(10)
0 (b)

and C(10)
0 (d) as functions of δ/λ for values of the transverse correlation length a = 300 nm,

500 nm and 800 nm. The incident light was s-polarized and of wavelength 632.8 nm. The
scattering medium was a randomly rough perfect conductor. Furthermore θ0 = 30◦, θs = 0◦ and
θ ′
s = 0◦. In figure 1(a) the results for the different correlation lengths considered could not be

distinguished.

it is independent of the transverse correlation length a. From the plot presented it is easily seen
that for large values of the rms height, the incoherent part of the scattering matrix, δS(q|k),
becomes a circular complex Gaussian variable, even in the specular direction.

4. Light scattering from a randomly rough penetrable surface

The results of the preceding section enable us to make several conclusions when studying the
scattering of light from a randomly rough surface of a penetrable medium. For simplicity we
consider here the scattering of s-polarized light from a randomly rough surface of a medium
characterized by a dielectric function ε(ω). As is well known (see, e.g., [29–31]), if the surface
profile function is such that the conditions for the applicability of the Rayleigh hypothesis are
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Figure 2. The ratio 〈(δS2(k|k))2〉/〈(δS1(k|k))2〉 as a function of δ/λ.

satisfied the scattering amplitude R(q|k) obeys the reduced Rayleigh equation. Rewritten in
terms of the scattering matrix S(q|k) it has the form

S(q|k) = 2πδ(q − k)R0(k) +N(q|k) +
∫ ∞

−∞

dp

2π
M(q|p)S(p|k), (4.1)

where, for the case of the scattering of s-polarized light,

R0(k) = α0(k)− α(k)

α0(k) + α(k)
, (4.2)

α0(k) =
√
ω2

c2
− k2, α(k) =

√
ε(ω)

ω2

c2
− k2, (4.3)

N(q|k) = −(ε − 1)
ω2/c2

α0(q) + α(q)

√
α0(q)

α0(k)

J (α(p) + α0(k)|p − k)

α(p) + α0(k)
, (4.4)

M(q|k) = −(ε − 1))
ω2/c2

α0(q) + α(q)

√
α0(q)

α0(p)

J (α(p)− α0(k)|p − k)

α(p)− α0(k)
, (4.5)

and

J (γ |Q) =
∫ ∞

−∞
dx1 e−iQx1(e−iγ ζ(x1) − 1). (4.6)

We can write the solution of equation (4.1) formally as

S(q|k) = R0(k)2πδ(q − k) + F(q|k) +
∫ ∞

−∞

dp

2π
M(q|p)F(p|k)

+
∫ ∞

−∞

dp

2π
M(q|p)

∫ ∞

−∞

dp′

2π
M(p|p′)F (p′|k) + · · · , (4.7)

where

F(q|k) = N(q|k) +M(q|k)R0(k), (4.8)

and we keep all terms in the infinite iterative series. Both N(q|k) and M(q|p) contain the
surface disorder only in the functions J (γ |Q). Therefore, having in hand the recipe for
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Figure 3. The envelopes of the C(1) (a) and C(10) (b) correlation functions as functions of θ ′
s for

θ0 = 30◦ and θs = 0◦, while θ ′
0 is determined by the constraints of the corresponding δ functions

for the scattering of s-polarized light from a randomly rough silver surface with a = 500 nm and
δ = 20 nm (full curves), δ = 50 nm (broken curves) and δ = 100 nm (dotted curves).

calculating the average of the product of any number of functions J (γ |Q), we can calculate,
in principle, both 〈δS(q|k)δS(q ′|k′)〉 and 〈δS(q|k)δS∗(q ′|k′)〉. The basics of such calculations
were described in [32].

To calculate the averages 〈δS(q|k)δS(q ′|k′)〉 and 〈δS(q|k)δS∗(q ′|k′)〉 we multiply the
series (4.7) for S(q|k) by the corresponding series for S(q ′|k′) and average the product
term-by-term. From the result we subtract the product 〈S(q|k)〉〈S(q ′|k′)〉. In a similar
fashion we calculate the average 〈δS(q|k)δS∗(q ′|k′)〉 by multiplying the series (4.7) for
S(q|k) by the complex conjugate of the corresponding series for S(q ′|k′), averaging the
product term-by-term, and subtracting the product 〈S(q|k)〉〈S∗(q ′|k′)〉 from the result. In
the product〈δS(q|k)δS∗(q ′|k′)〉 the contribution of nth order in the functions J (γ |Q) and
J ∗(γ |Q) contains n− 1 terms of the form

n−1∑
m=1

{〈 m∏
r=1

J (γr |Qr)

n−m∏
s=1

J ∗(γ ′
s |Q′

s)

〉
−

〈 m∏
r=1

J (γr |Qr)

〉〈n−m∏
s=1

J ∗(γ ′
s |Q′

s)

〉}
. (4.9)

