
TFY4235/FYS8904 : Computational Physics1

Ingve Simonsen

Department of Physics
Norwegian University of Science and Technology

Trondheim, Norway

Lecture series, Spring 2018

1Special thanks Profs. Alex Hansen and Morten Hjorth-Jensen for invaluable contributions
TFY4235/FYS8904 Computational Physics – ver2018 1 / 503

General information

Lectures
Mon. 12:15–14:00 (EL6)
Fri. 08:15–09:00 (R8)

Exercises
Fri. 09:15–10:00 (R8)

Evaluation and grading

Multi-day take home exam (counts 100% of final grade)
Exam date to be decideda

Exercises are not compulsory, but strongly recommended...
Three assignments will be given during the semester

Solutions to one of the three will be randomly picked and part of the take-home
exam

aProbably to take place just before the ordinary exam period

Homepage
http://web.phys.ntnu.no/˜ingves/Teaching/TFY4235/

All relevant information will be posted here!

TFY4235/FYS8904 Computational Physics – ver2018 2 / 503

http://web.phys.ntnu.no/~ingves/Teaching/TFY4235/

The aims of the course

Main aim of the class
Provide you with a TOOLBOX for solving physical problems on the computer!

For a given problem, you should after completing this class, be able to
identify suitable and efficient methods for solving it numerically
write programs that use these algorithms
to test you program to make sure it is correct
to analyze the results
have an overview of existing scientific numerical libraries

However, this class will not
focus on the details of the various algorithms
teach you how to program by following the lectures

TFY4235/FYS8904 Computational Physics – ver2018 3 / 503

The aims of the course

In more detail:
Develop a critical approach to all steps of a project

which natural laws and physical processes are important
sort out initial conditions and boundary conditions etc.
which methods are most relevant

This means to teach you structured scientific computing, learn to
structure a project.
A critical understanding of central mathematical algorithms and methods
from numerical analysis. Know their limits and stability criteria.
Always try to find good checks of your codes (like closed-from solutions)
To enable you to develop a critical view on the mathematical model and
the physics.

TFY4235/FYS8904 Computational Physics – ver2018 4 / 503

Programming languages

TFY4235/FYS8904 Computational Physics – ver2018 5 / 503

Which programming language to use?

In principle, you may use any programming language you wish for this class!

Recommended (by me)
C
C++
Fortran 90/2003/2008
python
julia

Not Recommended
Matlab
Java
Fortran 77

Comments
Python is the definitely slowest of the recommended languages!
Fortran 77 and C are regarded as slightly faster than C++ or Fortran2 .

2For this class, Fortran means Fortran 95/2003/2008 (modern Fortran)
TFY4235/FYS8904 Computational Physics – ver2018 6 / 503

“The two-language problem”

“The two-language problem” is also known as Outerhout’s dichotomy (after
computer scientist John Ousterhout’s categorization scheme)

High-level programming languages tend to fall into two groups
system programming languages

hard to use, fast

scripting languages
easy to use, slow

Attempts to get the best of both worlds have tended to result in a bit of a mess.
The best option today is Julia in my opinion!

TFY4235/FYS8904 Computational Physics – ver2018 7 / 503

C++ and C

Strong features
are widely available
portable
fast (C++ is slower than C)
complex variables can also be
defined in the new ANSI C++/C
standards
more and more numerical
libraries exist (but still not as
many as for Fortran 77)
the efficiency of C++ can be
close to that provided by Fortran
C++ is rich (about 60 keywords)
C++/C is used also outside the
scientific/technical community
C++ is an object-oriented
language (C is not...)

Weak features
C++ is a complex language
(takes time and experience to
master)
some parts of the language
should NOT be used for
numerical calculations since
they are slow
error prone dynamic memory
management
it is easy in C++ to write
inefficient code (slow)

TFY4235/FYS8904 Computational Physics – ver2018 8 / 503

Fortran

For this class, Fortran means Fortran 95/2003/2008 (modern Fortran)

Strong features
language made for numerical
calculations
large body of libraries for
numerical calculations
fairly easy to learn
portable
fast
complex variables are native to
the language
array syntax ala Matlab
e.g. A(3:5), size(A), min(A)
newest versions of Fortran is
object-oriented

Weak features
Fortran is only used in the
scientific/technical community
Fortran is less rich then C++

TFY4235/FYS8904 Computational Physics – ver2018 9 / 503

python

Strong features

a rich scripting language
fully object-oriented
clean syntax gives fast code
development
free (non-commercial)
bindings to many libraries exist
numpy and scipy (use them!)
easy integration of fast compiled
C/C++/Fortran routines

Weak features
can be slow
a scripting language

TFY4235/FYS8904 Computational Physics – ver2018 10 / 503

julia

Strong features

fast : “Just in Time” compilation
a rich scripting language
fully object-oriented
clean syntax gives fast code
development
free (non-commercial)
bindings to many libraries exist
interface an increasing number
of libraries

Weak features
under development
not so widespread

TFY4235/FYS8904 Computational Physics – ver2018 11 / 503

Choose the “right” language for the job

During the 2014 exam a student found a speedup of a factor 350 when
moving his code from Matlab to C++!

E.g. if the C-job took 15 min., Matlab will require 5250 h (about 4 days)!

The student said

It was painful to write out the program all over again at first, but after a while I got used to the
syntax and came to understand exactly how much computing power can be saved. A relatively
small simulation (1000 sweeps on a lattice with L = 100) ran 343 times faster after re-writing
the program in C++!

The biggest lesson for me in this exam has definitely been the value of
programming in an efficient language, and I only wish I had more time to make
the C++ program even more efficient.

TFY4235/FYS8904 Computational Physics – ver2018 12 / 503

Literature

The following material represents good reading material for this class:

Press, Flanery, Teukolsky and Vetterling, Numerical Recipes: The Art of
Scientific Computing, 3rd ed., Cambridge University Press, 2007.

Morten Hjorth-Jensen, Computational Physics, unpublished, 2013
Available from http://web.phys.ntnu.no/˜ingves/Teaching/
TFY4235/Download/lectures2013.pdf

For C++ programmers

J. J. Barton and L. R. Nackman,Scientific and Engineering C++, Addison
Wesley, 3rd edition 2000.

B. Stoustrup, The C++ programming language, Pearson, 1997.

TFY4235/FYS8904 Computational Physics – ver2018 13 / 503

http://web.phys.ntnu.no/~ingves/Teaching/TFY4235/Download/lectures2013.pdf
http://web.phys.ntnu.no/~ingves/Teaching/TFY4235/Download/lectures2013.pdf

Numerical libraries

Strong recommendation

Use existing libraries whenever possible
They are typically more efficient than what you can write yourself

Some important numerical libraries (to be mentioned and discussed later)
LAPACK (Fortran 90) [wrapper LAPACK95]
BLAS (Fortran 77)
GNU Scientific Library (C)
Slatec (Fortran 77)

Check out the list of numerical libraries at:
http://en.wikipedia.org/wiki/List_of_numerical_libraries

TFY4235/FYS8904 Computational Physics – ver2018 14 / 503

http://en.wikipedia.org/wiki/List_of_numerical_libraries

A structured programming approach

Before writing a single line of code, have the algorithm clarified and
understood. It is crucial to have a logical structure of e.g., the flow and
organization of data before one starts writing.
Always try to choose the simplest algorithm. Computational speed can be
improved upon later.
Try to write an as clear program as possible. Such programs are easier to
debug, and although it may take more time, in the long run it may save
you time. If you collaborate with other people, it reduces spending time
on debugging and trying to understand what the codes do.

A clear program will also allow you to remember better what the program
really does!

TFY4235/FYS8904 Computational Physics – ver2018 15 / 503

A structured programming approach

The planning of the program should be from top down to bottom, trying to
keep the flow as linear as possible. Avoid jumping back and forth in the
program. First you need to arrange the major tasks to be achieved. Then
try to break the major tasks into subtasks. These can be represented by
functions or subprograms. They should accomplish limited tasks and as
far as possible be independent of each other. That will allow you to use
them in other programs as well.

Try always to find some cases where an analytic solution exists or where
simple test cases can be applied. If possible, devise different algorithms
for solving the same problem. If you get the same answers, you may have
coded things correctly or made the same error twice or more.

Warning

Remember, a compiling code does not necessarily mean a correct program!

TFY4235/FYS8904 Computational Physics – ver2018 16 / 503

Section 1

Introduction

TFY4235/FYS8904 Computational Physics – ver2018 17 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

8 Numerical integration

TFY4235/FYS8904 Computational Physics – ver2018 18 / 503

Outline II
9 Random numbers

10 Ordinary differential equations

11 Partial differential equations

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 19 / 503

What is Computational Physics (CP)?

University of California at San Diego (UCSD)3

“Computational physics is a rapidly emerging new field covering a wide range of
disciplines based on collaborative efforts of mathematicians, computer scientists,
and researchers from many areas of pure and applied physics. This new
approach has had a decisive influence on fields that traditionally have been
computationally intensive, and is expected to change the face of disciplines that
have not commonly been associated with high performance computation.

By its very nature, computational physics is strongly interdisciplinary, with
methodologies that span the traditional boundaries between fields, allowing
experts in this area a more flexible position in today’s competitive employment
arena.”

Wikipedia tries the following definition:
“Computational physics is the study and implementation of numerical
algorithms to solve problems in physics for which a quantitative theory
already exists” (not a good definition in my opinion)

3http:
//www-physics.ucsd.edu/students/courses/winter2010/physics141/

TFY4235/FYS8904 Computational Physics – ver2018 20 / 503

http://www-physics.ucsd.edu/students/courses/winter2010/physics141/
http://www-physics.ucsd.edu/students/courses/winter2010/physics141/

What is Computational Physics (CP)?

Definition
Computational physics is the science of using computers to assist in the
solution of physical problems, and to conduct further physics research

1 Discretized analytic calculations
2 Algorithmic modelling
3 Data treatment (e.g. CERN)

Computational physics is the “third way” of physics alongside
experimental and theoretical physics
CP is a separate and independent branch of physics
Systems are studied by “numerical experiments”
Computational physics is interdisciplinary

TFY4235/FYS8904 Computational Physics – ver2018 21 / 503

What is Computational Physics?

Some examples of areas that lie within the scope of computational physics

Large scale quantum mechanical calculations in nuclear, atomic,
molecular and condensed matter physics
Large scale calculations in such fields as hydrodynamics, astrophysics,
plasma physics, meteorology and geophysics
Simulation and modelling of complex physical systems such as those that
occur in condensed matter physics, medical physics and industrial
applications
Experimental data processing and image processing
Computer algebra; development and applications
The online interactions between physicist and the computer system
Encouragement of professional expertise in computational physics in
schools and universities

Source : Institute of Physics

TFY4235/FYS8904 Computational Physics – ver2018 22 / 503

Why Computational Physics?

Physics problems are in general very difficult to solve exactly
analytically solutions are the exceptions. . . not the rule

Real-life problems often cannot be solved in closed form, due to
lack of algebraic and/or analytic solubility
complex and/or chaotic behavior
too many equations to render an analytic solution practical

Some examples :
a bouncing ball
the physical pendulum satisfying the differential equation

d2θ(t)
dt2 +

g
`

sin θ(t) = 0

system of interacting spheres (studies by e.g. molecular dynamics)
the Navier-Stokes equations (non-linear equations)
quantum mechanics of molecules
etc. etc

On the computer, one can study many complex real-life problems!

TFY4235/FYS8904 Computational Physics – ver2018 23 / 503

Why Computational Physics?

Simulations of Rayleigh-Taylor instability

TFY4235/FYS8904 Computational Physics – ver2018 24 / 503

Detailed simple examples of the use of CP

Main class of approaches:

1 Discretized analytic calculations
Nature→ Continuous equations→ Discrete numerical model
A quantitative theory does exist

2 Algorithmic modeling
Nature→ Discrete numerical model (No analytic intermediate)
No quantitative theory used

3 Data treatment (e.g. CERN)

We now give some examples!

TFY4235/FYS8904 Computational Physics – ver2018 25 / 503

Example 1: Laplace equation

Problem: Find the electric field inside an annulus of inner radius R1 and outer
radius R2 when the potential difference between these surfaces is V0.

Mathematical formulation : Laplace equation

∇2V (r) = 0
V (R1) = 0
V (R2) = V0

Geometry under study

Discretization of space

r −→
{

r i,j
}
, i , j = 1, . . . ,N

V (r) −→ V (r i,j)→ Vi,j

∇2V (r) = 0 −→ Vi,j+1 + Vi,j−1 + Vi+1,j + Vi−1,j − 4Vi,j = 0

TFY4235/FYS8904 Computational Physics – ver2018 26 / 503

Example 1: Laplace equation

values of the potential on the boundary are known
|r i,j | ≈ R1 : Vi,j = 0
|r i,j | ≈ R2 : Vi,j = V0

this modifies the equations for points close to the surface

Vi,j+1 + Vi,j−1 + Vi+1,j + Vi−1,j − 4Vi,j = 0

so that known values gives raise to a right-hand-side
a linear system (in

{
Vi,j
}

) is formed

Linear system

Discretization of Laplace equation results in a linear system

Solving a linear system, solves the original continuous problem

Av = b where v =
[
V11 V21 . . . VNN

]T
TFY4235/FYS8904 Computational Physics – ver2018 27 / 503

Example 2: Diffusion-Limited Aggregation (DLA)

Consider the following system
small (colloidal) particles diffuse in a liquid
place a sticky ball in the liquid
when a particle hits the surface of the ball it sticks

Question : What does the structure formed by this process look like?

Challenge

How can one address this question?

