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1 Introduction

On this assignment we will create a very simple Monte Carlo (MC) based
particle transport algorithm to study how gamma radiation (photons) be-
haves when moving though matter. To do so we will:

• Briefly study how random (or pseudorandom) number generators
work.

• Create a MC algorithm to replicate nuclear decay. Study the uncer-
tainty of this results.

• Model two (photoelectric effect and Compton scattering) of the three
interactions that photons undergo when moving through matter. Study
photon trajectories and energy losses.

• Combine the nuclear decay with the photon interaction simulations
to look at how the energy loss distributions from primary photons
look like when a radioactive source is placed within a homogeneous
medium.

Much more complex versions of the algorithm that will be made in this
assignment are key in the study of cosmic rays that reach the earth and are
considered to be the “gold standard” at the time of performing radiotherapy
treatment recalculations.
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2 Random number generator

A random number generator (RNG) lays a sequence of numbers or sym-
bols that cannot be reasonably predicted better than by random chance.
However, by means of a computer it is not possible to create such RNGs.
Instead computes use what is known as a pseudorandom number genera-
tor (PRNG) which are algorithms that use a sequence to create long runs of
numbers with good random properties but eventually the sequence repeats.
Two PRNGs are the middle square method and the linear congruential
method [1].

2.1 Middle square method

To generate a sequence of n-digit pseudorandom numbers, an n-digit start-
ing value is created and squared, producing a 2n-digit number. If the result
has fewer than 2n digits, leading zeroes are added to compensate. The
middle n digits of the result would be the next number in the sequence
and returned as the result. This process is then repeated to generate more
numbers.

1. We start with an n-digit seed: seed = 1234 (n = 4).

2. We calculate the square of the original seed: seed2 = 1522756 (nnew =
7 < 2n).

3. If nnew < 2n we add zeros until nnew = 2n: 01522756.

4. We take the center n digits: 01522756→ 5227 = Randomnumber.

5. We make seednew = Randomnumber and repeat from step 1.

Note: The value of n must be even in order for the method to work.
Also, the value of n and the seed will affect the efficiency of the algorithm.

2.2 Linear congruential method

To generate a sequence of pseudorandom numbers we use a relatively sim-
ple relation:

Xn+1 = (aXn + c) · (mod)(m) (1)
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Where X is the random number being X0 the initial seed, m is the mod-
ulus, a is the multiplier and must fulfill 0 < a < m, and c is the increment
and must fulfill 0 ≤ c < m.

1. We select an initial X0 (seed) and the corresponding m, a and c pa-
rameters.

2. We solve equation 1 and make X1 the new seed.

3. We repeat from step 1.

Note: The values of X0, m, a and c will affect the performance level of
the algorithm. You can find several examples (with different performance
levels) for these parameters in https://en.wikipedia.org/wiki/Linear_

congruential_generator.

3 Nuclear decay

In general, atomic nuclei are not stable and they “look for” more favorable
energy states transforming into other nuclei by emitting particles or groups
of particles. There exist different types of decay, alpha decay, beta decay,
nuclear fision and gamma decay for example.

Independently of the type of decay, we can study the statistical aspect of
nuclear decay. If we consider that at a time t we have N radioactive nuclei,
the change with time of the number of nuclei will be −dN/dt. If we now
define a decay constant λ as the probability per unit time for any nucleus
to decay, we define the exponential law of decay as

λ = − 1

N

dN

dt
→ N(t) = N0e

−λt, (2)

where N0 is the number of nuclei at t = 0, and we define a half-life as
t1/2 = ln (2)/λ. The half-life represents the amount of time needed for the
initial number of nuclei to halve. At the same time, the mean time that
takes a nucleus to decay is known as the mean life and it corresponds to
τ = 1/λ.

In nature, a nucleus can undergo several decay processes until the sta-
ble most favorable energy state is reached. This results in what is known
as a radioactive or decay chain. In a decay chain each decay process will
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be described by a different decay constant. In a process like this the expo-
nential law of decay would vary depending on the “step” of the decay chain
that we look at. If we assume that at t = 0, we only have nuclei from the
father nucleus (type 1) we find the general solution to be:

Ni(t) = N1(0)

(
k=i∑
k=2

hke
−λkt

)
, (3)

where

hk =
λ1λ2...λk−1

(λ1 − λk)(λ2 − λk)...(λk−1 − λk)
. (4)

3.1 Secular equilibrium

In the case of a 3-step decay chain (3 nuclei) if we have λ1 � λ2 we will
find that after a sufficiently enough large time we will find a transient state
in which the number of nuclei 2 (N2) stays constant and follows N2(t) =
N1(0)λ1

λ2
. This state is known as secular equilibrium.

