Power Blackouts and the Domino Effect: *Real-Life examples and Modeling*

Ingve Simonsen Dep. of Physics, NTNU (Trondheim)

Collaborators: Lubos Buzna, Zilina Karsten Peters, Dresden Stefan Bornholdt, Bremen Dirk Helbing, ETH, Zurich Acknowledgments

Collaborators:

- Lubos Buzna, Zilina
- Karsten Peters, Dresden
- Stefan Bornholdt, Bremen
- Dirk Helbing, ETH, Zurich
- Rafal Weron, Wroclaw

Financial Support

- EU project IRRIIS
 - IRRIIS : "Integrated Risk Reduction of Informationbased Infrastructure Systems"

ERC

• COST P10, "Physics of Risk"

Motivation

New York, August 14, 2003

Rome, September 28, 2003

Ingve Simonsen

Power Blackouts and the Domino Effect

Motivation

Blackout in parts of the USA and Canada (2003), an impressive example of the long-reaching accompaniments of supply network failures.

Ingve Simonsen

Power Blackouts and the Domino Effect

Power Blackouts : How frequent are they?

- North American Electricity Reliability Council (NERC) data
 - Analyzed by Carreras, Dobson, Newman & Poole
 - 15 years of data (1984-1998)
 - 427 blackouts
 - on average <u>28.5</u> per year, waiting time of <u>12</u> days
- Three measures of blackout size
 - energy unserved (MWh)
 - amount of power lost (MW)
 - number of customers affected

Risk of Power Blackouts

Source : Weron and Simonsen (2005)

Power Blackouts: Real-Life examples

Europe Nov. 2006: What happened...?

Nr. Zeit kV

1 22:10:13 380

2 22:10:15 220

3 22:10:19 380

5 22:10:25 380

7 22:10:27 380

8 22:10:27 380

9 22:10:27 380

10 22:10:27 380

11 22:10:27 220

12 22:10:27 380

14 22:10:27 380 Schwandorf-

5 22:10:22 380 Dipperz-

Leituna

Spexard

Dipperz 2

Oberhaid-

Redwitz-Raitersaich

Redwitz-Oberhald

Redwitz-Etzenricht

Würgau-Redwitz

Etzenricht-Schwandorf

Schwandorf

Pleinting

Elsen

Wehrendorf-

State of the power grid shortly before the incident

Sequence of events on November 4, 2006

1,3,4,5 – lines switched off for construction work

– line switched off for the transfer of a ship by Meyer-Werft 2

Source : Report on the system incident of November 4, 2006, E.ON Netz GmbH

Ingve Simonsen

Power Blackouts and the Domino Effect

Power Blackouts: Real-Life examples

Failure in the continental European electricity grid on November 4, 2006

EU project IRRIIS: E. Liuf (2007) Critical Infrastructure protection, R&D view Ingve Simonsen Power Blackouts and the Domino Effect

Power Blackouts: The Domino Effect (Cascading Failure)

"Under certain conditions, a network component shutting down can cause current fluctuations in neighboring segments of the network, though this is unlikely, leading to a cascading failure of a larger section of the network. <u>This may</u> <u>range from a building, to a</u> <u>block, to an entire city, to the</u> <u>entire electrical grid."</u>

Source :Wikipedia

Ingve Simonsen

Power Blackouts and the Domino Effect

Power Blackouts: Real-Life examples US Blackout Nov. 2003: What happened...?

See : Wikipedia for sequence of events

Ingve Simonsen

Power Blackouts : Summary

- *Cascading failures* do exist in real life system
 - Examples
 - The power grid
 - Telecommunication networks
 - Transportation systems
 - Computer networks/ the Internet
 - Pipe line systems (water/gas/oil)
- They can be very *costly*
- They typically affect many people

Question : How can one protect (supply) network systems against cascading failures?