TFY4235/FYS8904 Computational Physics – ver2018 28 / 503

Example 2: Diffusion-Limited Aggregation (DLA)

Model 1 : Discrete continuous model
C(r , t) : particle concentration at position r in the liquid at time t
∂B(t) : boundary of the (growing) “ball” at time t
C0 : constant concentration at long distances r = R from the position of
the ball at t = 0

∇2C(r , t)− ∂tC(r , t) = 0
C(r , t) = 0 for r in ∂B(t) (sticking boundary)
C(r , t) = C0 for r ≈ R � |∂B(t)|

Assumption: Surface growth proportional to concentration gradient,
Ṡ(r , t) ∝∇C(r , t)

differential equation where the boundary conditions chance with the
solution
the solution is unstable at all scales
problem can not be solved by solving a differential equation

TFY4235/FYS8904 Computational Physics – ver2018 29 / 503

Example 2: Diffusion-Limited Aggregation (DLA)

Model 2 : Algorithmic modeling

consider a large number of particles
individual particles do random walks
they stick to the boundary the first time they hit it

This model renders a description that fits quantitatively what is seen in nature
(examples next slide)

Algorithmic modeling

Nature is modeled directly!

TFY4235/FYS8904 Computational Physics – ver2018 30 / 503

Example 2: Diffusion-Limited Aggregation (DLA)

Experiments

A DLA cluster grown from a copper sulfate solution in an electrodeposition

cell

Simulations

A DLA consisting about 33, 000 particles obtained by allowing random

walkers to adhere to a seed at the center. Different colors indicate different

arrival time of the random walkers.

DLA clusters in 2D have fractal dimension : D ≈ 1.7

TFY4235/FYS8904 Computational Physics – ver2018 31 / 503

Example 3: Bak-Sneppen Model
Phys. Rev. Lett. 71, 4083 (1993)

The model deals with evolutionary biology.

a simple model of co-evolution between interacting species
developed to show how self-organized criticality may explain key features
of fossil records

the distribution of sizes of extinction events
the phenomenon of punctuated equilibrium

Reference :
The “Bak-Sneppen” paper : Phys. Rev. Lett. 71, 4083 (1993)

See also : Phys. Rev. Lett. 76, 348 (1996)

TFY4235/FYS8904 Computational Physics – ver2018 32 / 503

Example 3: Bak-Sneppen Model
Phys. Rev. Lett. 71, 4083 (1993)

Two opposing theory of evolution:
phyletic gradualism
punctuated equilibrium (1972)

TFY4235/FYS8904 Computational Physics – ver2018 33 / 503

Example 3: Bak-Sneppen Model
Phys. Rev. Lett. 71, 4083 (1993)

The “algorithm” used in the Bak-Sneppen model

each species i is given a fitness parameter ri

simplifications : species form a one dimensional chain with periodic BC

. . . —r1—r2—r3—r4—. . .

exchange dynamics : How to update the system?
1 find lowest fitness

rw = mini ri , ri(w) = rw

2 update fitness
ri(w) → new random ri(w)

ri(w)±1 → new random ri(w)±1

3 for next time step, repeat step 1 and 2 above

TFY4235/FYS8904 Computational Physics – ver2018 34 / 503

Summary : Algorithmic modeling

Algorithmic modeling

Nature is modeled directly!

Normally quantitative theories do not exist for such problems

For instance, Diffusion-Limited Aggregation cannot be described by a
differential equation!

TFY4235/FYS8904 Computational Physics – ver2018 35 / 503

Topics

TFY4235/FYS8904 Computational Physics – ver2018 36 / 503

Topics covered by the class
Tentative list and order

Numerical precision
Interpolation and extrapolation
Numerical derivation and integration
Random numbers and Monte Carlo integration
Linear algebra
Eigensystems
Non-linear equations and roots of polynomials
Fourier and Wavelet transforms
Optimization (maximization/minimization)
Monte Carlo methods in statistical physics
Ordinary differential equations
Partial differential equations
Eigenvalue problems
Integral equations
Parallelization of codes (if time allows)

TFY4235/FYS8904 Computational Physics – ver2018 37 / 503

Section 2

Number representation and numerical precision

TFY4235/FYS8904 Computational Physics – ver2018 38 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

8 Numerical integration

TFY4235/FYS8904 Computational Physics – ver2018 39 / 503

Outline II
9 Random numbers

10 Ordinary differential equations

11 Partial differential equations

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 40 / 503

An illustrative example

Harmonic numbers are defined by the sum

Hn =
n∑

k=1

1
k
∼ γ + ln(n) +

1
2n

where the Euler constant is γ ≈ 0.577215664

TFY4235/FYS8904 Computational Physics – ver2018 41 / 503

An illustrative example

Results for Hn (in single precision) for different values of n:

n = 10
Asymptotic = 2.92980075
Forward sum = 2.92896843 -8.32319260E-04
Backward sum = 2.92896843 -8.32319260E-04

n = 100 000
Asymptotic = 12.0901461
Forward sum = 12.0908508 7.04765320E-04
Backward sum = 12.0901527 6.67572021E-06

Question : Why is the backward sum more accurate?

TFY4235/FYS8904 Computational Physics – ver2018 42 / 503

How numbers are represented

Numbers→ words (i.e. strings of bits)
May have length 32 or 64 or ...

Consequence

Only a limited range of numbers may be represented with infinite precision.
Otherwise, always an approximation.

TFY4235/FYS8904 Computational Physics – ver2018 43 / 503

Finite numerical precision

Serious problem with the representation of numbers

A computer has finite numerical precision!

Potential problems in representing integer, real, and complex numbers
Overflow
Underflow
Roundoff errors
Loss of precision

TFY4235/FYS8904 Computational Physics – ver2018 44 / 503

Typical limits for C/C++ and Fortran (on x86/x86 64)

type in C/C++ and Fortran2008 bits range

int/INTEGER (2) 16 −32768 to 32767
unsigned int 16 0 to 65535
signed int 16 −32768 to 32767
short int 16 −32768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 −32768 to 32767
int/long int/INTEGER(4) 32 −2147483648 to 2147483647
signed long int 32 −2147483648 to 2147483647
float/REAL(4) 32 1.2× 10−38 to 3.4× 10+38

double/REAL(8) 64 2.2× 10−308 to 1.8× 10+308

long double 64 2.2× 10−308 to 1.8× 10+308

TFY4235/FYS8904 Computational Physics – ver2018 45 / 503

Typical limits for C/C++ and Fortran (on x86/x86 64)

How do we find these constants?

Fortran90 program:

program test_huge_tiny_epsilon
implicit none
write(*,*) huge(0), huge(0.0), huge(0.0d0)
write(*,*) tiny(0.0), tiny(0.0d0)
write(*,*) epsilon(0.0), epsilon(0.0d0)

end program test_huge_tiny_epsilon

Output:

˜/Tmp tux => gfortran huge_tiny.f90 -o test_tiny_huge_epsilon
˜/Tmp tux => test_tiny_huge_epsilon
2147483647 3.40282347E+38 1.7976931348623157E+308

1.17549435E-38 2.2250738585072014E-308
1.19209290E-07 2.2204460492503131E-016

TFY4235/FYS8904 Computational Physics – ver2018 46 / 503

Representation of Integers
From decimal to binary representation

How is an integer number represented in the computer?

an2n + an−12n−1 + an−22n−2 + · · ·+ a020.

In binary notation, we have e.g. (417)10 = (110100001)2 since

(110100001)2 = 1×28+1×27+0×26+1×25+0×24+0×23+0×22+0×22+0×21+1×20.

To see this, we have performed the following integer divisions by 2

417/2=208 remainder 1 coefficient of 20 is 1
208/2=104 remainder 0 coefficient of 21 is 0
104/2=52 remainder 0 coefficient of 22 is 0
52/2=26 remainder 0 coefficient of 23 is 0
26/2=13 remainder 1 coefficient of 24 is 0
13/2= 6 remainder 1 coefficient of 25 is 1
6/2= 3 remainder 0 coefficient of 26 is 0
3/2= 1 remainder 1 coefficient of 27 is 1
1/2= 0 remainder 1 coefficient of 28 is 1

TFY4235/FYS8904 Computational Physics – ver2018 47 / 503

Representation of floating-point numbers

A floating-point number, x , can be represented by:

x = (s,m,e)b = (−1)s ×m × be

s the sign: positive (s = 0) or negative (s = 1)
m the mantissa (significand or coefficient)
e the exponent
b the base: b = 2 (binary) or b = 10 (decimal)

Example : (1,12345,−3)10 = (−1)1 × 12345× 10−3 = −12.345

Warning

Floating point representations vary from machine to machine!
However, the IEEE 754 standard is quite common

TFY4235/FYS8904 Computational Physics – ver2018 48 / 503

Representation of floating-point numbers

Some of the many floating-point arithmetic standard and their adoption
Standard Architectures
IEEE 754 Intel x86, and all RISC systems4

VAX Compaq/DEC
IBM S/390 IBM (in 1998, IBM added an IEEE 754 option to S/390)
Cray X-MP, Y-MP, C-905

Observation
Safe to assume that most modern CPUs (99%(?)) are IEEE 754 compliant.
Only fairly exotic CPU architectures do today not use this standard!

4IBM Power and PowerPC, Compaq/DEC Alpha, HP PA-RISC, Motorola 68xxx and 88xxx, SGI
(MIPS) R-xxxx, Sun SPARC, and others)

5Other Cray models have been based on Alpha and SPARC processors with IEEE-754
arithmetic

TFY4235/FYS8904 Computational Physics – ver2018 49 / 503

Representation of floating-point numbers

In a typical computer base b = 2 (binary representation) is used and one puts
restrictions on m and e (imposed by the available word length).

The mantissa
the leftmost binary digit of m is 1
this means, m is normalized; moved to the left as far as possible
leading bit of m (always 1) is not stored
(24 bits information storeable in 23 bits)

The exponent
e is given uniquely from the requirements on m
add to e a machine dependent exponential bias e0 so that e + e0 > 0
one store e + e0 > 0 in the floating-point representation

TFY4235/FYS8904 Computational Physics – ver2018 50 / 503

Representation of floating-point numbers

Storage convention (for IEEE 754 floating-numbers)

x −→ | s︸︷︷︸
sign

| e + e0︸ ︷︷ ︸
exponent

| m − 1︸ ︷︷ ︸
mantissa

| = s e + e0 m-1

e + e0 is a positive integer

m the mantissa
m = (1.a−1a−2 . . . a−23)2 = 1× 20 + a−1× 2−1 + +a−2× 2−2 + · · ·+ a−23× 2−23

only the faction m − 1 of the mantissa is stored, i.e. the an ’s
the leading bit of m is not stored)
23 bits used to represent 24 bits of information when using single precision

Storage size

Size in bits used in the IEEE 754 standard (most modern computers)
Type Sign Exponent Mantissa Total bits Exponent bias Bits precision Decimal digits

Single 1 8 23 32 127 24 ∼7.2
Double 1 11 52 64 1024 53 ∼15.9
Quadruple 1 15 112 128 16383 113 ∼34.0

For more information see http://en.wikipedia.org/wiki/Floating_point
TFY4235/FYS8904 Computational Physics – ver2018 51 / 503

http://en.wikipedia.org/wiki/Floating_point

Representation of floating-point numbers
Some examples: IEEE 754 floating-points

Example 1 Single precision representation (IEEE 754) of x = 1/4

In single precision (32 bits), e0 = 127 and m is stored in 23 bits

x = 0.25 = 2−2 = (−1)

s︷︸︸︷
0 ×

m︷ ︸︸ ︷
(2−2 × 22)×2

e︷︸︸︷
−2

s = 0

m = (2−2 × 22)10 = (1.0000000000000000000000)2

e + e0 = −2 + 127 = 125 = (01111101)2

x −→ 0 01111101 0000000000000000000000

Exact (binary) representation exist for : x = 1/4

TFY4235/FYS8904 Computational Physics – ver2018 52 / 503

Representation of floating-point numbers
Some examples: IEEE 754 floating-points

Example 2

Single precision representation (IEEE 754) of x = 2/3

x =
2
3

= (−1)

s︷︸︸︷
0 ×

m︷ ︸︸ ︷
(2/3× 21)×2

e︷︸︸︷
−1

x = (0.10101010 . . .)2 = (1.0101010 . . .)2︸ ︷︷ ︸
m

×2−1

s = 0

m = (2/3× 21)10 = (1.01010101010101010 . . .)2

e + e0 = −1 + 127 = 126 = (01111110)2

x −→ 0 01111110 01010101010101010101011

Representation of x = 2/3 is an approximation!
TFY4235/FYS8904 Computational Physics – ver2018 53 / 503

Representation of floating-point numbers
Some examples: IEEE 754 floating-points

Example 3

Convert the following 32 bits (IEEE 754) binary number to decimal format:

x −→ 1 01111101 11101000000000000000000

This gives

s = 1
e + e0 = (01111101)2 = 125 ⇒ e = 125− 127 = −2

m = (1.11101000000000000000000)2

= 20 + 2−1 + 2−2 + 2−3 + 2−5 ≈ (1.906250)10

so that

x = (−1)s ×m × 2e = (−0.4765625 . . .)10

TFY4235/FYS8904 Computational Physics – ver2018 54 / 503

Representation of floating-point numbers
Extra material

In the decimal system we would write a number like 9.90625 in what is called
the normalized scientific notation.

9.90625 = 0.990625× 101,

and a real non-zero number could be generalized as

x = ±r × 10n,

with r a number in the range 1/10 ≤ r < 1. In a similar way we can use
represent a binary number in scientific notation as

x = ±q × 2m,

with q a number in the range 1/2 ≤ q < 1. This means that the mantissa of a
binary number would be represented by the general formula

(0.a−1a−2 . . . a−n)2 = a−1 × 2−1 + a−2 × 2−2 + · · ·+ a−n × 2−n.

TFY4235/FYS8904 Computational Physics – ver2018 55 / 503

Representation of floating-point numbers
Extra material

In a typical computer, floating-point numbers are represented in the way
described above, but with certain restrictions on q and m imposed by the
available word length. In the machine, our number x is represented as

x = (−1)s ×mantissa× 2exponent,

where s is the sign bit, and the exponent gives the available range. With a
single-precision word, 32 bits, 8 bits would typically be reserved for the
exponent, 1 bit for the sign and 23 for the mantissa.

