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Vacuum : x3 > ζ(x‖)

Scattering medium : x3 < ζ(x‖)

The surface profile function is a single-valued function of x‖ = (x1, x2, 0) that is
at least twice differentiable with respect to x1 and x2, and constitutes a
stationary, zero-mean Gaussian random process defined by〈

ζ(x‖)ζ(x′‖)
〉

= δ2W (x‖ − x′‖).

The angle brackets denote an average over the ensemble of realizations of the
surface profile function.
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The root-mean-square height of the surface is given by

δ =
〈
ζ2(x‖)

〉 1
2 .

The power spectrum of the of the surface roughness is defined by

g(k‖) =

∫
d2x‖W (x‖) exp

(
ik‖ · x‖

)
.
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A Perfectly Conducting Surface

Stratton-Chu formula for the magnetic Field in vacuum:

θ(x3 − ζ(x‖)) H>(x|ω) =H(x|ω)inc +
1

4π

∫
d2x ′‖ [∇g0(x|x′)]|x′3=ζ(x′‖) × JH(x′‖|ω),

where

θ(z) is the Heaviside unit step function

H(x|ω)inc is the magnetic component of the incident field

JH(x‖|ω) = [n×H>(x|ω)]|x3=ζ(x‖)

n = (−ζ1(x‖),−ζ2(x‖), 1)

ζi (x‖) =
∂ζ(x‖)

∂xj
, j = 1, 2

and g0(x|x′) is the scalar free-space Green’s function

g0(x|x′) =
exp

[
iωc |x− x′|]
|x− x′|

=

∫
d2q‖
(2π)2

2πi
α0(q‖)

exp
[
iq‖ · (x‖ − x′‖)

]
exp

[
iα0(q‖)|x3 − x ′3|

]
,
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with

α0(q‖) = [(ω/c)2 − q2
‖]

1
2 , Reα0(q‖) > 0, Imα0(q‖) > 0.

We evaluate the equation at x3 = ζ(x‖) + η and at x3 = ζ(x‖)− η, where η is a
positive infinitesimal, add the resulting two equations, and take the cross product
of the sum with n, and obtain

JH(x‖|ω) =2J
(i)
H (x‖|ω) +

1

2π
P

∫
d2x ′‖ n×

{q
∇g0(x|x′)y× JH(x′‖|ω)

}
,

where

J
(i)
H (x‖|ω)inc =n×H(x|ω)inc|x3=ζ(x‖),

P denotes the Cauchy principal value, and

q
f (x|x′)y =f (x|x′)

∣∣∣∣x3=ζ(x‖)

x′3=ζ(x
′
‖)

.

This is the equation satisfied by JH(x‖|ω).
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In view of the definition JH(x‖|ω) = [n×H>(x|ω)]|x3=ζ(x‖)
it follows that

n · JH(x‖|ω) = 0,

so that only two components of JH(x‖|ω) are independent. We choose
JH(x‖|ω)1,2 as the independent components, while

JH(x‖|ω)3 = ζ1(x‖)JH(x‖|ω)1 + ζ2(x‖)JH(x‖|ω)2.
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Equations satisfied by JH(x‖|ω)1,2

JH(x‖|ω)1 =2J
(i)
H (x‖|ω)1

− 1

2π
P

∫
d2x′‖

{[
g

(0)
3 (x‖|x′‖)− g

(0)
1 (x‖|x′‖)ζ1(x′‖)− ζ2(x‖)g

(0)
2 (x‖|x′‖)

]
JH(x′‖|ω)1

+ g
(0)
1 (x‖|x′‖)

[
ζ2(x‖)− ζ2(x′‖)

]
JH(x′‖|ω)2

}
JH(x‖|ω)2 =2J

(i)
H (x‖|ω)2

− 1

2π
P

∫
d2x ′‖

{
g

(0)
2 (x‖|x′‖)

[
ζ1(x‖)− ζ1(x′‖)

]
JH(x′‖|ω)1

+
[
g

(0)
3 (x‖|x′‖)− g

(0)
2 (x‖|x′‖)ζ2(x′‖)− ζ1(x‖)g

(0)
1 (x‖|x′‖)