4 Photon interactions with matter

When photons interact, they transfer energy to charged particles (usually
electrons) and the charged particles give up their energy via secondary
interactions (mostly ionization). During this task we will focus on the
photon-matter interaction and there are three main mechanism that de-
scribe photon interaction with matter [2]:

• Photoelectric (PE) interactions.

• Compton scattering.

• Pair production.

The interaction of photons with matter is a probabilistic phenomenon
and the probability of a photon undergoing any of these tree processes
depends on:

• The photon energy.
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• The atomic number and density of the material (i.e., the electron
density of the absorbing matter).

For the sake of simplicity, on this task we will only consider photoelectric
interactions and Compton scattering.

4.1 Interaction probabilities (cross-sections)

In very simplistic terms, a projectile particle will interact with a target par-
ticle if it gets “close enough”. What exactly “close enough” is, would then
depend on the energy of the incident particle and various properties of the
target (e.g., the atomic number). If we now think about this “close enough”
distance and project it into a plane, we will get an effective surface around
the target particle. If the projectile particle hits this effective surface the
projectile and the target would interact (if it doesn’t there will be no inter-
action). This effective surface is referred to as a cross-section, see Figure
1 for a simple sketch. These cross-setions are measured in barns being
1barn = 10−28m2.

Different interaction mechanisms (e.g., PE and Compton scattering) will
have different cross-sections and therefore different interaction probabili-
ties.

4.2 Photoelectric Interactions

During PE interactions the incident photon is absorbed by an inner shell
atomic electron. During this absorption the electron absorbs all the photon
energy (the electron disappears). The electron that absorbs the photon gets
ejected from the atom creating a vacancy on the electronic shell originally
occupied, see Figure 2. Some of the photon energy is used to overcome the
binding energy of the ejected electron and the rest is transformed into the
kinetic energy of the photon.

The PE interaction is most likely to occur for:

• Low energy photons (below 50 keV).

• High atomic number of the target.
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Usually, the cross section of the PE interaction can be approximated by
the simplified equation of

σPE(Z,Eγ) ≈ 3 · 1012 Z
4

E3.5
γ

, (5)

where Z is the atomic number of the target element and Eγ is the incident
photon energy [3].

4.3 Compton scattering

In Compton scattering, a photon transfers a portion of its energy to a
loosely bound outer shell electron of an atom (the binding energy of the
electron is considered negligible). After the photon-electron collision the
photon loses energy and changes direction, see Figure 3.

Compton scattering is most likely to occur for, and it is given by equation
6 [4]:

• Intermediate energies (between 100 keV and 10 MeV).

• High atomic number of the target (even though its dependence with
Z is much weaker than the one from PE interactions).

σC(Z, k) =

{
Z2πr2

e

(
1+k
k2

[
2(1−k)
1+2k

− ln (1+2k)
k

]
+ ln (1+2k)

k
− 1+3k

(1+2k)2

)
if k ≤ 0.2

Z 8
3
πr2

e
1

(1+2k)2

(
1 + 2k + 6

5
k2 − 1

2
k3 + 2

7
k4 − 6

35
k5 + 8

105
k6 + 4

105
k7
)

if k > 0.2

(6)
Where k is the ratio of the photon energy and the electron’s rest mass

energy (k = Eγ/Ee) and re is the classical electron radius (re = e2/Ee).
The resulting energy of the incident photon after undergoing Compton

scattering is given by the following equation:

E ′γ =
Eγ

1 + k(1− cos θ)
. (7)

Making the energy loss to be Eγ − E ′γ, being Eγ the photon energy before
Compton scattering and E ′γ the photon energy after Compton scattering. In
equation 7 we also find a dependence with an angle θ. This is the deflection
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angle of the photon after undergoing Compton scattering. The “probabil-
ity distribution” of is given by the Klein-Nishina formula, see equation 8
(where α ≈ 1/137.035 is the fine-structure constant).

dσ

dΩ
(Eγ, E

′
γ, θ) =

h̄2α2

2E2
e

(
E ′γ
Eγ

)2 [E ′γ
Eγ

+
Eγ
E ′γ
− sin2 θ

]
(8)