TFY4235/FYS8904 Computational Physics – ver2018 56 / 503

Representation of floating-point numbers
Extra material

A modification of the scientific notation for binary numbers is to require that
the leading binary digit 1 appears to the left of the binary point. In this case
the representation of the mantissa q would be (1.f)2 and 1 ≤ q < 2. This form
is rather useful when storing binary numbers in a computer word, since we
can always assume that the leading bit 1 is there. One bit of space can then
be saved meaning that a 23 bits mantissa has actually 24 bits. This means
explicitely that a binary number with 23 bits for the mantissa reads

(1.a−1a−2 . . . a−23)2 = 1× 20 + a−1 × 2−1 + +a−2 × 2−2 + · · ·+ a−23 × 2−23.

As an example, consider the 32 bits binary number

(10111110111101000000000000000000)2,

where the first bit is reserved for the sign, 1 in this case yielding a negative
sign. The exponent m is given by the next 8 binary numbers 01111101
resulting in 125 in the decimal system.

TFY4235/FYS8904 Computational Physics – ver2018 57 / 503

Representation of floating-point numbers
Extra material

However, since the exponent has eight bits, this means it has 28 − 1 = 255
possible numbers in the interval −128 ≤ m ≤ 127, our final exponent is
125− 127 = −2 resulting in 2−2. Inserting the sign and the mantissa yields
the final number in the decimal representation as

−2−2 (1× 20 + 1× 2−1 + 1× 2−2 + 1× 2−3 + 0× 2−4 + 1× 2−5) =

(−0.4765625)10.

In this case we have an exact machine representation with 32 bits (actually,
we need less than 23 bits for the mantissa).
If our number x can be exactly represented in the machine, we call x a
machine number. Unfortunately, most numbers cannot and are thereby only
approximated in the machine. When such a number occurs as the result of
reading some input data or of a computation, an inevitable error will arise in
representing it as accurately as possible by a machine number.

TFY4235/FYS8904 Computational Physics – ver2018 58 / 503

How the computer performs elementary operations
Addition and subtraction

addition and subtraction
x1 ± x2 is performed by adjusting the smallest exponent to equal the largest,
add/subtract the scaled mantissas and multiply with the common exponent
factor

Assuming

x1 = (−1)s1m1 2e1 ; x2 = (−1)s2m2 2e2

with e1 ≥ e2, the addition/subtraction operations are performed as

x1 ± x2 = (−1)s1m1 2e1 ± (−1)s2m2 2e2

=
[
(−1)s1m1 ± (−1)s2m2 2e2−e1

]
2e1

The factor 2e2−e1 pushes the mantissa of the scaled number to the right,
causing loss of the least significant bits.

This phenomenon leads to round-off error, and is most pronounced when
operating on numbers of different magnitude.

TFY4235/FYS8904 Computational Physics – ver2018 59 / 503

How the computer performs elementary operations
Addition and subtraction

Example (assuming single (32 bits) precision)

y =(0.4765625)10 + (0.0000100)10

=(1.90625 · 2−2)10 + (1.31072 · 2−17)10

= 0 (125)10 (0.90625)10 + 0 (110)10 (0.31072)10

= 0 (125)10 (0.90625 + 1.31072 · 2−15)10

= 0 (125)10 (0.90625 + 0.00004)10

= 0 (125)10 (0.90629)10

TFY4235/FYS8904 Computational Physics – ver2018 60 / 503

How the computer performs elementary operations
Addition and subtraction

Using proper IEEE 754 floating point notation one gets

y =(0.4765625)10 + (0.0000100)10

= 0 01111101 11101000000000000000000 +

0 01101110 01001111100010110101100 (24 − 21 + 20 = 15)

= 0 01111101 11101000000000000000000 +

0 01111101 00000000000000101001111 100010110101100 (lost bits)

≈ 0 01111101 11101000000000101010000 (rounding)

Right shifting

Since the mantissa is 23 bits, and we need to shift to the right GREATER
THAN 23 bits in order to make the exponents equal (don’t forget the hidden
bit)

Converter : http://www.binaryconvert.com/result_float.html
TFY4235/FYS8904 Computational Physics – ver2018 61 / 503

http://www.binaryconvert.com/result_float.html

How the computer performs elementary operations
Addition and subtraction

Subtraction of almost identical numbers is dangerous (same for division)

Example (assuming single (32 bits) precision)

0 E 111 . . . 111 − 0 E 111. . . .110

= 0 E 000 . . . 001

= 0 E − 22 1000 . . . 000

Only 50% accuracy!

TFY4235/FYS8904 Computational Physics – ver2018 62 / 503

How the computer performs elementary operations
Addition and subtraction

Example : y = 1 + 2−23; 2−23 ≈ 1.19209289550781e − 07

y =(1)10 + (2−23)10

= 0 01111111 00000000000000000000000 +

0 01101000 00000000000000000000000

= 0 01111111 00000000000000000000001
=(1.00000012)10

Exponent used for scaling 2−23 : 24 + 22 + 21 + 20 = 23!

2−24 is numerical zero in single precision

Note : 1 + 2−24 is one to single precision (32 bits)!

TFY4235/FYS8904 Computational Physics – ver2018 63 / 503

Machine precision

Definition
The smallest number that can be added to 1 giving a result different from 1;
i.e. smallest x such that 1 + x > 1

This results in the following machine precision :
Single precision (32 bits) : 2−23 ≈ 1.1921 · 10−7 ∼ 10−7

Double precision (64 bits) : 2−52 ≈ 2.2204 · 10−16 ∼ 10−16

Quadruple precision (128 bits) : 2−112 ≈ 1.9259 · 10−34 ∼ 10−34

(non-standard)

Fortran90 has inquiry functions for these numbers
Single prec. : epsilon(1.0)
Double prec. : epsilon(1.0D0)!

TFY4235/FYS8904 Computational Physics – ver2018 64 / 503

How the computer performs elementary operations
Multiplication and division

Multiplication/division of two numbers

x1 = (−1)s1m1 2e1 ; x2 = (−1)s2m2 2e2

is done in the following way

x1 × x2 = [(−1)s1m1 2e1]× [(−1)s2m2 2e2]

= (−1)s1+s2 (m1m2) 2e1+e2

In other words, it is done as we would have done it in mathematics!

However, on the computer one also tests for overflow/underflow.

TFY4235/FYS8904 Computational Physics – ver2018 65 / 503

Loss of precision: Some examples

Problem : Calculate y =
cos (π/2)

x
accurately for some small value x

Direct calculation with x = 10−9 gives
Single prec : y = −43.7113876 Wrong
Double prec : y = 6.1232339957367658E − 8 6= 0 Inaccurate

TFY4235/FYS8904 Computational Physics – ver2018 66 / 503

Loss of precision: Some examples

Problem : For x = 0.0001 calculate

y1(x) =
1− cos x

sin x
, y2(x) =

sin x
1 + cos x

Analytically we have y1(x) = y2(x) which for the given value of x
approximates to ≈ 5.0000000041633333361 . . . × 10−5.

Calculation of y1(x)

Single prec : y1(x) = 0.00000000 Wrong
Double prec : y1(x) = 4.9999999779459782E − 005 Inaccurate

Calculation of y2(x)

Single prec : y2(x) = 4.99999987E − 05 Accurate
Double prec : y2(x) = 5.0000000041666671E − 005 Inaccurate

TFY4235/FYS8904 Computational Physics – ver2018 67 / 503

Loss of precision: Some examples

Problem : Solve the quadratic equation

ax2 + bx + c = 0

for parameters a = 1, b = 200, and c = −0.000015

The analytically solutions are x± =
−b ±

√
b2 − 4ac

2a
.

Real numerical result x− = −200.000000075 . . . and x+ = 0.000000075 . . .

Method 1: Brute force numerical calculation (in double prec.) gives

x− = −200.00000007500000 x+ = 7.500000︸ ︷︷ ︸
7 digits

2652814146︸ ︷︷ ︸
inaccurate

E − 008

Only x− is accurate!

TFY4235/FYS8904 Computational Physics – ver2018 68 / 503

Loss of precision: Some examples

Method 2: Rewrite the solution in the form

x− =
−b − sgn(b)

√
b2 − 4ac

2a
, x+ =

2c
−b − sgn(b)

√
b2 − 4ac

=
c

ax−

x− = −200.00000007500000 x+ = 7.49999999︸ ︷︷ ︸
9 digits

71874996E − 008

Now x+ has 2 extra correct digits!

What is the problem?
When b2 � 4ac like here, one has

x− : result OK
x+ : catastrophic cancellation

Reference :
D. Goldberg, What Every Computer Scientist Should Know About Floating-Point Arithmetic,
ACM Computing Surveys 23, 5 (1991).

TFY4235/FYS8904 Computational Physics – ver2018 69 / 503

Computer architectures

The main computer architectures of today are:
Distributed memory computers
Shared memory computers

TFY4235/FYS8904 Computational Physics – ver2018 70 / 503

Section 3

Finite differences and interpolation

TFY4235/FYS8904 Computational Physics – ver2018 71 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation
Finite difference approximations
Interpolation schemes
Differentiation schemes

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

TFY4235/FYS8904 Computational Physics – ver2018 72 / 503

Outline II
8 Numerical integration

9 Random numbers

10 Ordinary differential equations

11 Partial differential equations

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 73 / 503

How to approximate derivatives

The problem

the function f (x) is only known at a
set of discreet points xk

how can one then get information
about derivatives?

Some notation

xk = xk−1 + h = x0 + kh
fk ≡ f (xk)

fk+1 ≡ f (xk + h) etc

Motivation

f (2)(xk) =
fk+1 − 2fk + fk−1

h2 +O(h2)

TFY4235/FYS8904 Computational Physics – ver2018 74 / 503

How to approximate derivatives

Central difference approximation 1st order derivatives

f (1)(xk) =
fk+1 − fk−1

2h
+O(h2)

Forward difference approximation 1st order derivatives

f (1)(xk) =
fk+1 − fk

h
+O(h)

Backward difference approximation 1st order derivatives

f (1)(xk) =
fk − fk−1

h
+O(h)

Central difference approximation 2nd order derivatives

f (2)(xk) =
fk+1 − 2fk + fk−1

h2 +O(h2)

Forward difference approximation 2nd order derivatives

f (2)(xk) =
fk+2 − 2fk+1 + fk

h2 +O(h)

. . .

TFY4235/FYS8904 Computational Physics – ver2018 75 / 503

How to approximate derivatives

Some higher order finite central difference approximations:

1st order derivatives

f (1)(xk) =
−fk+2 + 8fk+1 − 8fk−1 + fk−2

12h
+O(h4)

2nd order derivatives

f (2)(xk) =
−fk+2 + 16fk+1 − 30fk + 16fk−1 − fk−2

12h2 +O(h4)

Question: How to obtain such approximations?

TFY4235/FYS8904 Computational Physics – ver2018 76 / 503

How to approximate derivatives

Say that we wanted a finite difference approximation to f (2)(xi) but now using
the three points xk , xk+1 and xk+2. How can this be done?
Write

f (2)(xk) = c0fk + c1fk+1 + c2fk+2 + ε(h)︸︷︷︸
error

To determine the c′k ’s, Taylor expand fk+n = f (xk+n) around xk to give the
system 1 1 1

0 h 2h
0 h2

2!
(2h)2

2!

c0
c1
c2

 =

0
0
1

 =⇒

c0
c1
c2

 =
1
h2

 1
−2
1


or

f (2)(xk) =
fk − 2fk+1 + fk+2

h2 +O(h)

3-point forward differences

TFY4235/FYS8904 Computational Physics – ver2018 77 / 503

Finite Difference Operators

Define the following finite difference operators

Forward differences

∆hfk = fk+1 − fk = ∆h[f](xk)

and higher-order differences obtained by induction [∆2
hfk = ∆h(∆hfk)]

∆n
hfk =

n∑
i=0

(−1)i
(

n
i

)
fk+n−i = ∆n

h[f](xk)

Backward differences

∇hfk = fk − fk−1 = ∇h[f](xk)

iterations gives

∇n
hfk =

n∑
i=0

(−1)i
(

n
i

)
fk−n+i = ∇n

h[f](xk)

TFY4235/FYS8904 Computational Physics – ver2018 78 / 503

Finite Difference Operators

Central differences

δhfk = fk+1/2 − fk−1/2 = δh[f](xk)

iterations gives

δn
h fk =

n∑
i=0

(−1)i
(

n
i

)
fk−n/2+i = δn

h [f](xk)

Note that for odd n e.g. fk+1/2 and fk−n/2+i are not known!

Solution, introduce the central average

µhfk =
1
2

(fk+1/2 + fk−1/2)

and note that

µhδhfk = µh
(
fk+1/2 − fk−1/2

)
=

1
2

(fk+1 − fk−1) =
δ2hfk

2

TFY4235/FYS8904 Computational Physics – ver2018 79 / 503

Finite Difference Operators

Definition of derivatives

f (1)(x) = lim
h→0

f (x + h)− f (x)

h
≡ lim

h→0

∆h[f](x)

h
.

Finite difference approximations to derivatives of order n can be obtained by

f (n)(x) =
dnf (x)

dxn =
∆n

h[f](x)

hn +O(h2) =
∇n

h[f](x)

hn +O(h2) =
δn

h [f](x)

hn +O(h2)

Higher-order differences can also be used to construct better approximations.
Examples :

f (1)(x) +O(h2) =
∆h[f](x)− 1

2 ∆2
h[f](x)

h
= − f (x + 2h)− 4f (x + h) + 3f (x)

2h

The best way to prove this is by Taylor expansion.

TFY4235/FYS8904 Computational Physics – ver2018 80 / 503

Finite Difference Operators

Finite-difference methods are numerical methods for approximating the
solutions to, e.g., differential equations using finite difference equations to
approximate derivatives. We will later see in detail how this can be done.