A Short Primer on Complex Networks

- A network is a collection of
 - Nodes connected by links
- Adjacency matrix W_{ij}
- Degree (#links) distribution
 - Scale-free (e.g the Internet)
 - Exponential (e.g. power networks)
- Betweenness centrality of a node
 - Total # shortest paths passing through that node for any pair of nodes

A few words on System Design

- The systems are designed with a *given load* in mind
- To ensure stability, the engineering approach, is to introduce some *overcapacity* into the system (security margins)
- ...but overcapacity is *costly*!
- System robustness is often ONLY evaluated locally
- <u>Cascading failure</u>: When an initial perturbation occurs, loads have to redistributes. If the resulting loads exceed the capacities of link/nodes, new failures can result.... "the Domino effect"

Why do we have blackouts....?

- System load (throughput)
 - optimized to get the maximum out of the system
 - high load means small operating margins
 - has impact on interactions and component failures
- Tradeoff between load and risk of failure
 - at system level
 - for system components
- What is the role of the deregulation?

Previous physics works : Cascading Failures

Seminal paper by Motter and Lai: PRE 66, 065102R (2002)

- No sinks/sources
- Initial load of a node, L_i, is its betweenness centrality
- Node Capacity : $C_i = (1+\alpha)L_i$
- One probes only the *stationary state* of the system
- The system is *perturbed*, and the fraction of nodes remaining in the largest component, G, is recorded after the cascade has stopped.

Ingve Simonsen

Previous works : Cascading Failures

Bakke et al. Europhys. Lett 76, 717 (2006)

- More physically realistic model for the current flow (the Kirchoff laws)
- *"The price to pay"*:
 one has to solve a large system of linear eq.
- <u>NOTE</u>: Also here one probes only the *stationary state* of the system

Previous works : Summary/Open Questions

- Previous works of cascading failures exclusively considered the stationary state
- We asked ourselves: Why should the system *not* experience additional failure due to overloading during the transient period?
- Question to address:
 - What is the role played by dynamics in cascading failures in complex networks
- A dynamical model is needed for such a study
 - But which one to choose?

Expected differencee between a static and a dynamic model for flow redistribution

- It should be:
 - Generic : no particular physical process is addressed
 - As simple as possible, but not simpler...
- Important ingredient (in our opinion)
 - The flowing quantity should be <u>CONSERVED</u>

Our solution : A Random Walk (or Diffusion type) model !

The Dynamical Model: Basic Principle (Flow/Diffusion Model)

- Random walkers (i.e. particles)
 "live" on the nodes
- They are moving (flowing) around on the network!
- In each time step, a walker move one step forward towards one of the neighboring nodes chosen by random
- This process is repeated over and over again.....
- Note: The number of walkers is constant in time

The Dynamical Model: The Master Equation

- <u>Convention</u> : W_{ij} refers to the link from node j to *i*;
- Define the outgoing link weight from node j: $w_j = \sum W_{ij}$
- The change in no. of particle at node i from t to t+1

$$n_{i}(t+1) - n_{i}(t) = \sum_{j} W_{ij} \frac{n_{j}(t)}{W_{j}} - \sum_{j} W_{ji} \frac{n_{i}(t)}{W_{i}} + n_{i}^{\pm}(t),$$

• The "outgoing-term" is simple, and one gets

$$n_{i}(t+1) = \sum_{j} W_{ij} \frac{n_{j}(t)}{W_{j}} + n_{i}^{\pm}(t)$$

The Dynamical Model: The Master Equation

Define the relative fraction of walkers (total N) at node *i*:

$$O_i(t) = \frac{n_i(t)}{N}$$

The outgoing current per weight unit from node *i* is: $c_i(t) = \frac{\rho_i(t)}{w_i} = \frac{n_i(t)}{w_i N}$

Hence, it follows

$$c(t+1) = Tc(t) + j^{\pm}(t);$$
 $T_{ij} = \frac{W_{ij}}{W_i}$

Ingve Simonsen

The Dynamical Model : Summary

- Our simple dynamical model incorporates:
 - Flow conservation
 - Network topology
 - Load redistribution

$$c(t+1) = Tc(t) + j^{\pm}(t); \qquad T_{ij} = \frac{W_{ij}}{W_i}$$

$$c_i(t) : \text{The outgoing current from node } i \text{ per link weight unit}$$

Ingve Simonsen

 $n_i^{\pm} > 0$ node is source, $n_i^{\pm} < 0$ node is sink

Ref: I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Phys. Rev. Lett. 100, 218701 (2008)