Note: With equation 7 and equation 8 we can calculate dσ/dΩ for every
angle θ for a particular incident photon energy Eγ (or k):

dσ

dΩ
(k, θ) =

h̄2α2

2E2
e

[
1

1 + k(1− cos θ)

]2 [
1

1 + k(1− cos θ)
+ 1 + k(1− cos θ)− sin2 θ

]
(9)

The quantity dσ/dΩ is defined as a differential cross-section. But for
the assignment at hand, we will look at it as an angle probability distribu-
tion. In other words, we will use it to answer the following question: For an
incident photon energy of Eγ, what is the likelihood of having a deflection
of θ in the trajectory of the photon?

5 Particle transport and Monte Carlo implemen-
tation

To create our simple particle transport code, first we will have to:

1. Implement nuclear decay.

2. Use the nuclear decay results to create a specific discrete gamma spec-
trum.

3. Use the Klein-Nishina equation and the energy variation equation to
implement Compton scattering (calculate the resulting energy and
deflection angle of the incident photon after interaction).

4. Study the probability of a photon of undergoing PE interaction and
being absorbed.

At this point we should be able to see that the physical processes that
photons during their generation, and their movement through matter until
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they get absorbed are of random nature. Therefore, we will rely on Monte
Carlo methods to create a program for particle transport calculation.

5.1 Monte Carlo implementation of nuclear decay (points
1 and 2)

From the exponential decay law we can define the probability of a nucleus
of not decaying in a time interval ∆t as Pno−decay(∆t) = e−λ∆t. Conse-
quently, the decay probability in a time interval ∆t of a nucleus will be
Pdecay(∆t) = 1− Pno−decay(∆t) = 1− e−λ∆t.

To replicate this phenomena we will go from 0 to tmax = n · ∆T in ∆t
steps (n would corrspond to the total number of steps to take). At every
step we will draw a random number and use Pdecay(∆t) or Pno−decay(∆t) to
determine whether we have a decay or not. The we will do:

• In the case of having a decay we will reduce by one the amount of
initial nuclei (N1(ni∆t) = N1(ni−1∆t) − 1) and increase by one the
amount of new nuclei (N2(ni∆t) = N2(ni−1∆t) + 1).

• In the case of not having a decay we will do N1(ni∆t) = N1(ni−1∆t)
and N2(ni∆t) = N2(ni−1∆t) and go to the next step.

Note: the time step and max time should be chosen accordingly to the
decay constant of the nucleus at hand.

5.1.1 Gamma decay spectrum

In gamma decay the initial nuclei transforms emitting a photon. The reac-
tion that we get corresponds to X1 → X2+γ where X1 is the initial nucleus,
X2 is the nucleus resulting from the decay and γ is the emitted photon. The
energy spectrum of these emitted photons is discrete, this means that dur-
ing evey decay event the emitted photon would have an E1 energy with
a P1 probability, a E2 energy with a P2 probability and so on. Randomly
drawing an energy value from the corresponding discrete P (E) distribution
every time we have a decay we would replicate the energy spectrum.
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5.2 Monte Carlo implementation of particle transport

In a Monte Carlo simulation of particle transport the path that a particle
follows when moving thorugh matter is discretized. At every step of the
particle’s path it can be subject of physical interactions (the particle’s prob-
abilities of undergoing different interactions will be different). Depending
on the inteaction that the particle undergoes, its energy and direction will
change. A Monte Carlo algorithm will allow us to track individual parti-
cles at every step of its path and record/save data on its energy loss and
deflection angles.

In our photon transport case we will track individual photons when
moving through a known medium (known Z) in steps of size l.

1. The initial energy E0 of the tracked photons will be determined by
gamma decay energy spectrum. And for simplicity the initial position
of the photon will be (x0 = 0, y0 = 0) with a θ0 = 0 rad.

2. For this E0 we will solve the Klein-Nisina equation (equations 8 and
9) to obtain the corresponding dσ/dΩ for θ from 0 rad to 2π rad. The
dσ/dΩ results to to create a probability distribution for θ.

3. Using the corresponding cross-sections/interaction probabilities we
will determine if the tracked photon undergoes PE interaction or
Compton scattering.