Example : The 1D Diffusion equation

ut = uxx

u(0, t) = u(1, t) = 0 (boundary condition)
u(x ,0) = u0(x) (initial condition)

Introducing u(xj , tn) = un
j , and using forward difference for time, and central

difference for the space, one gets

un+1
j − un

j

k
=

un
j+1 − 2un

j + un
j−1

h2 .

or the explicit equation (α = k/h2)

un+1
j = (1− 2α)un

j + αun
j−1 + αun

j+1

TFY4235/FYS8904 Computational Physics – ver2018 81 / 503

Forwards difference

Forwards difference

∆hfk = fk+1 − fk

Consequence, by iteration:

∆n
hfk =

n∑
i=0

(−1)i
(

n
i

)
fk+n−i

TFY4235/FYS8904 Computational Physics – ver2018 82 / 503

Backwards difference

Backwards difference

∇hfk = fk − fk−1

Consequence, by iteration:

∇n
hfk =

n∑
i=0

(−1)i
(

n
i

)
fk−n+i

TFY4235/FYS8904 Computational Physics – ver2018 83 / 503

Central difference

Central difference

δhfk = fk+1/2 − fk−1/2

Consequence, by iteration:

δn
h fk =

n∑
i=0

(−1)i
(

n
i

)
fk−n/2+i

But fn/2 is unknown for n odd! We introduce the central average.

Central average

µhfk =
1
2

(fk+1/2 + fk−1/2)

Substitute all odd central differences by central average of central
differences:

δhfk = fk+1/2 − fk−1/2 → µhδhfk =
1
2

(fk+1 − fk−1)

TFY4235/FYS8904 Computational Physics – ver2018 84 / 503

Interpolation schemes

How to get as closely as possible to f (x) for any x given f (xk) = fk ?

We define:
u =

x − xk

h
and: (

u
l

)
=

u(u − 1) · · · (u − l + 1)

l!

Be careful, since u is not necessarily an integer here!

TFY4235/FYS8904 Computational Physics – ver2018 85 / 503

Lagrange interpolation

Task : Given a set of N points, {(xn, yn)}N
n=1, and we want to find an

interpolating function for these points.

Lagrange interpolation is centered around constructing an interpolating
polynomial P(x) of order ≤ (N − 1) that passes through these points.
Lagrange interpolating polynomial reads

P(x) =
N∑

n=1

Pn(x)

where

Pn(x) = yn

N∏
k=1
k 6=n

x − xk

xn − xk

TFY4235/FYS8904 Computational Physics – ver2018 86 / 503

Lagrange interpolation

TFY4235/FYS8904 Computational Physics – ver2018 87 / 503

Splines

The term “spline” is used to refer to a wide class of functions that are
used in applications requiring data interpolation and/or smoothing
Spline interpolation is a form of interpolation where the interpolant is a
special type of piecewise polynomial called a spline
The data may be either one-dimensional or multi-dimensional

The splines are often chosen to be of a type that render derivatives
continuous

For details see https://en.wikipedia.org/wiki/Spline_(mathematics)

TFY4235/FYS8904 Computational Physics – ver2018 88 / 503

https://en.wikipedia.org/wiki/Spline_(mathematics)

Newton-Gregory forward interpolation scheme

Newton-Gregory forward interpolation scheme

Fm(x) = fk +
m∑

l=1

(
u
l

)
∆l

hfk +O(hm+1)

Fm is a polynomial of order m that passes through m tabulated points
(xk+i , fk+1), i ∈ J0; m − 1K

Here Fm(x) represents a mth order polynomial approximation to f (x) for any
coordinate x , i.e. Fm(x) ≈ f (x)!

TFY4235/FYS8904 Computational Physics – ver2018 89 / 503

Newton-Gregory forward interpolation scheme

Example m = 2:

F2(x) = fk +
∆hfk

h
(x − xk) +

∆2
hfk

2h2 (x − xk)(x − xk+1) +O(h3)

= fk +
1
h

(fk+1 − fk)(x − xk)

+
1

2h2 (fk+2 − 2fk+1 + fk)(x − xk)(x − xk+1) +O(h3)

In particular:

F2(xk) = fk
F2(xk+1) = fk+1

F2(xk+2) = fk+2

TFY4235/FYS8904 Computational Physics – ver2018 90 / 503

Newton-Gregory backward interpolation scheme

Newton-Gregory backward interpolation scheme

Fm(x) = fk +
m∑

l=1

(
u + l − 1

l

)
∇l

hfk +O(hm+1)

Example m = 2:

F2(x) = fk +
∇hfk

h
(x − xk) +

∇2
hfk

2h2 (x − xk)(x − xk−1) +O(h3)

TFY4235/FYS8904 Computational Physics – ver2018 91 / 503

Stirling interpolation scheme

Stirling interpolation scheme

F2n(x) = fk +
n∑

l=1

(
u + l − 1

2l − 1

)(
µhδ

2l−1
h fk +

u
2l
δ2l

h fk
)

+O(h2n+1)

Example n = 1:

F2(x) = fk +
µhδhfk

h
(x − xk) +

δ2
h fk

2h2 (x − xk)2 +O(h3)

This is the parabolic Stirling formula.

TFY4235/FYS8904 Computational Physics – ver2018 92 / 503

Difference quotients

It can be shown that

d
du

(
u
l

)
=

(
u
l

) l−1∑
i=0

1
u − i

d2

du2

(
u
l

)
=

{
0 if l = 1(u

l

)∑l−1
i=0
∑l−1

j=0
1

(u−i)(u−j) if l ≥ 2

These results will be useful when taking the derivatives of the
Newton-Gregory schemes as will be done now!

TFY4235/FYS8904 Computational Physics – ver2018 93 / 503

Difference Newton-Gregory forwards scheme

F ′m(x) =
1
h

m∑
l=1

∆l
hfk

(
u
l

) l−1∑
i=0

1
u − i

+O(hm)

F ′′m(x) =
1
h2

m∑
l=2

∆l
hfk

(
u
l

) l−1∑
i=0

l−1∑
j=0

1
(u − i)(u − j)

+O(hm−1)

If we set x = xk :

F ′m(xk) =
1
h

m∑
l=1

(−1)l−1 ∆l
hfk
l

+O(hm)

F ′′m(xk) =
1
h2

m∑
l=2

(−1)l+1 ∆l
hfk
l

l−1∑
i=1

1
i

+O(hm−1)

TFY4235/FYS8904 Computational Physics – ver2018 94 / 503

Difference Newton-Gregory for/back-wards scheme

Example: Difference NG forward scheme with m = 2:

F ′2(xk) =
1
h

(
∆hfk −

∆2
hfk
2

)
+O(h2)

=
1
h

(
−1

2
fk+2 + 2fk+1 −

3
2

fk

)
+O(h2)

Example: Difference NG backward scheme with m = 2:

F ′2(xk) =
1
h

(
∇hfk −

∇2
hfk
2

)
+O(h2)

=
1
h

(
3
2

fk − 2fk−1 +
1
2

fk−2

)
+O(h2)

TFY4235/FYS8904 Computational Physics – ver2018 95 / 503

Differential Stirling formula

It can be shown that

F ′2n(xk) =
1
h

(
µhδhfk −

1
6
µhδ

3
h fk +

1
30
µhδ

5
h fk −

1
140

µhδ
7
h fk + · · ·

)
+O(h2n)

F ′′2n(xk) =
1
h2

(
δ2

h fk −
1

12
δ4

h fk +
1
90
δ6

h fk −
1

560
δ8

h fk + · · ·
)

+O(h2n)

Note: in the DNGF and DNGB schemes, the error increases for each new
order of derivation. This does not happen in the DST scheme!

TFY4235/FYS8904 Computational Physics – ver2018 96 / 503

Differential Stirling formula

Example n = 1:

1st derivative

F ′2(xk) =
1
h
µhδhfk +O(h2)

=
1

2h
(fk+1 − fk−1) +O(h2)

2nd derivative

F ′′2 (xk) =
δ2

h fk
h2 +O(h2)

=
1
h2 (fk+1 − 2fk + fk−1) +O(h2)

Note: these results are the “standard” central difference approximations for
the 1st and 2nd derivatives

TFY4235/FYS8904 Computational Physics – ver2018 97 / 503

Why does it work so well?

Graphical representation (to come).

TFY4235/FYS8904 Computational Physics – ver2018 98 / 503

Section 4

Linear algebra

TFY4235/FYS8904 Computational Physics – ver2018 99 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra
Direct methods
Iterative methods
Singular value decomposition

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

TFY4235/FYS8904 Computational Physics – ver2018 100 / 503

Outline II
8 Numerical integration

9 Random numbers

10 Ordinary differential equations

11 Partial differential equations

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 101 / 503

Basic Matrix Features

Matrix Properties Reminder

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The inverse of a matrix is defined by

A−1 · A = I

TFY4235/FYS8904 Computational Physics – ver2018 102 / 503

Basic Matrix Features

Matrix Properties Reminder

Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT
)−1

real orthogonal
∑

k aik ajk =
∑

k akiakj = δij
A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji
A =

(
A†
)−1 unitary

∑
k aik a∗jk =

∑
k a∗kiakj = δij

TFY4235/FYS8904 Computational Physics – ver2018 103 / 503

Some famous Matrices

1 Diagonal if aij = 0 for i 6= j
2 Upper triangular if aij = 0 for i > j
3 Lower triangular if aij = 0 for i < j
4 Upper Hessenberg if aij = 0 for i > j + 1
5 Lower Hessenberg if aij = 0 for i < j + 1
6 Tridiagonal if aij = 0 for |i − j | > 1
7 Lower banded with bandwidth p aij = 0 for i > j + p
8 Upper banded with bandwidth p aij = 0 for i < j + p
9 Banded, block upper triangular, block lower triangular....

TFY4235/FYS8904 Computational Physics – ver2018 104 / 503

Basic Matrix Features

Some Equivalent Statements

For an N × N matrix A the following properties are all equivalent
1 If the inverse of A exists, A is nonsingular.
2 The equation Ax = 0 implies x = 0.
3 The rows of A form a basis of RN .
4 The columns of A form a basis of RN .
5 A is a product of elementary matrices.
6 0 is not eigenvalue of A.

TFY4235/FYS8904 Computational Physics – ver2018 105 / 503

Important Mathematical Operations

The basic matrix operations that we will deal with are addition and subtraction

A = B± C =⇒ aij = bij ± cij ,

scalar-matrix multiplication
A = γB =⇒ aij = γbij ,

vector-matrix multiplication

y = Ax =⇒ yi =
n∑

j=1

aijxj ,

matrix-matrix multiplication

A = BC =⇒ aij =
n∑

k=1

bik ckj ,

and transposition
A = BT =⇒ aij = bji

TFY4235/FYS8904 Computational Physics – ver2018 106 / 503

Important Mathematical Operations

Similarly, important vector operations that we will deal with are addition and subtraction

x = y± z =⇒ xi = yi ± zi ,

scalar-vector multiplication
x = γy =⇒ xi = γyi ,

vector-vector multiplication (called Hadamard multiplication)

x = yz =⇒ xi = yizi ,

the inner or so-called dot product resulting in a constant

x = yT z =⇒ x =
n∑

j=1

yjzj ,

and the outer product, which yields a matrix,

A = yzT =⇒ aij = yizj ,

TFY4235/FYS8904 Computational Physics – ver2018 107 / 503

Some notations before starting!

We will denote matrices and vectors by capital letters, and their
components by lowercase letters. Example: the matrix A, its element aij .
MM,N(R): set of real matrices of size M × N.
IN = 1MN (R) the identity matrix.

AT the transpose of the matrix A.
GLN(R): general linear group of matrices i.e. set of invertible real
matrices of size N.
ON(R): orthogonal group i.e. {M ∈ GLN(R),MT M = MMT = IN}
Sp(A): spectrum of A, i.e. the set of eigenvalues of A.
ker(A): kernel of A, i.e. ker(A) =

{
v ∈ RN |Av = 0

}

TFY4235/FYS8904 Computational Physics – ver2018 108 / 503

Linear algebra

The problem addressed in linear algebra
Solve the matrix system Ax = b, i.e.

a11x1 + a12x2 + · · ·+ a1NxN = b1

a21x1 + a22x2 + · · ·+ a2NxN = b2

...
aM1x1 + aM2x2 + · · ·+ aMNxN = bM

N unknowns, M equations.

TFY4235/FYS8904 Computational Physics – ver2018 109 / 503

Linear algebra

Three possibilities:
If N = M, two possible situations:

a unique solution exists and is given by x = A−1B
Some of the equations are linear combinations of others

A is a singular matrix
⇒ Degenerate problem.

For a degenerate problem the matrix A is singular i.e. cannot be inverted (in
the normal sense). The solution of Ax = b then consists of a particular
solution xp plus any linear combinations of zero-vectors x0

i such that
Ax0

i = 0.

x = xp +
D∑

i=1

cix0
i

D = dim (ker(A)) The particular solution xp can be found by the so-called

Moore-Pendose pseudoinverse, A+, also know as the generalized inverse.
The pseudoinverse always exists.

TFY4235/FYS8904 Computational Physics – ver2018 110 / 503

Linear algebra

If N > M, the equation set is also degenerate
If N < M, the system is overdetermined and probably no solution exists.

This is typically caused by the physical assumptions underlying the
equations not being compatible. However, it is still possible to find a best
solution given the circumstances.

TFY4235/FYS8904 Computational Physics – ver2018 111 / 503

Linear algebra

We now assume: A ∈ GLN(R) or A ∈ GLN(C) (i.e. M = N and A−1 exists).

Two classes of solvers
Direct solvers
Iterative solvers

When to use a Direct or an Iterative method to solve Ax = b?

Direct methods
will always find the solution
typically used for dense matrices
matrix inversion takes long
Lapack useful

Iterative methods
solution not necessarily found
(no convergence)
typically used for sparse
matrices
preconditioning useful
can be fast

TFY4235/FYS8904 Computational Physics – ver2018 112 / 503

Linear algebra

The most central methods in the two classes are:

Direct methods
Gauss elimination
LU decomposition
QR decomposition
Tridiagonal matrices
Toeplitz matrices

Iterative methods
Jacobi
Gauss-Seidel
SOR
Steepest descent
Powell
Conjugate gradient
BiCGStab
GMRES

TFY4235/FYS8904 Computational Physics – ver2018 113 / 503

Gauss elimination
Direct methods

The system we want to solve isa11 · · · a1N
...