Ingve Simonsen

Power Blackouts and the Domino Effect

Stationary and Dynamic Models of Cascading Failures

Model normalization:

 $\rho_i(t) = n_i(t)/N$ nodal particle density $c_i(t) = \rho_i(t)/w_i$ utilization of outflow current $j_i^{\pm} = n_i^{\pm}/(Nw_i)$ sinks and sources terms Dynamic model \longrightarrow $c(t+1) = \mathcal{T}c(t) + j^{\pm}$, $(\tau = T^T)$ $c_i^{(0)}(\infty) = 1/(Nw_i)$ stationary solution for $j^{\pm} = 0$, otherwise Stationary model $\rightarrow c(\infty) = c^{(0)}(\infty) + (1 - T)^+ j^{\pm}$ $\left(1-\mathcal{T}
ight)^+$ generalized inverse of matrix $1-\mathcal{T}$ Link flow: $C_{ij}(t) = W_{ij}c_j(t)$ current on link from *j* to *i* $L_{ij}(t) = C_{ij}(t) + C_{ji}(t)$ Model Dynamics: Is it realistic?

Power Blackouts and the Domino Effect

Model Dynamics:

UK high voltage power grid (300-400kV)

When does a link/node fail?

 Link/node capacities relative to the <u>undisturbed</u> state (L_{ij}) via a *tolerance parameter* α

 $\mathcal{C}_{ij} = (1+\alpha) L_{ij},$

 A link/node fails whenever its *current* load, C_{ij}(t) exceeds the capacity of *that* link/node

Failure if :

$$C_{ij}(t) > (1 + \alpha) L_{ij}$$

Main steps of the simulations

The simulations consist of the following steps:

- A *triggering event* (t=0) [remove a random link] 1.
- Calculate the [new] link loads $C_{ij}(t)$ 2.
- Check if any links are *overloaded* via $C_{ij}(t) > (1+\alpha)L_{ij}$ If so remove such overloaded links
- Repeat step 2 and 3 till no more links are overloaded 4.
- Average the results over the triggering event of pnt. 1 5. (and source and slinks locations)

Stationary Model vs. Dynamic Model : The northwestern US power transmission grid

0.2 0.4 $G_{\mathcal{L}}(\alpha) = \frac{|\mathcal{L}_R|}{|\mathcal{L}|} \approx G_{\mathcal{N}}(\alpha) = \frac{|\mathcal{N}_R|}{|\mathcal{N}|} = G(\alpha)$ relevant and will increase the

0.4

Ingve Simonsen

robustness.....

0.8

0.8

0.2

Dynamic $(\tau = 0)$

 ∇_{τ} Dynamic ($\tau = 1$)

Dynamic $(\tau = 10)$

α.

0.6

Stationary Model vs. Dynamic Model : The role of the two time-scales

- There are two characteristic time-scales in the problem:
 - Overload exposure time (protection system response time): τ
 - Typical transient time for the dynamics: τ_0
- Control parameter : $\chi = \frac{\tau}{\tau_0}$
 - Static cascading failure model: $\chi >>1$
 - Dynamical ($\tau=0$) cascading failure model : $\chi=0$

• The real situation is probably somewhere in between....

- The dynamical process on the network <u>is</u> important to consider when evaluating network robustness (cascading)
 - Using a stationary model may dramatically overestimate (by 80-95%) the robustness of the underlying network
 - The actual overestimation do depend on the actual overload exposure time
- In a dynamical model:
 - links may fail that otherwise would not have done so (overshooting)
 - The proximity to a disturbance is more important in a dynamical model

Thank you for your attention!

References

- Dynamical model :
 - I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Phys. Rev. Lett. 100, 218701 (2008).
 - See also :
 - Phys. Rev. Lett. **90**, 14870 (2003).
 - Physica A **357**, 317 (2005).
 - Physica A **336**, 163 (2004).
- Stationary models:
 - Motter and Lai, Phys. Rev. E **66**, 065102R (2002).
 - Bakke *et al.* Europhys. Lett. **76**, 717 (2006).