(a) If the photon undergoes PE interaction it will be absorbed all its
energy will be lost (stopping the particle tracking and getting
out of the algorithm).

(b) If the photon undergoes Compton scattering we will draw a de-
flection angle θdef from the probability distribution created in
step 2. With this angle, E0 and equation 7, we will calculate
the energy lost by the photon, the corresponding new energy of
the photon (Enew) and the new direction that the photon fol-
lows (θnew = θ0 + θdef). We will now calculate and store the
new position of the photon following xnew = x0 + l ∗ cos θdef and
ynew = y0+l∗sin θdef , store the energy loss, and repeat from point
1 making the initial conditions E0 = Enew, θ0 = θnew, x0 = xnew
and y0 = ynew until we the photon is absorbed (i.e., until point
3(a) is reached).
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In order to get good statistics and ”reliable” results we will have to track
a very large number of photons and agregate the results.

6 Questions

1. Implement the middle square method and the linear congruential method,
test them for different model parameters, study their limitations and com-
pare them with a built-in random number generator.

2. Implement a Monte Carlo algorithm for a nuclear decay of an element
of λ = 0.3 s−1 and compare your simulation results with the analytical
solution given by equation 2 (use a built-in random number generator to
do so). Study the uncertainties of the results when you perform the same
simulation several times and agregate the results. What is the error of
N(t)? Do you find a time dependence in it? How do the N(t) results for a
specific t from all simulations distribute around the analytical N(t) value?

3. Adapt your nuclear decay algorithm to simulate a 3-step decay chain
where the last nucleus is stable and we have N1(0) = N0 and N2(0) = 0. If
you use λ1 = 0.3 s−1, for what value of λ2 do you find secular equilibrium?

4. Solve the Klein-Nishina equation for θ from 0 rad to 2π rad (equations
8 and 9) and plot dσ/dΩ for various incident photon energies (try to repli-
cate Figure 3 and Figure 4 from [5]). How do these curves change if you
introduce an initial angle different from zero?

5. Use the dσ/dΩ results to to create a probability distribution for θ. Test
your probability distribution: if you randomly draw θ enough times, can
you create a histogram that matches the original dσ/dΩ curve?

6. Implement a particle trasport algorithm for photons to study photon
trajectories and energy loss distributions around a photon source placed
whithin a material of Z between 0 and 92. Use your nuclear decay algo-
rithm to generate random draws from a discrete gamma energy spectrum
and assume that all photons are emitted in the same direction (i.e., same
initial angle). These will consitute the initial conditions for the tracked
photon. Select two values for Z, a low one (to imitate a gas medium) and
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a high one (to imitate a solid medium). Perform and compare some range
estimations (distance that the photon travels from emission to absoption)
and compare them, do your results make sense? If not, why? Plot some of
the resulting trajectories from the photons. Can you show the amount of
energy lost and where it has been lost by the photons?

Note: In order to make this simulation feasible we will have to make
several asumptions:

• The discrete spectrum from our gamma decay will be: E1 = 0.135 keV
with 850 counts, E2 = 0.525 keV with 13600 counts and E3 = 0.615
keV with 2550 counts.

• The photons move on the XY-plane.

• We only consider PE interactions and Compton scatering. And we will
encounter one of these interactions at every step.

• The probability of a photon of being absorbed (undergoing a PE inter-
action) will go as 1− exp(−σPE(Z,E) · l). Equation 5 lays σPE(Z,E)
and l is the step size used in our photon path discretization.

• The step size will be set as constant (Note: it could be approxi-
mated using l = 1/µ as a reference with µ being the linear atten-
uation coefficient. Use https://physics.nist.gov/PhysRefData/

XrayMassCoef/tab3.html to find µ for elements up to Z = 92. Take
the value of the 2nd coulumn for the initial energy of the photon
and remember to multiply this number by the density of the chosen
element).

7. Modify your particle transport algorithm to include some variability in
the step size: make li = l0(1−ηi) with l0 equal to the step size from question
6 and ηi a random number between 0 and 1.

8. Modify your particle transport algorithm to account for photons being
emitted in any direction from the gamma decay source.
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7 Figures

Figure 1: Sketch of an interaction cross-section for a neutron interacting
with a nucleus of Uranium-235.
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Figure 2: Sketch of a photoelectic interaction between an incoming photon
and an atom.
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Figure 3: Sketch of a Compton scattering event between an incoming pho-
ton and an atom.
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