. . .
...

aN1 · · · aNN


x1

...
xN

 =

b1
...

bN


Gauss elimination (row reduction)

1 Find the largest element in abs-value of the 1st column. If this is located
in row i , then switch the 1st and i th row in A, x, and b. (Partial pivoting)

2 Subtract from rows 2 to N in A and b row 1 multiplied by a suitable factor
such that so that ∀i ∈ [2; N] Ai1 = 0.

3 Repeat the above steps for 2nd column and rows up to N − 1, and so on.

After completing this GE-process, the resulting matrix is in an upper triangular
form.

TFY4235/FYS8904 Computational Physics – ver2018 114 / 503

Gauss elimination
Direct methods

The upper triangular form looks like this
a′11 a′12 · · · a′1N
0 a′22 · · · a′2N
...

.
...

0 · · · 0 a′NN




x ′1
x ′2
...

x ′N

 =


b′1
b′2
...

b′N



This system of equations is solved by backsubstitution

TFY4235/FYS8904 Computational Physics – ver2018 115 / 503

Gauss elimination
Direct methods

Backsubstitution 
a′11 a′12 · · · a′1N
0 a′22 · · · a′2N
...

.
...

0 · · · 0 a′NN




x ′1
x ′2
...

x ′N

 =


b′1
b′2
...

b′N


Solve the last equation first, then the next-to-last, and so on. . .

x ′N =
1

a′NN
b′N

x ′N−1 =
1

a′N−1 N−1

(
b′N−1 − a′N−1 Nx ′N

)
...

x ′i =
1

a′i i

b′i −
N∑

j=i+1

a′i jx
′
j


TFY4235/FYS8904 Computational Physics – ver2018 116 / 503

LU decomposition
Direct methods

Lower Upper (LU) decomposition with partial pivoting consists of writing A as

A = P−1LU

where P is a permutation matrix; L is lower triangular with unit diagonal, and
U is an upper triangular matrix6

In matrix notation this looks like (for N = 4 and assuming P = I)
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1

 ·


u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44



LU decomposition is often also called LUP due to the permutation matrix (P)

LUP decomposition is always possible and it is unique!

6LU decomposition introduced by Alan Turing.
TFY4235/FYS8904 Computational Physics – ver2018 117 / 503

LU decomposition
Direct methods

LU decomposition can be viewed as the matrix form of Gaussian elimination.

Several algorithms exist for performing LU decomposition

Crout and LUP algorithms
Doolittle algorithm
Closed formula

Numerical complexity of the LU decomposition

LU decomposition : 2N3/3
forward and backward substitution for solving a linear system: ∝ N2

TFY4235/FYS8904 Computational Physics – ver2018 118 / 503

LU decomposition
Direct methods

The LU decomposition of A is useful for many tasks

Solution of Ax = b
1 since A = P−1LU the system to solve is LUx = Pb
2 define y = Ux and solve Ly = Pb for y (forward substitution)
3 solve Ux = y for x (backward substitution)

We note that it is the LU decomposition that is the costly step
computationally.
To solve for several right-hand-sides is almost free in comparison.

Determinant |A|

|A| =
∣∣∣P−1

∣∣∣ |L| |U| = (−1)S

[
N∏

i=1

lii

]
︸ ︷︷ ︸

1

[
N∏

i=1

uii

]
= (−1)S

N∏
i=1

uii

where S is the no. exchanges in the decomposition

TFY4235/FYS8904 Computational Physics – ver2018 119 / 503

LU decomposition
Direct methods

Inverse matrix A−1

Solve the systems

Axn = bn forn = 1,2, . . . ,N

with bn zero everywhere, except at row n where it has value 1. The
inverse is then

A−1 = [x1,x2, . . . ,xN]

In practice this is solved as the matrix system AX = I so that X = A−1

TFY4235/FYS8904 Computational Physics – ver2018 120 / 503

LU decomposition
Direct methods

Recommendation: Dense matrix solver
LU decomposition (or LU factorization) is the workhorse for solving dense
matrix systems, finding determinants, and directly obtaining the matrix
inverse.

As a general advice, use the LU decomposition for dense matrices.

LAPACK
Do not implement the LU decomposition yourself, use the high performance
library LAPACK (which depend on BLAS)!
You simply can not beat an optimized version of this library!

LAPACK routines (LAPACK95 equivalents: la_getrs / la_getrf)
solve system (using LU decomp.) : sgetrs,dgetrs,cgetrs,zgetrs
LU factorization : sgetrf,dgetrf,cgetrf,zgetrf

TFY4235/FYS8904 Computational Physics – ver2018 121 / 503

la_getrs
la_getrf
sgetrs, dgetrs, cgetrs, zgetrs
sgetrf, dgetrf, cgetrf, zgetrf

QR decomposition

A general rectangular M-by-N matrix A has a QR decomposition into the
product of an orthogonal M-by-M square matrix Q (where QT Q = I) and an
M-by-N right-triangular (upper-triangular) matrix R,

A = QR

Usage

solving Ax = b by back-substitution
to compute an orthonormal basis for a set of vectors

The first N columns of Q form an orthonormal basis for the range of A,
rang(A), when A has full column rank.

TFY4235/FYS8904 Computational Physics – ver2018 122 / 503

Important Matrix and vector handling packages

LAPACK — Linear Algebra Package
http://www.netlib.org

The library provides routines for solving systems of linear equations and
linear least squares, eigenvalue problems, and singular value
decomposition.
routines to handle both real and complex matrices in both single and double
precision.
originally written in FORTRAN 77, but moved to Fortran 90 from version 3.2
(2008)
ScaLAPACK: Parallel (MPI) version
source code freely available
Fortran and C/C++ versions are available
LAPACK is based on the older LINPACK and EISPACK

LAPACK95 (for Fortran useres)
Generic and convenient (modern) Fortran interface to LAPACK
See: www.netlib.org/lapack95/

TFY4235/FYS8904 Computational Physics – ver2018 123 / 503

http://www.netlib.org
www.netlib.org/lapack95/

Important Matrix and vector handling packages

BLAS — Basic Linear Algebra Subprograms
http://www.netlib.org

routines that provide standard building blocks for performing basic vector
and matrix operations
highly (manufactured) optimized versions exist

(e.g. multi-threaded Intel MKL, or AMD ACML, or OpenBLAS libraries)
BLAS routines exist at 3 levels

BLAS I : vector operations
BLAS II : vector-matrix operations
BLAS III : III matrix-matrix operations.

also BLAS is freely available

GNU Scientific Library (GSL)
http://www.gnu.org/software/gsl/

general purpose numerical library (including linear algebra)
freely available
has BLAS support
written in C
C++ and Fortran wrappers exist

TFY4235/FYS8904 Computational Physics – ver2018 124 / 503

http://www.netlib.org
http://www.gnu.org/software/gsl/

Important Matrix and vector handling packages

Armadillo: C++ linear algebra library
http://arma.sourceforge.net/

optional integration with LAPACK
syntax (API) is deliberately similar to Matlab
library is open-source software

For C++ users, Armadillo is a useful tool!

TFY4235/FYS8904 Computational Physics – ver2018 125 / 503

http://arma.sourceforge.net/

Important Matrix and vector handling packages
Armadillo, recommended!!

Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good
balance between speed and ease of use. The syntax is deliberately similar to
Matlab.

Integer, floating point and complex numbers are supported, as well as a subset of
trigonometric and statistics functions. Various matrix decompositions are
provided through optional integration with LAPACK, or one of its high performance
drop-in replacements (such as the multi-threaded MKL or ACML libraries).

A delayed evaluation approach is employed (at compile-time) to combine several
operations into one and reduce (or eliminate) the need for temporaries. This is
accomplished through recursive templates and template meta-programming.

Useful for conversion of research code into production environments, or if C++
has been decided as the language of choice, due to speed and/or integration
capabilities.

The library is open-source software, and is distributed under a license that is
useful in both open-source and commercial/proprietary contexts.

TFY4235/FYS8904 Computational Physics – ver2018 126 / 503

Important Matrix and vector handling packages
Using libraries

Examples of compiling a program (on unix) that requires the use of a library

g++ -O2 -o RunMe program.cpp -larmadillo -llapack -lblas

gfortran -Imypath program.f90 -Lmylibpath -lmylib -llapack -lblas

Options

-l : library you wish to link to!
-L : search path for libraries
-I : search path for include files
-O2 : optimization flag

TFY4235/FYS8904 Computational Physics – ver2018 127 / 503

Important Matrix and vector handling packages
Armadillo, simple examples

#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;

int main(int argc, char** argv)
{
// directly specify the matrix size (elements are uninitialised)
mat A(2,3);
// .n_rows = number of rows (read only)
// .n_cols = number of columns (read only)
cout << "A.n_rows = " << A.n_rows << endl;
cout << "A.n_cols = " << A.n_cols << endl;
// directly access an element (indexing starts at 0)
A(1,2) = 456.0;
A.print("A:");
// scalars are treated as a 1x1 matrix,
// hence the code below will set A to have a size of 1x1
A = 5.0;
A.print("A:");
// if you want a matrix with all elements set to a particular value
// the .fill() member function can be used
A.set_size(3,3);
A.fill(5.0); A.print("A:");

TFY4235/FYS8904 Computational Physics – ver2018 128 / 503

Important Matrix and vector handling packages
Armadillo, simple examples

mat B;

// endr indicates "end of row"
B << 0.555950 << 0.274690 << 0.540605 << 0.798938 << endr

<< 0.108929 << 0.830123 << 0.891726 << 0.895283 << endr
<< 0.948014 << 0.973234 << 0.216504 << 0.883152 << endr
<< 0.023787 << 0.675382 << 0.231751 << 0.450332 << endr;

// print to the cout stream
// with an optional string before the contents of the matrix
B.print("B:");

// the << operator can also be used to print the matrix
// to an arbitrary stream (cout in this case)
cout << "B:" << endl << B << endl;
// save to disk
B.save("B.txt", raw_ascii);
// load from disk
mat C;
C.load("B.txt");
C += 2.0 * B;
C.print("C:");

TFY4235/FYS8904 Computational Physics – ver2018 129 / 503

Important Matrix and vector handling packages
Fortran90 examples

program f90_example
implicit none
integer, parameter :: N=100
integer, parameter :: wp=kind(1.0)
real(wp) :: one
real(wp), dimension(N,N) :: A, B, C
real(wp), dimension(N*N) :: vec

! Fill A and B with uniform random numbers [0,1>
call random_number(A)
call random_number(B)

! declare a variable
one = 1._wp

! Adding element wise
C = A + B

! Matrix multiplication
C = matmul(A,B)

! convert matrix to vector
vec = reshape(A, [N*N])

! sum of elements
Write(*,*) " Sum of A elements : ", sum(A), sum(abs(A-0.5_wp))

end program f90_example

TFY4235/FYS8904 Computational Physics – ver2018 130 / 503

Iterative methods

Typically, a physical problem will be formulated by the interactions between N
objects. Each object i is characterized by a variable xi , and depends on the
state of n other objects. Hence, we have

x1 = f1
(
x1(1), x2(1), · · · , xn(1)

)
x2 = f2

(
x1(2), x2(2), · · · , xn(2)

)
...

xN = fN
(
x1(N), x2(N), · · · , xn(N)

)
If this is a linear problem, it is on the form:

xi = bi +
∑

j∈n(i)

cijxj , i = 1,2, . . . ,N

This can be formulated as Ax = b.

When n� N, the corresponding matrix A is sparse.

TFY4235/FYS8904 Computational Physics – ver2018 131 / 503

Iterative methods
General comments

Objective of iterative methods:
to construct a sequence {x (k)}∞k=1, so that x (k) converges to a fixed
vector x?, where x? is the solution of the problem (e.g. a linear system)

General iteration idea
Say that we want to solve the equations

g(x) = 0,

and the equation x = f (x) has the same solution as it, then construct

x (k+1) = f (x (k)).

If x (k) → x?, then x? = f (x?), and the root of g(x) = 0 is obtained.

When this strategy is applied to Ax = b, the functions f (·) and g(·) are linear
operators.

TFY4235/FYS8904 Computational Physics – ver2018 132 / 503

Iterative methods
Some terminology

Some terminology for solving the system Ax = b iteratively

Let x be the exact solution, and {x (k)} a sequence of approximations to this
solution. Then one defines

The residual

R(k) = b − Ax (k)

The error

e(k) = x (k) − x

The rate of convergence

r (k+1) =
‖e(k+1)‖
‖e(k)‖

r̃ (k+1) =
‖e(k+1) − e(k)‖
‖e(k)‖ =

‖x (k+1) − x (k)‖
‖x (k) − x‖

for a suitable ‖ · ‖ norm
TFY4235/FYS8904 Computational Physics – ver2018 133 / 503

Iterative methods

Basic idea behind iterative methods for solving Ax = b

Start with an initial guess for the solution x (0).
Obtain x (k+1) from the knowledge of x (k) for k = 0,1, . . .
If ‖Ax (k) − b‖ −−−→

k→∞
0 then x (k) −−−→

k→∞
x ; the solution of Ax = b is found

The two main classes of iterative methods (for linear systems) are:

Stationary iterative methods

Jacobi
Gauss-Seidel
SOR

Krylov subspace methods
Conjugate gradient
BiCGStab
GMRES
Steepest descent
Powell

TFY4235/FYS8904 Computational Physics – ver2018 134 / 503

Jacobi algorithm

The Jacobi iteration method is one of the oldest and simplest methods

Decompose the matrix A as follows

A = D + L + U,

where
D is diagonal
L and U are strict lower and upper triangular matrices

D =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · aNN

 , L =


0 0 · · · 0

a21 0 · · · 0
...

...
. . .

...
aN1 aN2 · · · 0

 , U =


0 a12 · · · a1N

0 0 · · · a2N
...

...
. . .

...
0 0 · · · 0

 .

TFY4235/FYS8904 Computational Physics – ver2018 135 / 503

Jacobi algorithm

Jacobi iteration scheme

x (k+1) = D−1
[
b − (L + U) x (k)

]
, k = 0,1,2, . . . ,

which in component form reads

x (k+1)
i =

1
aii

[
bi −

∑
j 6=i

aijx
(k)
j

]
, i = 1,2, . . . ,N.