]
JH(x′‖|ω)2

}
,

where

g
(0)
` (x‖|x′‖) =

r ∂

∂x`
g0(x|x′)

z

=(x` − x ′`)

[
i(ω/c)

|x− x′|2 −
1

|x− x′|3
]

exp[i(ω/c)|x− x′|]
∣∣∣∣x3=ζ(x‖)

x′3=ζ(x
′
‖)
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Incident Field
Gaussian Beam

The electric vector of an incident field that is p polarized is

Ep(x|ω)inc =
w2

2π

∫
q‖<

ω
c

d2q‖ Ê
(i)

p (q−|ω) exp [iq− · x] exp

[
−w2

2
(q‖ − k‖)

2

]
.

The electric vector of an incident field that is s polarized

Es(x|ω)inc =
w2

2π

∫
q‖<

ω
c

d2q‖ Ê
(i)

s (q−|ω) exp [iq− · x] exp

[
−w2

2
(q‖ − k‖)

2

]
.

where q± = q‖ ± α0(q‖)x̂3 and

Ê
(i)

p (q−|ω) =
α0(q‖)x̂1 + q1x̂3

[q2
1 + α2

0(q‖)]
1
2

Ê
(i)

s (q−|ω) =
q1q2x̂1 − [q2

1 + α2
0(q‖)]x̂2 − q2α0(q‖)x̂3

ω
c [q2

1 + α2
0(q‖)]

1
2 .
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The magnetic vector of the incident field that is p polarized is

Hp(x|ω)inc =
w2

2π

∫
q‖<

ω
c

d2q‖ Ê
(i)

s (q−|ω) exp [iq− · x] exp

[
−w2

2
(q‖ − k‖)

2

]
.

The magnetic vector of the incident field that is s polarized is

Hs(x|ω)inc =− w2

2π

∫
q‖<

ω
c

d2q‖ Ê
(i)

p (q−|ω) exp [iq− · x] exp

[
−w2

2
(q‖ − k‖)

2

]
.
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The magnitude of the total time-averaged incident flux of polarization ν is

P
(ν)
inc =− Re

∫
d2x‖

c

8π

[
Eν(x‖|ω)inc ×Hν(x‖|ω)∗inc

]
3

=
c2

8πω
pinc

where

pinc =w4

∫
q‖<

ω
c

d2q‖ α0(q‖) exp
[−w2(q‖ − k‖)

2
]

=2πw4
(ω

c

)3

exp(−w2k2
‖)

π
2∫

0

dθ sin θ cos2 θ I0

(
2w2ωk‖

c
sin θ

)

× exp

[
−
(ωw

c

)2

sin2 θ

]
,

and I0(x) is the modified Bessel function of the first kind and zero order.
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The Scattered Field

The Stratton-Chu equations for H>(x|ω):

θ(x3 − ζ(x‖)) H>(x|ω) =H(x|ω)inc +
1

4π

∫
d2x ′‖ [∇g0(x|x′)]|x′3=ζ(x′‖) × JH(x′‖|ω),

The magnetic vector of the scattered field is therefore

H>(x|ω)sc =
1

4π

∫
d2x ′‖ [∇g0(x|x′)]|x′3=ζ(x′‖) × JH(x′‖|ω)

g0(x|x′) =

∫
d2q‖
(2π)2

2πi
α0(q‖)

exp
[
iq‖ · (x‖ − x′‖)

]
exp

[
iα0(q‖)|x3 − x ′3|

]
.

If we write the electric vector of the scattered field in the form

E(x|ω)sc =

∫
d2q‖
(2π)2

[Ep(q+|ω)γ̂p(q+|ω) + Es(q+|ω)γ̂s(q+|ω)
]

exp [iq+ · x] ,

where

γ̂p(q+|ω) =
−α0(q‖)q̂‖ + q‖x̂3

ω/c ,
γ̂s(q+|ω) = q̂‖ × x̂3,
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we can write the magnetic vector of the scattered field as

H(x|ω)sc =

∫
d2q‖
(2π)2

[Ep(q+|ω)γ̂s(q+|ω)− Es(q+|ω)γ̂p(q+|ω)
]

exp (iq+ · x) .

