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What you will find in these slides.

In these slides, we recall the basic idea behind the particle separation technique
we are investigating in this assignment (briefing). Then, you will find a few
graphs that should help you to check your results. How to check your random
generator? Are trajectories for D̂ ≪ 1 and D̂ ≫ 1 reasonable? Do we get
Boltzmann distribution for the probability density of visited potential? ...
However not all solutions are given, so that you keep the thrill of the unknown!

Finally, for interested students who are done with all tasks and want to
investigate deeper into the topic, we give a selection of investigation tasks of
various difficulty. These are bonus just for the pleasure of it.
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Briefing assignment 1

DNA molecules separation by using biased Brownian motion.

Simulation, comparison with a real experiment and separation optimization.
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The problem

How can we separate micro-particles or macro-molecules of different sizes?
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Recall on Brownian motion
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Figure: Trajectory of a Brownian particle.
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An idea: Flashing ratchet potential
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An idea: Flashing ratchet potential

Too early !

U

x

U on

U off

Jean-Philippe Banon and Ingve Simonsen Computational Physics



An idea: Flashing ratchet potential
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An idea: Flashing ratchet potential

Some particles captured in the right neighboring well !
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Strategy

How can we model this?
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The Langevin approach

m
d
2
x

dt2
= −∇U(x, t)− γ

dx

dt
+ ξ(t) (1)
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Theory

Read updated assignment with complements on the:

overdamped approximation (i.e. when can we neglect the inertial term)

fluctuation-dissipation theorem (i.e. where the 2γkBT is coming from)

formal derivation of the Euler scheme for a stochastic differential equation
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Example of results - Random number generator
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(a) 104 realizations
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Figure: Probability density function of the random number generator.
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Example of results - Typical trajectories in a non-flashing

ratchet
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Figure: Typical trajectory in a non-flashing ratchet for different values of ∆U.
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Boltzmann distribution
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Figure: Probability density of ’visited’ potential. Note: reduced units are used here.
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Example of results - Typical trajectories in a flashing

ratchet
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(a) Flashing frequency: 25 Hz
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(b) Flashing frequency: 25 Hz

Figure: Typical trajectory in a high frequency flashing ratchet.
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Example of results - Typical trajectories in a flashing

ratchet
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(a) Flashing frequency: 0.7 Hz
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(b) Flashing frequency: 0.7 Hz

Figure: Typical trajectory in a medium frequency flashing ratchet.
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Example of results - Typical trajectories in a flashing

ratchet
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Figure: Typical trajectory in a low frequency flashing ratchet (flashing frequency:
0.025 Hz).
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Average drift velocity
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Simulation 12 nm

Figure: Average drift velocity as function of τ . r = 12 nm
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Average drift velocity
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Figure: Average drift velocity as function of τ . r = 12 nm blue or r = 24 nm red.

Jean-Philippe Banon and Ingve Simonsen Computational Physics



Example of results - Simulation vs experiment

(a) Simulation (b) Experiment

Figure: Comparison simulation vs experiment.
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Investigation tasks - (Bonus)

If you are done with all the tasks in the assignment and want to, you can
investigate on one of these suggestions. Note that some are more challenging
than other.

(easy) - Generalize to 2D.

(be creative) - Which shape of the potential could be of interest? Can we
make particles drift in different directions?

(challenging) - Fokker-Planck approach: we have seen the Langevin
approach which consists in solving the trajectory of a particle for several
realizations and then compute the density of particles from their trajectories.
Another approach consists in finding an equation for the evolution of the
density directly (it will be a PDE) and solving this instead. This is known as
the Fokker-Planck approach. Find and solve the relevant PDE for the same
problem as the one in assignment 1.
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