If the matrix A is positive definite (xT Ax > 0) or diagonally dominant
(|aii | ≥

∑
j 6=i |aij | ∀i), one can show that this method will always converge to

the exact solution.

TFY4235/FYS8904 Computational Physics – ver2018 136 / 503

Other iterative methods

Sketch of the derivation

Let x be the exact solution of Ax = b, x ′ the approximation and δx the error

x︸︷︷︸
solution

= x ′︸︷︷︸
guess

+ δx︸︷︷︸
error

Substituting this expression into Ax = b gives

A (x ′ + δx) = b
A δx = b − Ax ′

This equation is the starting point for an iterative algorithm.

A
(

x (k+1) − x (k)
)

︸ ︷︷ ︸
δx

= b − A x (k)︸︷︷︸
x ′

It is not practical to use this expression since we need A−1 to find x (k+1) when
we know x (k).

TFY4235/FYS8904 Computational Physics – ver2018 137 / 503

Other iterative methods

However, all we need is ‖x (k+1) − x (k)‖ −−−→
k→∞

0.

Hence, we need to find a matrix M that also is simple to invert, and replace A
on the left-hand-side by M to get the scheme

M
(

x (k+1) − x (k)
)

= b − Ax (k)

or after solving for x (k+1)

x (k+1) = M−1
[
b − (A−M) x (k)

]
The simplest choice is M = D and corresponds to the Jacobi iteration scheme.

Other choices for M will give raise to other iterative methods (as we will see)!

TFY4235/FYS8904 Computational Physics – ver2018 138 / 503

Other iterative methods

Spectral radius
The spectral radius of a matrix A is defined as

ρ(A) = max
λ
|λ(A)|

Theorem (Spectral radius and iterative convergence)
If A ∈ Rn, then

lim
k→∞

Ak = 0⇐⇒ ρ(A) < 1

TFY4235/FYS8904 Computational Physics – ver2018 139 / 503

Other iterative methods

Convergence analysis for the general case

Linear system Ax = b
Iterative solution : x (k+1) = Bx (k) + c
Exact solution : x? = Bx? + c
B is known as the iteration matrix

Subtracting the two latter equations gives (e(k) = x (k) − x?)

e(k+1) = Be(k)

which by induction leads to

e(k) = Bk e(0) ⇐⇒ ‖e(k)‖ = ρk (B)‖e(0)‖ (when k →∞)

This means that

e(k) → 0⇐⇒ Bk → 0⇐⇒ ρ(B) < 1

This is the convergence criterion for general iterations.

TFY4235/FYS8904 Computational Physics – ver2018 140 / 503

Gauss-Seidel relaxation

Jacobi method

x (k+1)
1 =(b1 − a12x (k)

2 − a13x (k)
3 − a14x (k)

4)/a11

x (k+1)
2 =(b2 − a21x (k)

1 − a23x (k)
3 − a24x (k)

4)/a22

x (k+1)
3 =(b3 − a31x (k)

1 − a32x (k)
2 − a34x (k)

4)/a33

x (k+1)
4 =(b4 − a41x (k)

1 − a42x (k)
2 − a43x (k)

3)/a44,

Idea: Update each component of x (k)
i sequentially with the most updated

information available

x (k+1)
1 = (b1 − a12x (k)

2 − a13x (k)
3 − a14x (k)

4)/a11

x (k+1)
2 = (b2 − a21x (k+1)

1 − a23x (k)
3 − a24x (k)

4)/a22

x (k+1)
3 = (b3 − a31x (k+1)

1 − a32x (k+1)
2 − a34x (k)

4)/a33

x (k+1)
4 = (b4 − a41x (k+1)

1 − a42x (k+1)
2 − a43x (k+1)

3)/a44

This procedure leads to the Gauss-Seidel method and improves normally the
convergence behavior.

TFY4235/FYS8904 Computational Physics – ver2018 141 / 503

Gauss-Seidel relaxation

In component form one has

x (k+1)
i =

1
aii

[
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

]
, i = 1,2, . . . ,N.

Formally the Gauss-Seidel method corresponds to choosing M = D + L (see
previous equations under the Jacobi method)

M
(

x (k+1) − x (k)
)

= b − Ax (k)

(D + L) x (k+1) = b − Ux (k) (1)

where we in the last transition have recalled that A = D + L + U.

To solve Eq. (1) for x (k+1), one inverts D + L by forward substitution

The iteration matrix is G = (D + L)−1 U

Typically ρGS(G) < ρJ(J)

TFY4235/FYS8904 Computational Physics – ver2018 142 / 503

Gauss-Seidel relaxation

When will we have convergence?:

Both Jacobi and Gauss-Seidel require ρ(M) < 1 to converge, i.e. the
spectral radius of the respective iteration matrices is less than one

For instance, this means that both methods converge when the matrix A
is symmetric, positive-definite, or is strictly or irreducibly diagonally
dominant.

Both methods sometimes converge even if these conditions are not
satisfied.

TFY4235/FYS8904 Computational Physics – ver2018 143 / 503

Successive Over Relaxation (SOR)

SOR is an efficient algorithm that should be considered.

Idea: x (k+1) is a weighted average of x (k) and x (k+1)
GS

x (k+1) = ωx (k+1)
GS + (1− ω)x (k) (2)

where ω is the relaxation parameter
The special case ω = 1 corresponds to the Gauss-Seidel method
choose ω to accelerate the rate of convergence of the SOR method

In terms of components we have

x (k+1)
i =

ω

aii

[
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

]
+ (1− ω)x (k)

i , i = 1,2, . . . ,N.

TFY4235/FYS8904 Computational Physics – ver2018 144 / 503

Successive Over Relaxation (SOR)

The matrix form of the SOR method is obtained from (i = 1,2, . . . ,N)

x (k+1)
i =

ω

aii

[
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

]
+ (1− ω)x (k)

i ,

by multiplying with aii and rearranging to get

aiix
(k+1)
i + ω

∑
j<i

aijx
(k+1)
j = ωbi − ω

∑
j>i

aijx
(k)
j + aii (1− ω)x (k)

i

which in matrix notation may be expressed as

(D + ωL) x (k+1) = ωb − [ωU + (ω − 1)D] x (k).

This implies that the iteration matrix for the SOR method is

S = − (D + ωL)−1 [ωU + (ω − 1)D] .

Normally one finds

ρ(S) < ρ(G) < ρ(J),

i.e. the SOR method converges faster than the Gauss-Seidel and Jacobi
methods

TFY4235/FYS8904 Computational Physics – ver2018 145 / 503

Successive Over Relaxation (SOR)

Question: What value to choose for ω?

The SOR-sequence converges for 0 < ω < 2 [Kahan (1958)]
Optimal value for ω

ω =
2

1 +
√

1− ρ(J)2
,

but this value is not known in advance

Frequently, some heuristic estimate is used, such as

ω = 2−O(h)

where h is the mesh spacing of the discretization of the underlying
physical domain.

TFY4235/FYS8904 Computational Physics – ver2018 146 / 503

Successive Over Relaxation (SOR)

Alternative, motivation for the SOR iteration formula!

Starting from the linear system

Ax = b,

multiplying by ω and adding Dx to both sides of the equation, leads to

(D + ωL) x = ωb − [ωU + (ω − 1)D] x

after some trivial manipulation

This equation is the starting point for an iterative scheme — the SOR method!

TFY4235/FYS8904 Computational Physics – ver2018 147 / 503

Examples :Iterative solvers

Problem: Solve the one-dimensional Poisson equation

∇2φ(x) = s(x) ≡ x(x + 3) exp(x) 0 ≤ x ≤ 1

with boundary conditions φ(0) = φ(1) = 0.

Numerical solution : In order to solve this problem numerically we discretize

x → {xn}N
n=1, ∆x = 1/(N − 1)

φ(x)→ φ(xn) ≡ φn

Using central differences to approximate the 2nd derivative of the potential at
some internal point xn, the equation satisfied by the φn’s is

φn+1 − 2φn + φn−1

(∆x)2 = s(xn) n = 2,3, . . . ,N − 1

TFY4235/FYS8904 Computational Physics – ver2018 148 / 503

Examples

Defining the vector x = [φ2, φ3, . . . , φN−1]T results in the tridiagonal system

Ax = b,

where

A =


2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . . 0
0 0 . . . −1 2

 b = −(∆x)2



s(x2)
s(x3)

...

...
s(xN−1)

 .

It is this system of equations we will need to solve!

Direct solvers for tridiagonal systems (LAPACK): sgttrs, dgttrs, cgttrs, zgttrs

TFY4235/FYS8904 Computational Physics – ver2018 149 / 503

Examples

Exact solution

φ(x) = x(x − 1) exp(x)

Solution φ(x)

0 0.2 0.4 0.6 0.8 1
x

-0.5

-0.4

-0.3

-0.2

-0.1

0

φ
(x
)

Exact
Jacobi

No. of iterations

0 1000 2000 300010
-6

10
-4

10
-2

10
0

10
2

SOR no iter. 160 (ω=1.9)

Gauss-Seidel " 1548
Jacobi " 3088

Parameters: N = 33; tolerance: ‖b − Ax‖ < 10−6; x (0) = 0

Direct solvers for tridiagonal systems (LAPACK): sgttrs, dgttrs, cgttrs, zgttrs

TFY4235/FYS8904 Computational Physics – ver2018 150 / 503

Krylov subspace methods

TFY4235/FYS8904 Computational Physics – ver2018 151 / 503

Krylov subspace methods

Krylov subspace methods are also know as conjugate gradient methods!

What is a Krylov space?
In linear algebra, the order-r Krylov subspace generated by an N × N matrix
A and a vector b of dimension N is the linear subspace spanned by the
images of b under the first r − 1 powers of A (starting from A0 = I), that is

Kr (A,b) = span {b,Ab,A2b, . . . ,Ar−1b}.

Working principle
Krylov subspace methods work by forming a basis of the sequence of
successive matrix powers times the initial residual (the Krylov sequence). The
approximations to the solution are then formed by minimizing the residual over
the subspace formed.
The prototypical method in this class is the conjugate gradient method (CG).
Other methods are the generalized minimal residual method (GMRES) and
the biconjugate gradient Stabilized method (BiCGStab).

TFY4235/FYS8904 Computational Physics – ver2018 152 / 503

Steepest descent

Task : Minimize the function f (x i)!

Philosophy of the Steepest decent method

Start at some point x0. As many times as needed, move from point x i to point
x i+1 by minimizing along the line from x i in the direction of the local downhill
gradient −∇f (x i)

However, as we will see, this simple strategy is not very efficient, but a
modified version of the main idea is!

TFY4235/FYS8904 Computational Physics – ver2018 153 / 503

Steepest descent

The steepest decent strategy applied to the solution of the linear system
Ax = b

Assume A to be symmetric and positive definite7.
Define the function f (·) — a quadratic form

f (x) =
1
2

xT Ax − x · b, f : RN → R+

=
1
2
〈x ,Ax〉 − 〈x ,b〉

f (x) has a minimum when (remember A is symmetric):

∇f (x) = Ax − b = 0

The solution of Ax = b corresponds to the minimum of f .

7That is A is symmetric and xT Ax > 0, or equivalently, all its eigenvalues are positive
(∀x ∈M∗N,1, xT Ax > 0 ⇔ Sp(A) ⊂]0; +∞[)

TFY4235/FYS8904 Computational Physics – ver2018 154 / 503

Cauchy steepest descent method

The algorithm
1 Choose an initial vector x0.
2 If ∇f (xk) 6= 0 move in the direction of dk = −∇f (xk).
3 Stop at the minimum along direction dk , i.e. solve:

d
dαk

f (xk + αk dk) = 0 =⇒ αk =
dk · rk

dT
k Adk

[rk = b − Axk]

4 Define new minimizer : xk+1 = xk + αk dk

5 Let k → k + 1 and repeat the above steps

Comment : the method can be generalized to matrices A that are not symmetric and positive definite. One

simply applies the algorithm to the linear system AT Ax = AT b instead; However, better to use more

sophisticated methods (since AT A is badly conditioned)!

TFY4235/FYS8904 Computational Physics – ver2018 155 / 503

Cauchy steepest descent method

Steepest decent

Solving Ax = b ⇐⇒ Finding the minimum of f (x)

A and b contain N(N + 1)
parameters
no. of minimizations ∼ N2

Problem:
Changes in direction are all orthogonal to each other
otherwise xk+1 = xk + αk dk would not be a minimum along direction dk = −∇f (xk)

Result : zig-zag steps

TFY4235/FYS8904 Computational Physics – ver2018 156 / 503

“Ordinary” Conjugate Gradient (CG) method

Assumption: A is symmetric and positive-definite

Idea: similar to the steepest decent (SD) method, but with more optimal
directions dk ; CG uses conjugate directions (A-orthogonal) dT

i Ad j = 0.