We find that (ν = p, s)

Eν(q+|ω) = − (ω/c)

2α0(q‖)

∫
d2x‖ γ̂ν(q+|ω) · JH(x‖|ω) exp

[−iq‖ · x‖ − iα0(q‖)ζ(x‖)
]
.
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The total time-averaged scattered flux

Psc =

∫
d2x‖ Re (Sc

sc)3

=
c

8π

∫
d2x‖ Re [E(x|ω)sc ×H∗(x|ω)sc]3

=
c2

8πω

∫
q‖<

ω
c

d2q‖
(2π)2

α0(q‖)
[
|Ep(q+|ω)|2 + |Es(q+|ω)|2

]
.

We write q‖ in terms of the polar and azimuthal scattering angles θs and φs as

q‖ =
ω

c
sin θs(cosφs , sinφs , 0).

Then

Psc =
c

8π

( ω

2πc

)2
∫

dΩs cos θs
[
|Ep(q+|ω)|2 + |Es(q+|ω)|2

]
.
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The Differential Reflection Coefficient

The differential reflection coefficient (∂R/∂Ωs) is defined such that
(∂R/∂Ωs)dΩs is the fraction of the total time-averaged flux incident on the
surface that is scattered into the element of solid angle dΩs about the scattering
direction (θs , φs).

The differential reflection coefficient for the scattering of light of polarization β,
the projection of whose wave vector on the mean scattering surface is k‖, into
light of polarization α, the projection of whose wave vector on the mean
scattering surface is q‖, is given by

∂Rαβ
∂Ωs

=
( ω

2πc

)2 ω

c
cos2 θs

|Eα(q + |ω)|2
pinc
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Since we are scattering from a randomly rough surface, it is this average of this
expression over the ensemble of realizations of the surface profile function that we
wish to calculate:

〈
∂Rαβ
∂Ωs

〉
=
( ω

2πc

)2 ω

c
cos2 θs

〈
|Eα(q + |ω)|2

〉
pinc

.

The contribution to the mean differential reflection coefficient from the light that
has been scattered incoherently (diffusely) is

〈
∂Rαβ
∂Ωs

〉
incoh

=
( ω

2πc

)2 ω

c
cos2 θs

〈
|Eα(q + |ω)|2

〉
−
∣∣∣〈Eα(q + |ω)

〉∣∣∣2
pinc

.
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The Grid used in the Numerical Solution for JH(x|ω)1,2

j = 1, . . . , N2

i = 1, . . . , N1

L1

L2
x1

x2

{ (
x

(i)
1 , x

(j)
2 , ζ(x

(i)
1 , x

(j)
2 )

)

∆x2 =
L2

N2

∆x1 =
L1

N1
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An Isotropic Roughness Power Spectrum
The full angular intensity distributions

W (x‖) = exp

(
− x2

‖
a2

)
g(k‖) = πa2 exp

(
− k2

‖a
2

4

)
Parameters:

(θ0, φ0) = (20◦, 0◦)
δ = λ
a = 2λ
w = 4λ
L2 = 16λ× 16λ
∆x = λ/7
Np = 12 000
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A Metallic Surface
In-plane and out-of-plane intensity distributions for p polarized incident light

All parameters as on previous slide.
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Unitarity

The fraction of the total energy flux scattered from the surface to that incident
on it — the unitarity — is defined as:

Uβ(θ0, φ0) =
∑
α=p,s

∫
dΩs

〈
∂Rαβ
∂Ωs

〉
= 1, β = p, s

For the numerical simulation results just presented we obtained:

Up(20◦, 0◦) =0.9962

Us(20◦, 0◦) =0.9966.
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An Anisotropic Roughness Power Spectrum

W (x‖) = exp
(
− x2

1

a2
1
− x2

2

a2
2

)
g(k‖) = πa1a2 exp

(
− k2

1 a2
1

4 − k2
2 a2

2

4

)
Parameters:

