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Introduction

* Briefly study how random (or pseudorandom) number generators work.

* Create a MC algorithm to replicate nuclear decay. Study the uncertainty
of this results.

* Model two (photoelectric effect and Comptom scattering) of the three
interactions that photons undergo when moving through matter. Study
photon trajectories and energy losses.

* Combine the nuclear decay with the photon interaction simulations to
look at how the energy loss distributions from primary photons look like
when a radioactive source is placed within a homogeneous medium.



Random number generator

* Two random number generators (middle square
method/linear congruential method).

e Study the random number distributions (does it loop
at some point? When? Visualize? Try to find
better/optimal parameters.



Linear congruential method

Middle square method




Radioactive decay

where
* Monte Carlo solution for the problem:
1. Select a total time and amount of time steps.

2. Based on the radioactive decay equation define a probability for
decay/no-decay.

3. Each time step daw a random number. Put together with decay/no-
decay probability and count events.

4. Run multiple times and aggregate the results.



* Radioactive decay chain:

* What if for we got or/and ?
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e Results uncertainties?

* Error of ? Time
dependent?

* How do the results for
a specific t distribute

around the analytical ?

* A1/\2 ratio for secular
equilibrium?
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Photon interactions with matter

* Photo electric effect (dominates for low energy):

Absoption/Interaction probability dependent on incident photon’s energy and target’s
atomic number.

e Compton scattering (dominates for intermediate energy):

Interaction probability dependent on incident photon’s energy and target’s atomic
number.

Klein-Nishina equation to estimate deflection after interaction.

e Pair production (dominates for high energy):
Not relevant for our energy range.



Characteristic
X-ray

Scattered photon

Photoelectron .
Incoming photon 7]

Incoming photon

Ejected Compton
recoil electron



Cross-section

* If the projectile particle hits this
effective surface the projectile and

the target would interact (if it
doesn’t there will be no interaction).

* This effective surface is referred to
as a cross-section.

* Different interaction mechanisms
(e.g., PE and Compton scattering)
will have different cross-sections
and therefore different interaction
probabilities.




Photoelectric interaction
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* Where Z is the atomic number of the target element and £ is the
incident photon energy.

During PE interactions the incident photon is absorbed by an inner shell
atomic electron.



Comptom scattering
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* Where k is the ratio of the photon energy and the electron’s rest
mass energy (k=FE /E) and r, is the classical electron radius
(r.=e’/EF).

In Compton scattering, a photon transfers a portion of its energy to a
loosely bound outer shell electron of an atom.



* The effects of Compton scattering:
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* The effects of Compton scattering:
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Assumptions

* 2D geometry: movement on the XY-plane.

* No pair production (energy range not high enough): only Comptom
scattering and PE.

* Distance between photon interactions constant.

* Absorption probability of for a photon



Simple particle transport simulation

1. Calculate PE probabability. If photon
absorbed stop simulation. If photon
not absorbed do 2.

2. Implement Compton scatering:

Discretize particle’s path through
medium.
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Use Klein-Nishina to create angle
deflection probability distributions.

Calculate energy loss as function of
particle’s deflection.

Store data and run again until photon is
absorbed.
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Particle transport |
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Combine decay with particle
transport

* Simulate decay.

* Create discrete gamma spectrum for the decay (each decay event has
an P1%, P2% and P3% of decaying with a E1, E2 and E3 energy (in
keV). And a uniform angle distribution probability (direction that the
particle follows after decay event): Initial conditions (Energy and
direction).

* Start the particle transport simulation from the initial conditions.

* GOAL: Estimate an energy loss/absoption map.
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