Algorithm :
1 Initial guess x0; get residual r0 = b − Ax0 and define direction d0 = r0.
2 For k = 1,2, . . . do

αk =
rk · rk

dT
k Adk

xk+1 = xk + αk dk (improved minimizer)
rk+1 = rk − αk Adk (new residual)

βk+1 =
rk+1 · rk+1

rk · rk

dk+1 = rk+1 + βk+1dk (new search direction)

3 Stop when ‖rk+1‖ < ε or k = Nmax; else k → k + 1 and repeat step 2
For details see: http://www.cs.cmu.edu/˜quake-papers/painless-conjugate-gradient.pdf

TFY4235/FYS8904 Computational Physics – ver2018 157 / 503

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

“Ordinary” Conjugate Gradient (CG) method

Comments
CG completes after N iterations (exact arithmetic’s) [if A is positive-definite]

In practice, set max. no. of interactions to 2N due to roundoff errors

The search directions are built from the residuals

Search directions are orthogonal to previous residuals, i.e. orthogonal to
the (Krylov) space spanned by previous residuals

This means that we will find the minimum of f (x) — the solution to Ax = b
— in maximum N iterations

Note: If A = AT is symmetric, but not necessarily positive-definite, the
CG method is still found in practice to work well

However, the convergence in N steps is no longer guaranteed (not even in
theory)

TFY4235/FYS8904 Computational Physics – ver2018 158 / 503

“Ordinary” Conjugate Gradient (CG) method

The vectors rk and dk satisfy (can be shown)

r i · r j = 0, i < j orthogonality
r i · d j = d i · r j = 0, i < j mutual orthogonality

dT
i A · d j = 0, i < j conjugacy

Better name for the method may have been : Conjugate Directions
(since the all gradients (or residuals), ∇f (xk) = −rk , are not conjugate)

TFY4235/FYS8904 Computational Physics – ver2018 159 / 503

“Ordinary” Conjugate Gradient (CG) method

How the CG method works

TFY4235/FYS8904 Computational Physics – ver2018 160 / 503

Biconjugate Gradient (BiCG) method

Assumption : A is a general N × N matrix, i.e. A ∈MN(F) with , F = R,C

Algorithm :
1 Initial guess x0; get residual r0 and define r̄0 = d0 = d̄0.
2 For k = 1,2, . . . do

αk =
r̄k · rk

d̄
T
k Adk

xk+1 = xk + αk dk (improved minimizer)
rk+1 = rk − αk Adk (new residual)

r̄k+1= r̄k − αk AT d̄k

βk+1 =
r̄k+1 · rk+1

r̄k · rk

dk+1 = rk+1 + βk+1dk (new search direction)

d̄k+1= r̄k+1 + βk+1d̄k

3 Stop when ‖rk+1‖ < ε or k = Nmax; else k → k + 1 and repeat step 2

TFY4235/FYS8904 Computational Physics – ver2018 161 / 503

Biconjugate Gradient (BiCG) method

The vectors rk , dk , r̄k , and d̄k , (can be shown) to satisfy for i < j

r̄ i · r j = r i · r̄ j = 0 biorthogonality

r̄ i · d j = r i · d̄ j = 0 mutual orthogonality

d̄
T
i Ad j = dT

i AT d̄ j = 0 biconjugacy

Observations
The algorithm constructs two vector sets {rk ,dk} and {r̄k , d̄k}
BiCG→ CG when A = AT and r̄k = rk and d̄k = dk

No equivalent minimization problem exist (like for the CG)

Even in theory, the iteration scheme is not guaranteed to converge, but
this is rare in practice!

TFY4235/FYS8904 Computational Physics – ver2018 162 / 503

Biconjugate Gradient Stabilized method (BiCGStab)

Recommended modern implementation:

Biconjugate Gradient Stabilized method (BiCGStab)

A variant of the biconjugate gradient method (BiCG) but with faster and
smoother convergence [1,2].

BiCGStab can be viewed as a combination of BiCG and GMRES (to be
discussed later) where each BiCG step is followed by a GMRES(1) step.

References

1 H.A. van der Vorst, SIAM J. Sci. Stat. Comput. 13, 631 (1992) doi:10.1137/0913035

2 Y. Saad, (2003). “Iterative Methods for Sparse Linear Systems” (2nd ed.), paragraph 7.4.2 “BICGSTAB”,
SIAM. pp. 231. (2003) doi:10.2277/0898715342

3 See also : http://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method

TFY4235/FYS8904 Computational Physics – ver2018 163 / 503

doi:10.1137/0913035
doi:10.2277/0898715342
http://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method

Minimum residual method (MINRES)

Assumption: A symmetric

Discussion: If we try to minimize the function

Φ(x) =
1
2

r · r =
1
2
|Ax − b|2 ,

instead of the quadratic form, f (x), done in the CG method, the MINRES
method results.

Note that

∇Φ(x) = AT (Ax − b) = −Ar

Algorithm: similar to the BiCG algorithm, but choose
r̄k = Ark and d̄k = Adk

BiCG→ CG but with a · b replaced by aT Ab

TFY4235/FYS8904 Computational Physics – ver2018 164 / 503

Generalized minimum residual method (GMRES)

Assumption : A is a general nonsymmetric matrix

Generalized Minimum Residual method (GMRES)

Generalization and extension of the MINRES to nonsymmetric general
matrices. The method is fairly robust!

GMRES approximates the exact solution of Ax = b by the vector
xk ∈ Kk (A, r0) that minimizes the Euclidean norm of the residual
‖rk‖ = ‖b − Axk‖.
Also GMRES should converge to the solution (in theory) after N iterations

The cost of the iterations grows as O(k2), where k is the iteration number

GMRES is therefore often “restarted” after m steps =⇒ GMRES(m)

References
1 Y. Saad, “Iterative Methods for Sparse Linear Systems, 2nd edition, Society for Industrial and Applied

Mathematics, 2003.
2 See also : http://en.wikipedia.org/wiki/Generalized_minimal_residual_method

TFY4235/FYS8904 Computational Physics – ver2018 165 / 503

http://en.wikipedia.org/wiki/Generalized_minimal_residual_method

Preconditioning

GOAL : Transform the system matrix to a simpler form (closer to the identity
matrix), so that fewer iterations will be needed to find the solution

How can this be done?
The system

Ax = b

can be preconditioned with left (PL) and right (PR) precondition matrices as

PLAP−1
R PRx = PLb

In general, a good preconditioner should meet the following requirements:
The preconditioned system should be easy to solve
The preconditioner should be cheap to construct and apply

Ref: Journal of Computational Physics 182, 418 (2002)

http://www.mathcs.emory.edu/˜benzi/Web_papers/survey.pdf

TFY4235/FYS8904 Computational Physics – ver2018 166 / 503

http://www.mathcs.emory.edu/~benzi/Web_papers/survey.pdf

Preconditioning

Iterative solvers are typically combined with preconditonrs

GOAL : to reduce the condition number of the left or right preconditioned
system matrix

Instead of solving the original linear system Ax = b, one may solve either the
right preconditioned system:

AP−1Px = b

via solving

AP−1y = b

for y and

Px = y

for x ; or the left preconditioned system:

P−1(Ax − b) = 0

both of which give the same solution as the original system as long as the
preconditioning matrix P is nonsingular.

TFY4235/FYS8904 Computational Physics – ver2018 167 / 503

Preconditioning

Examples of preconditioners:

Jacobi (or diagonal)
[P = diag(A)]
Sparse Approximate Inverse
Incomplete Cholesky
factorization
Incomplete LU factorization

Successive over-relaxation
Symmetric successive
over-relaxation
Multigrid
Fourier Acceleration

Which method to use depend on the problem at hand, and the computational
cost of P−1!

Hence, no general best answer exists!

TFY4235/FYS8904 Computational Physics – ver2018 168 / 503

Fourier acceleration

Examples : a random resistor network — Phys. Rev. Lett. 57, 1336 (1986).

A

B

I

i
j

variable conductance
from link to link: gij

Vk

Figure: Resistor network.

TFY4235/FYS8904 Computational Physics – ver2018 169 / 503

Fourier acceleration
The Kirchhoff equations: ∑

j

gij (Vi − Vj) + Ii = 0

with

Ii =

{
0 if i 6= A,B
I if i = A,B

On matrix form
GV + I = 0

A very simple iterative process to solve this equation, is to set

dV
dt

= GV + I

Solution of the problem as t →∞

dV
dt
→ 0

TFY4235/FYS8904 Computational Physics – ver2018 170 / 503

Fourier acceleration

Now, imagine all gij = 1 (they are in general not!) so that we have:∑
j

(Vi − Vj) + Ii = 0

Details to be presented on the backboard!

TFY4235/FYS8904 Computational Physics – ver2018 171 / 503

Recommended methods for solving linear systems

Our recommendations are

Direct solvers
LU-decomposition and backsubsitution (use LAPACK/BLAS)!

Iterative solvers
A = AT symmetric

Conjugate Gradient (CG)
A is a general matrix

Biconjugate Gradient Stabilized method (BiCGStab)
Generalized minimum residual method (GMRES)

For iterative solvers, try out various preconditioners!

TFY4235/FYS8904 Computational Physics – ver2018 172 / 503

Libraries for Iterative Solvers

LIS — Library of Iterative Solvers for Linear Systems
Source : http://www.netlib.org/misc/lis/
parallel library for solving linear equations and eigenvalue problems
freely available
C and Fortran wrappers exist

AGMG — Iterative solution with AGgregation-based algebraic MultiGrid
Source : http://agmg.eu/
Fortran 90 with Matlab wrapper

PETSc —Portable, Extensible Toolkit for Scientific Computation
Source : https://www.mcs.anl.gov/petsc/
Extensive library geared towards the solution of PDEs
Contains more then just iterative solvers
freely available

A more detailed list of available software can be found at
http://www.netlib.org/utk/people/JackDongarra/la-sw.html.

TFY4235/FYS8904 Computational Physics – ver2018 173 / 503

http://www.netlib.org/misc/lis/
http://agmg.eu/
https://www.mcs.anl.gov/petsc/
http://www.netlib.org/utk/people/JackDongarra/la-sw.html

Singular value decomposition (SVD)

Question : What to do with Ax = b when A is singular?

Lets assume that the linear set of equations is on the form (with M 6= N in
general)

Ax = b

with A ∈MM,N(F), x ∈MN,1, (F), b ∈MM,1(F) all over fields F = R or C

Question : Could the answer be something like

x = A+b,

and if so, what is the meaning of A+
(to be called pseudoinverse)

The singular value decomposition (SVD) is useful this context!

TFY4235/FYS8904 Computational Physics – ver2018 174 / 503

Singular value decomposition (SVD)

Definition: Singular values

Let A ∈ CM×N . A non-negative real number s is a singular value for A iff there
exist unit-vectors û ∈ CM and v̂ ∈ CN such that

Av̂ = sû A†û = sv̂ .

The vectors û and v̂ are called left-singular and right-singular vectors for s,
respectively.

The singular values of A will be denoted by s1, s2, . . . , smin(M,N), and it is
customary to list them in decreasing order

s1 ≥ s2 ≥ . . . ≥ smin(M,N)

Here A† denotes the conjugate transpose of A, i.e. A† = (A∗)T

TFY4235/FYS8904 Computational Physics – ver2018 175 / 503

Singular value decomposition (SVD)

Relation to eigenvalues

Since A†Av = s2v the singular values of A are also the square roots of the
eigenvalues of A†A.

Since (
A†A

)†
= A†A

the matrix A†A is Hermitian and all eigenvalues are real. Therefore, the
singular values of any real or complex matrix are real as the definition states!

Technically u = Av/s so all SVD information can be obtained by solving the
eigensystem A†Av = s2v .

TFY4235/FYS8904 Computational Physics – ver2018 176 / 503

Singular value decomposition (SVD)

Full SVD decomposition

Decompose a matrix A ∈MM,N(C) into the form

A = U S V †

where

U†U = I (unitary) U ∈ CM×M

V †V = I (unitary) V ∈ CN×N

S = diag(s1, s2, . . . , smin(M,N)) S ∈ RM×N

Here U† denotes the conjugate transpose or adjoint of U.

Note : When A ∈ RM×N , i.e. is a real matrix, U† = UT and V † = V T are real
and orthogonal matrices!

TFY4235/FYS8904 Computational Physics – ver2018 177 / 503

Singular value decomposition (SVD)

Warning

Several so-called reduced SVD decompositions exist where not all details of
the full SVD decomposition are calculated

The Thin SVD (e.g. used by numerical recipes)

A = UN SN V †

where UN ∈ CM×N ; SN ∈ RN×N ; and (as before) V ∈ CN×N .

Software
Numerical Recipes calculates the thin SVD

LAPACK calculates the full SVD

Matlab/Octave calculate full SVD

Python (via numpy) can calculate both full and reduced SVDs

TFY4235/FYS8904 Computational Physics – ver2018 178 / 503

Singular value decomposition (SVD)

Comments

SVD is always possible and the decomposition is unique
(except for permutations of columns in U and rows in V T) and their signs

All singularities are collected in S and sii = si are the singular values of A
For A ∈ CM×N there are min(M,N) singular values
If a square matrix A is singular, then at least one of its singular values are
zero

The columns of V are eigenvectors of A†A
The columns of U (= AV) are eigenvectors of AA†

Numerical complexity of the full SVD-algorithm is O(4MN2 + 22N3)

This is much more than the complexity of the LU decomp: O(2N3/3)

TFY4235/FYS8904 Computational Physics – ver2018 179 / 503

Singular value decomposition (SVD)

Example : Full SVD decomposition of the 2× 3 matrix

A =

[
3 1 1
−1 3 1

]

The full SVD decomposition of this matrix gives

A = USV †

with

U =
1√
2

[
1 1
1 −1

]
S =

[√
12 0 0
0

√
10 0

]
V =


1√
6

2√
5

1√
30

2√
6

−1√
5

2√
30

1√
6

0 −5√
30



TFY4235/FYS8904 Computational Physics – ver2018 180 / 503

Singular value decomposition (SVD)

Example : Obtaining this result with python (using numpy)

>>> import numpy as np
>>> A=np.reshape([3,1,1,-1,3,1],[2,3])
>>> A

array([[3, 1, 1],
[-1, 3, 1]])

Performing the full SVD decomposition

>>> U, S, V = np.linalg.svd(A)
>>> S

array([3.46410162, 3.16227766])
>>> U

array([[-0.70710678, -0.70710678],
[-0.70710678, 0.70710678]])

TFY4235/FYS8904 Computational Physics – ver2018 181 / 503

Singular value decomposition (SVD)

Example : Using python to calculating the SVD decomposition of a matrix

Initialize numpy and a complex 9× 6 matrix

>>> import numpy as np
>>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)

Reconstruction based on full SVD (convention used by python: a = USV

>>> U, s, V = np.linalg.svd(a, full_matrices=True)
>>> U.shape, V.shape, s.shape
((9, 9), (6, 6), (6,))
>>> S = np.zeros((9, 6), dtype=complex)
>>> S[:6, :6] = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, V))) # check a = U S VˆH
True

Reconstruction based on reduced SVD

>>> U, s, V = np.linalg.svd(a, full_matrices=False)
>>> U.shape, V.shape, s.shape
((9, 6), (6, 6), (6,))
>>> S = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, V)))
True

TFY4235/FYS8904 Computational Physics – ver2018 182 / 503

Singular value decomposition (SVD)

Example : Using Fortran90 with LAPACK95 for SVD-calculation

program la_gesvd_example

use la_precision, only : wp = dp
use f95_lapack, only : la_gesvd

implicit none
real(wp), allocatable :: S(:)
complex(wp), allocatable :: A(:,:), U(:,:), VT(:,:)

.