(θ0, φ0) = (20◦, 45◦)
a1 = λ; a2 = 1.5λ;
δ = λ
w = 4λ
L2 = 16λ× 16λ
∆x = λ/7
Np = 6 000
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A Penetrable Surface
Franz Formulas

x3 > ζ(x‖):

H>(x|ω) =H(x|ω)inc +
1

4π
∇×

∫
d2x ′‖ g0(x|x′)|x′3=ζ(x′‖)JH(x′‖|ω)

− ic
4πω

∇×∇×
∫

d2x ′‖ g0(x|x′)|x′3=ζ(x′‖)JE (x′‖|ω)

E>(x|ω) =E(x|ω)inc +
1

4π
∇×

∫
d2x ′‖ g0(x|x′)|x′3=ζ(x′‖)JE (x′‖|ω)

+
ic

4πω
∇×∇×

∫
d2x ′‖ g0(x|x′)|x′3=ζ(x′‖)JH(x′‖|ω).
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x3 < ζ(x‖):

H<(x|ω) =− 1

4π
∇×

∫
d2x ′‖ gε(x|x′)|x′3=ζ(x′‖)JH(x′‖|ω)

+
ic

4πω
∇×∇×

∫
d2x ′‖ gε(x|x′)|x′3=ζ(x′‖)JE (x′‖|ω)

E<(x|ω) =− 1

4π
∇×

∫
d2x ′‖ gε(x|x′)|x′3=ζ(x′‖)JE (x′‖|ω)

− ic
4πωε(ω)

∇×∇×
∫

d2x‖ gε(x|x′)|x′3=ζ(x′‖)JH(x′‖|ω).
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JH(x‖|ω) =
[
n×H>(x|ω)

]∣∣
x3=ζ(x‖)

=
[
n×H<(x|ω)

]∣∣
x3=ζ(x‖)

JE (x‖|ω) =
[
n× E>(x|ω)

]∣∣
x3=ζ(x‖)

=
[
n× E<(x|ω)

]∣∣
x3=ζ(x‖)

n =(−ζ1(x‖,−ζ2(x‖, 1)

g0(x|x′) =
exp

[
iωc |x− x′|]
|x− x′|

=

∫
d2q‖
(2π)2

2πi
α0(q‖)

exp
[
iq‖ · (x‖ − x′‖)

]
exp

[
iα0(q‖)|x3 − x ′3|

]
gε(x|x′) =

exp [− |x− x′| /d(ω)]

|x− x′|

=

∫
d2q‖
(2π)2

2π

β(q‖)
exp

[
iq‖ · (x‖ − x′‖)

]
exp

[−β(q‖)|x3 − x ′3|
]

β(q‖) =

[
q2
‖ +

1

d2(ω)

]
, Reβ(q‖) > 0, Imβ(q‖) < 0

d(ω) =
c/ω

[−ε(ω)]
1
2

, Re d(ω) > 0, Im d(ω) > 0
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The Müller Equations

JH(x‖|ω) =JH(x‖|ω)inc +
1

4π
P

∫
d2x ′‖

q
n× {∇× [g0(x|x′)− gε(x|x′)]JH(x′‖|ω)}y

− ic
4πω

∫
d2x ′‖

q
n× {∇×∇× [g0(x|x′)− gε(x|x′)]JE (x′‖|ω)}y

JE (x‖|ω) =2
JE (x‖|ω)inc

1 + ε(ω)
+

2

4π[1 + ε(ω)]
P

∫
d2x ′‖

q
n× {∇× [g0(x|x′)− ε(ω)gε(x|x′)]JE (x′‖|ω)}y

+
2ic

4πω[1 + ε(ω)]

∫
d2x ′‖

q
n× {∇×∇× [g0(x|x′)− gε(x|x′)]JH(x′‖|ω)}y,

JH(x‖|ω)inc =n×H(x|ω)inc|x3=ζ(x‖)

JE (x‖|ω)inc =n× E(x|ω)inc|x3=ζ(x‖)

n · JE ,H(x‖|ω) =0

JE ,H(x‖|ω)3 =ζ1(x‖)JE ,H(x‖|ω)1 + ζ2(x‖)JE ,H(x‖|ω)2

JE ,H(x‖|ω)1,2 satisfy a system of 4 coupled, inhomogeneous, two-dimesional integral equations.
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Local Impedance Boundary Condition