To obtain a nonzero contribution, for each value ofm at least one J (γr |Qr)must be contracted
with at least one J ∗(γ ′

s |Q′
s). Therefore each term in this sum contains at least one factor

with a positive exponential of the form exp{δ2γ γ ′W(|u|)} − 1. In contrast, when calculating
〈δS(q|k)δS(q ′|k′)〉 the contribution of the nth order in the functions J (γ |Q) contains the sum

n−1∑
m=1

{〈 m∏
r=1

J (γr |Qr)

n−m∏
s=1

J (γ ′
s |Q′

s)

〉
−

〈 m∏
r=1

J (γr |Qr)

〉〈n−m∏
s=1

J (γ ′
s |Q′

s)

〉}
. (4.10)

In this case, to obtain a nonzero contribution, for each value of m at least one J (γr |Qs)

must be contracted with at least one J (γ ′
s |Q′

s). Therefore, each term in this sum contains only
negative exponentials of the form exp{−δ2γ γ ′W(|u|)} − 1. Owing to this lack of the positive
exponential, 〈δS(q|k)δS(q ′|k′)〉 vanishes when the roughness parameters increase.
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Figure 4. The same as in figure 3, but for a = 3.85 µm and δ = 1.278 µm (full curves) and
δ = 0.1278 µm (broken curves).

In figure 3 we present plots of the envelopes C(1)0 and C(10)
0 of the correlation functions

C(1) (figure 3(a)) and C(10) (figure 3(b)) as functions of θ ′
s for fixed values of θ0 and θs , while

θ ′
0 is determined by the constraints of the corresponding δ functions. The calculations were

carried out for the scattering of s-polarized light, of 612.7 nm wavelength, from a weakly rough
random surface of silver characterized by the complex dielectric constant ε = −17.2 + i0.479
for different values of the roughness parameters δ and a. In calculating the results presented
in figure 3 we kept all terms in the infinite iterative series equation (4.7) which would give
contributions to the averages we calculate through terms of O(δ8) if they were to be expanded
in powers of the small parameter (ω/c)δ.

In figure 4 we present rigorous numerical simulation calculation results [33] for the
envelopes of the correlation functions C(1) (figure 4(a)) and C(10) (figure 4(b)). The surface
parameters used here were the same as those used in obtaining figure 3, except that the
roughness now was δ = 1.278µm (full curves) and δ = 0.1278µm (broken curves). It should
be pointed out that for the scattering of s-polarized light from a weakly rough random metal
surface, there should be no memory or reciprocal memory effect present inC(1)0 . This is indeed
confirmed by our numerical calculations where theC(1)0 for δ = 0.1278µm (figure 4(a), broken
curve) is a smooth function of its argument, as well as by the results presented in figure 3(a). In
particular, there are no peaks at angles θ = 0◦ and 30◦, which are the positions of the memory
and reciprocal memory effects. As the roughness is increased to δ = 1.278 µm one sees from
figure 4(a) (full curve) that the overall amplitude of the envelope C(1)0 is increased and, more
importantly, that two peaks have developed at the aforementioned angles. These peaks are
due, in the large roughness limit, to volume waves scattered multiply at the rough surface. In
figure 4(b) the corresponding results for the C(10)

0 envelopes are presented. It is observed that
in the low roughness limit this envelope is structureless, and that C(1)0 and C(10)

0 are roughly of
the same order of magnitude. However, as δ is increased, the scattering matrix S(q|k) starts
to obey circular complex Gaussian statistics and thus, as discussed earlier, the envelope C(10)

0
should in principle vanish. From our numerical results for δ = 1.278 µm (full curve) we
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indeed see thatC(10)
0 is much smaller then the correspondingC(1)0 shown in figure 4(a). In fact,

C
(10)
0 is just noise, consistent with this function vanishing in the large roughness limit.

5. Conclusions

In this paper we calculated the angular intensity correlation functions C(q, k|q ′, k′) by means
of an approach that explicitly separates out different contributions to it. We have shown
that calculations and measurements of the correlation function C(q, k|q ′, k′) yield important
information about the statistical properties of the amplitude of the scattered field. In particular,
we have shown that the short-range correlation function C(10) is, in a sense, a measure of the
noncircularity of the complex Gaussian statistics of the scattering matrix. Thus, if the random
surface is such that only the C(1) and C(10) correlation functions are observed, then S(q|k)
obeys complex Gaussian statistics. If the random surface is such that only C(1) is observed,
then S(q|k) obeys circular complex Gaussian statistics. Finally, if the random surface is such
that C(1.5), C(2) and C(3) are observed, in addition to both C(1) and C(10), then S(q|k) is not a
Gaussian random process. In addition, we can conclude that if a surface is sufficiently weakly
rough and long enough, its speckle pattern should display the memory and reciprocal memory
effects when the angle of incidence is changed and, for a fixed angle of incidence, should be
symmetric about the specular direction. However, if the roughness of the surface is sufficiently
great and the surface is long enough, its speckle pattern should display only the memory and
reciprocal memory effects, when the angle of incidence is changed.
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