JE (x‖|ω)i =Kij(x‖|ω)JH(x‖|ω)j

Kij(x‖|ω) = i
ω

c

d(ω)

φ(x‖)

(
ζ1ζ2 (1 + ζ2

2 )
−(1 + ζ2

1 ) −ζ1ζ2
)

− i
ω

c

d2(ω)

2φ3(x‖)



ζ11(1 + ζ2
2 )ζ1ζ2

−2ζ12(1 + ζ2
1 )(1 + ζ2

2 )
+ζ22(1 + ζ2

1 )ζ1ζ2

ζ11(1 + ζ2
2 )2 − 2ζ12(1 + ζ2

2 )ζ1ζ2
−ζ22

[
(1 + ζ2

1 )(1 + ζ2
2 )− 2ζ2

1ζ
2
2

]
ζ11

[
(1 + ζ2

1 )(1 + ζ2
2 )− 2ζ2

1ζ
2
2

]
+2ζ12(1 + ζ2

1 )ζ1ζ2 − ζ22(1 + ζ2
1 )2

−ζ11(1 + ζ2
2 )ζ1ζ2

+2ζ12(1 + ζ2
1 )(1 + ζ2

2 )
−ζ22(1 + ζ2

1 )ζ1ζ2


+O(d3(ω))

φ(x‖) =
[
1 + ζ2

1 (x‖ + ζ2
2 (x‖

] 1
2 , ζi (x‖) =

∂ζ(x‖)

∂xi
, ζij(x‖) =

∂2ζ(x‖)

∂xi∂xj
, etc.
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A Metallic Surface
The full angular intensity distributions

W (x‖) = exp

(
− x2

‖
a2

)
g(k‖) = πa2 exp

(
− k2

‖a
2

4

)
Parameters:

(θ0, φ0) = (20◦, 0◦)
λ = 0.6328µm
ε(ω) = −16.0 + 1.088i
δ = λ/4
a = λ/2
w = 4λ
L2 = 16λ× 16λ
∆x = λ/7
Np = 5 000
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A Metallic Surface
In-plane and out-of-plane intensity distributions for p polarized incident light

All parameters as on previous slide.
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Solution of the Reduced Rayleigh Equation

x3 > ζ(x‖)

E(x; t) =
[
E(i)(x|ω) + E(s)(x|ω)

]
exp(−iωt)

where

E(i)(x|ω) =

{
c

ω

[
α0(k‖)k̂‖ + k‖x̂3

]
E (i)

p (k‖) + [k̂‖ × x̂3] E (i)
s (k‖)

}
× exp

[
ik‖ · x‖ − iα0(k‖)x3

]
,

E(s)(x|ω) =

∫
d2q‖
(2π)2

{
c

ω

[−α0(q‖)q̂‖ + q‖x̂3

] E (s)
p (q‖) + [q̂‖ × x̂3] E (s)

s (q‖)

}
× exp

[
iq‖ · x‖ + iα0(q‖)x3

]
.
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A linear relation exists between the amplitudes E (s)
α (q‖) and E (i)

β (k‖) , which we
write as (α = p, s, β = p, s)

E (s)
α (q‖) =

∑
β

Rαβ(q‖|k‖)E (i)
β (k‖).

The contribution to the differential reflection coefficient from the incoherent
(diffuse) component of the scattered light is then〈

∂Rαβ
∂Ωs

〉
incoh

=
1

S

( ω

2πc

)2 cos2 θs
cos θ0

[〈 ∣∣Rαβ(q‖|k‖)
∣∣2 〉− ∣∣∣〈Rαβ(q‖|k‖)

〉∣∣∣2]
where

k‖ =
ω

c
sin θ0(cosφ0, sinφ0, 0), q‖ =

ω

c
sin θs(cosφs , sinφs , 0).
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The Reduced Rayleigh equations

∫
d2q‖
(2π)2

I (α(p‖)− α0(q‖)|p‖ − q‖)

α(p‖)− α0(q‖)
M(p‖|q‖)R(q‖|k‖)

= − I (α(p‖) + α0(k‖)|p‖ − k‖)

α(p‖) + α0(k‖)
N(p‖|k‖),

I (γ|Q‖) =

∫
d2x‖ exp

[−iγζ(x‖)
]

exp
[−iQ‖ · x‖

]
=(2π)2δ(Q‖) +

∞∑
n=1

(−iγ)n

n!

∫
d2x‖ζ

n(x‖) exp(−iQ‖ · x‖)

M(p‖|q‖) =

(
[p‖q‖ + α(p‖)p̂‖ · q̂‖α0(q‖)] −ωc α(p‖) [p̂‖ × q̂‖]3

ω
c [p̂‖ × q̂‖]3 α0(q‖)

ω2

c2 p̂‖ · q̂‖

)
N(p‖|k‖) =

(
[p‖k‖ − α(p‖)p̂‖ · k̂‖α0(k‖)] −ωc α(p‖) [p̂‖ × k̂‖]3
−ωc [p̂‖ × k̂‖]3 α0(k‖)

ω2

c2 p̂‖ · k̂‖

)
.
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A Metallic Surface
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W (x‖) = exp

(
− x2

‖
a2

)
g(k‖) = πa2 exp

(
− k2

‖a
2

4

)
Parameters:

(θ0, φ0) = (20◦, 45◦)
λ = 0.6328µm
ε(ω) = −16.0 + 1.088i
δ = λ/40
a = λ/2
L2 = 25λ× 25λ
∆x = λ/40
Q = 6.4ω/c
Np = 10 000
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Comparison of the results obtained by the Rayleigh approach (solid lines) and
rigorous approach (dashed lines):
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A Dielectric Surface
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W (x‖) = exp
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− x2
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g(k‖) = πa2 exp

(
− k2

‖a
2

4

)
Parameters:

(θ0, φ0) = (20◦, 45◦)
λ = 0.6328µm
ε(ω) = 2.64
δ = λ/40
a = λ/2
L2 = 25λ× 25λ
∆x = λ/40
Q = 8ω/c
Np = 6 000
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Discussion and Conclusions

The use of the method of moments and the biconjugate gradient stabilized
method provides a formally exact solution to the scattering of p- and
s-polarized light from a two-dimensional randomly rough perfectly
conducting surface with a modest expenditure of computational time.

The addition of an impedance boundary condition on a two-dimensional
rough surface to these two methods provides a formally exact solution to the
scattering of polarized light from a two-dimensional randomly rough metallic
surface, also with a modest expenditure of computational time.

Rigorous calculations of the full angular distribution of the intensity of light
scattered from strongly rough perfectly conducting and lossless metallic
surfaces have been carried out.

The accuracy of the methods used in our calculations, and the adequacy of
the discretization of the mean scattering surface are indicated by the results
that conservation of energy in the scattering process is satisfied within an
error smaller than 0.5%.
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Discussion and Conclusions (continued...)

A rigorous numerical solution of the reduced Rayleigh equation for the
scattering of p- and s-polarized light from a penetrable surface has been
carried out. Good agreement between the results obtained in this fashion
and those obtained by the use of the rigorous computational methods
indicate that the simpler approach yields accurate results for the scattering
from surfaces that are not very rough. The limits of validity of this equation
have yet to be determined.

The door is now open to rigorous computational studies of other properties
of electromagnetic waves scattered from two-dimensional randomly rough
surfaces. These include calculations of ellipsometric parameters of metallic
and dielectric surfaces, transmission through dielectric surfaces, all the
elements of the Mueller matrix, and scattering from coated surfaces.
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The Mueller Matrix

W (x‖) = exp

(
− x2

‖
a2

)
g(k‖) = πa2 exp

(
− k2

‖a
2

4

)
Parameters:

(θ0, φ0) = (25◦, 45◦)
λ = 0.4579µm
ε(ω) = −7.5 + i0.24
δ = λ/40
a = λ/4
L2 = 25λ× 25λ
∆x = λ/40
Q = 6.4ω/c
Np = 10 000
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