.
! Allocate storage
allocate (A(M,N), AA(M,N), U(M,M), VT(N,N), WW(1:MN-1))

.

.
write(*, *)’Details of LA_ZGESVD LAPACK Subroutine Results.’
call la_gesvd(A, S, U, VT, WW, ’N’, INFO)

! NOTE : Vˆdagger is returned not V
.
.

end program la_gesvd_example

SYNTAX:

LA_GESVD(A, S, [U=u], [VT=vt], [WW=ww], [JOB=job], [INFO=info])

LAPACK95 : http://www.netlib.org/lapack95/lug95/

TFY4235/FYS8904 Computational Physics – ver2018 183 / 503

http://www.netlib.org/lapack95/lug95/

Singular value decomposition (SVD)

Syntax : Routine LA GESVD from LAPACK95 for SVD-calculations

SUBROUTINE LA_GESVD / LA_GESDD (A, S, U=u, VT=vt, WW=ww, JOB=job, INFO=info)

type(wp), INTENT(INOUT) :: A(:,:)
REAL(wp), INTENT(OUT) :: S(:)
type(wp), INTENT(OUT), OPTIONAL :: U(:,:)
type(wp), INTENT(OUT), OPTIONAL :: VT(:,:)
REAL(wp), INTENT(OUT), OPTIONAL :: WW(:)
CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOB
INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL / COMPLEX

wp ::= KIND(1.0) / KIND(1.0D0)

More information available from the LAPACK95 homepage :
http://www.netlib.org/lapack95/lug95/

TFY4235/FYS8904 Computational Physics – ver2018 184 / 503

http://www.netlib.org/lapack95/lug95/

Singular value decomposition (SVD)

Syntax : Routine LA GESVD from LAPACK95 for SVD-calculations
! A (input/output) REAL or COMPLEX array, shape (:, :) with
! size(A, 1) = m and size(A, 2) = n.
! On entry, the matrix A.
! On exit, if JOB = ’U’ and U is not present, then A is
! overwritten with the first min(m, n) columns of U (the left
! singular vectors, stored columnwise).
! If JOB = ’V’ and VT is not present, then A is overwritten with
! the first min(m, n) rows of VˆH (the right singular vectors,
! stored rowwise).
! In all cases the original contents of A are destroyed.

! WW Optional (output) REAL array, shape (:) with size(WW) =
! min(m, n) - 1
! If INFO > 0, WW contains the unconverged superdiagonal elements
! of an upper bidiagonal matrix B whose diagonal is in SIGMA (not
! necessarily sorted). B has the same singular values as A.
! Note: WW is a dummy argument for LA_GESDD.

! JOB Optional (input) CHARACTER(LEN=1).
! = ’N’: neither columns of U nor rows of VˆH are returned in
! array A.
! = ’U’: if U is not present, the first min(m, n) columns of U
! (the left singular vectors) are returned in array A;
! = ’V’: if VT is not present, the first min(m, n) rows of VˆH
! (the right singular vectors) are returned in array A;
! Default value: ’N’.

TFY4235/FYS8904 Computational Physics – ver2018 185 / 503

Singular value decomposition (SVD)

M > N
S(i , :) = 0 ∀i ∈ [N + 1; M] i.e. some rows are zero

M < N
S(:, i) = 0 ∀i ∈ [M + 1; N] i.e. some columns are zero

M = N
If A ∈ GLN(F), i.e. A is invertable, then SVD gives

A = USV † =⇒ A−1 = V S−1︸︷︷︸
diag(1/si)

U†

If A /∈ GLN(F), then at least one si = 0 for i ∈ [1,N]

Trouble occurs if si = 0 (or if si ≈ 0, i.e. A is ill-conditioned)
This motivates the introduction of the condition number.

TFY4235/FYS8904 Computational Physics – ver2018 186 / 503

Singular value decomposition (SVD)

Condition number of matrix A

κ(A) =
maxi (si)

mini (si)

The number κ(A) measures how singular the matrix is.

Question: When is the matrix A singular?

Answer: When the condition number κ(A) is of the order of:

∼ 106 for single precision (32 bits)
∼ 1015 for double precision (64 bits)

the matrix A is singular (to working precision).

A matrix is singular (numerically) if κ−1(A) is comparable to (say 10 times) the
machine precision!

TFY4235/FYS8904 Computational Physics – ver2018 187 / 503

Singular value decomposition (SVD)

What can we use the SVD decomposition for?

Application of the SVD decomposition
Othonormal basis for range and null space of A
Calculate the condition number of A
Moore-Penrose pseudoinverse
least square calculations

TFY4235/FYS8904 Computational Physics – ver2018 188 / 503

Singular value decomposition (SVD)

Recall from Linear Algebra
The range of A is the vector space R(A) = {b : Ax = b} (row space)
The null space (or kernel) of A is the space N (A) = {x : Ax = 0}

The rank of A is the dimension of its range : rank (A) = dim(R(A))

The nullity of A is the dimension of its null space: nullity(A) = dim(N (A))

The rank-nullity theorem

Let A ∈ FM×N , then

rank(A) + nullity(A) = N

You will also see the notation:
R(A) = range(A)

N (A) = null(A)

TFY4235/FYS8904 Computational Physics – ver2018 189 / 503

Singular value decomposition (SVD)

Orthogonal basis
Columns of U corresponding to sii 6= 0 span R(A)
Columns of V corresponding to sii ≈ 0 span N (A)

Non-Singular matrix : If A ∈ GLN(F) then:

R(R) = FN , rank(A) = N
N (A) = 0FN , nullity(A) = 0

Singular matrix : If A is singular, Ax = b has no unique solution.
However, one may ask for the vector x which minimizes the norm
‖Ax − b‖. This vector x has the form

x =

nullity(A)∑
i=1

cix
(0)
i + xp

where Ax (0)
i = 0 and the “particular solution” xp — “best fit” (least

squares) solution to a system of linear equations — is obtained from the
so-called pseudoinverse A+ (to be defined)

xp = A+b.
TFY4235/FYS8904 Computational Physics – ver2018 190 / 503

Singular value decomposition (SVD)

The Moore-Penrose pseudoinverse

A pseudoinverse (or generalized inverse) A+ of a matrix A is a generalization
of the inverse matrix.

If A has the SVD decomposition

A = USV †

then its pseudoinverse A+ is obtained from

A+ = VS+U†

The pseudoinverse S+ of the diagonal matrix S is obtained by taking the
reciprocal of each non-zero element on the diagonal, leaving the zeros in
place and taking the transpose of the result (if S is not a square matrix), i.e.

S =⇒ S+

sii 6= 0 =⇒ 1/sii

In Matlab and NumPy (numpy.linalg.pinv) the function pinv calculates A+!
TFY4235/FYS8904 Computational Physics – ver2018 191 / 503

Singular value decomposition (SVD)

Least square solution

If Ax = b then

x = A+b

represents the least-squares approximate solutions that minimized the norm
‖Ax − b‖.

This can be used to do linear regression by finding the linear least square
solution.

TFY4235/FYS8904 Computational Physics – ver2018 192 / 503

Section 5

How to install libraries on a Linux system

TFY4235/FYS8904 Computational Physics – ver2018 193 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

8 Numerical integration

TFY4235/FYS8904 Computational Physics – ver2018 194 / 503

Outline II
9 Random numbers

10 Ordinary differential equations

11 Partial differential equations

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 195 / 503

Unix file system

\home : stores user files; mine is usually /home/ingves
\usr\lib : system wide libraries (package manager installed)
\usr\local\lib : system wide libraries (manually installed)

TFY4235/FYS8904 Computational Physics – ver2018 196 / 503

How to install libraries

Install pre-compiled versions via the package manager if it exists
the simplest option
example : lapack
Debian/Ubuntu (deb based): apt-get install lapack
Fedora (rpm based): dnf install lapack

Compile it yourself from source
a more challenging option
two types of libraries

static libraries
shared libraries

TFY4235/FYS8904 Computational Physics – ver2018 197 / 503

Different types of libraries

static libraries
binary code included in the executable
Example gcc math library : libm.a

command : ar rvc “objectfiles”

shared libraries
binaray code not included the executable
binaray code takes from the shared library during execution
the shared library needs to be installed for program execution
Ex : libm.so

TFY4235/FYS8904 Computational Physics – ver2018 198 / 503

How to generate, make and use libraries (on Unix)

The main steps to generate a library are
1 generate object files by compiling source files
2 create the library

the method is different for static and shared libraries
3 use the library when linking the object files

TFY4235/FYS8904 Computational Physics – ver2018 199 / 503

How to generate, make and use libraries (on Unix)

Two functions in separate files add_1.f90 and add_2.f90

! F i l e add 1 . f90
!
function add 1 (x) resul t (res)

! Adding one : res = x + 1
real , in tent (in) : : x
rea l : : res
res = x + 1.

end function add 1

! F i l e : add 2 . f90
!
function add 2 (x) resul t (res)

! Adding two :
! res = x + 1 + 1
real , in tent (in) : : x
rea l : : res
!
! rea l , ex te rna l : : add 1
res = add 1 (x)
res = add 1 (res)

end function add 2

TFY4235/FYS8904 Computational Physics – ver2018 200 / 503

How to generate, make and use libraries (on Unix)

The main program calling the function add_2()

program main
i m p l i c i t none
rea l : : x
real , external : : add 2
!
x = 2.
write (∗ ,∗) " x = " , x
write (∗ ,∗) " x + 2 = " , add 2 (x)
!

end program main

TFY4235/FYS8904 Computational Physics – ver2018 201 / 503

How to generate, make and use libraries (on Unix)
Compiling and running the program without the use of libraries

tux => l s
add 1 . f90 add 2 . f90 main . f90

tux => g f o r t r a n −o main add 2 . f90 add 1 . f90 main . f90

tux => l s
add 1 . f90 add 2 . f90 main main . f90

tux => . / main
x = 2.00000000
x + 2 = 4.00000000

tux =>

TFY4235/FYS8904 Computational Physics – ver2018 202 / 503

How to generate, make and use libraries (on Unix)
Static library

tux => g f o r t r a n −c add 1 . f90 add 2 . f90

tux => l s
add 1 . f90 add 1 . o add 2 . f90 add 2 . o main . f90

tux => ar rvc l i b m y l i b . a add 1 . o add 2 . o
a − add 1 . o
a − add 2 . o

tux => l s
add 1 . f90 add 1 . o add 2 . f90 add 2 . o l i b m y l i b . a main . f90

tux => g f o r t r a n −o main main . f90 −L . − l m y l i b

tux => . / main
x = 2.00000000
x + 2 = 4.00000000

TFY4235/FYS8904 Computational Physics – ver2018 203 / 503

How to generate, make and use libraries (on Unix)
Shared library

1 make object files with Position Independent Code flag set
gfortran -c -fPIC add_1.f90 add_2.f90

2 Creating a shared library from the object file
gfortran -shared -o libMyLib.so add_1.o add_2.o

3 Linking with a shared library
gfortran -o Main main.f90 -L. -lMyLib
However this requires that the compiler can find the shared library
libMyLib.so

4 Making the library available at runtime
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.

TFY4235/FYS8904 Computational Physics – ver2018 204 / 503

How to generate, make and use libraries (on Unix)
Shared library

tux => l s
add 1 . f90 add 2 . f90 main . f90

tux => g f o r t r a n −c −fPIC add 1 . f90 add 2 . f90

tux => l s
add 1 . f90 add 1 . o add 2 . f90 add 2 . o main . f90

tux => g f o r t r a n −shared −o l ibMyL ib . so add 1 . o add 2 . o

tux => l s
add 1 . f90 add 1 . o add 2 . f90 add 2 . o l ibMyL ib . so main . f90

tux => g f o r t r a n −o Main main . f90 −lMyLib
/ usr / b in / l d : cannot f i n d −lMyLib

tux => g f o r t r a n −o Main main . f90 −L . −lMyLib

tux => l s
add 1 . f90 add 1 . o add 2 . f90 add 2 . o l ibMyL ib . so Main main .

f90TFY4235/FYS8904 Computational Physics – ver2018 205 / 503

How to generate, make and use libraries (on Unix)
Shared library

tux => . / Main
. / Main : e r r o r while l oad ing shared l i b r a r i e s : l i bMyL ib . so :

cannot open shared ob jec t f i l e : No such f i l e or d i r e c t o r y

tux => l dd Main
l i nux−vdso . so .1 (0 x00007ffedd91b000)
l i bMyL ib . so => not found
l i b g f o r t r a n . so .3 => / usr / l i b / x86 64−l i nux−gnu /

l i b g f o r t r a n . so .3 (0 x00002af52c91f000)
l ibm . so .6 => / l i b / x86 64−l i nux−gnu / l ibm . so .6 (0

x00002af52cc45000)
l i b g c c s . so .1 => / l i b / x86 64−l i nux−gnu / l i b g c c s . so .1

(0 x00002af52cf49000)
l ibquadmath . so .0 => / usr / l i b / x86 64−l i nux−gnu /

l ibquadmath . so .0 (0 x00002af52d160000)
l i b c . so .6 => / l i b / x86 64−l i nux−gnu / l i b c . so .6 (0

x00002af52d3a1000)
/ l i b 6 4 / ld−l i nux−x86−64.so .2 (0 x000055d52b067000)

tux => LD LIBRARY PATH=$LD LIBRARY PATH : . . / Main
x = 2.00000000
x + 2 = 4.00000000

TFY4235/FYS8904 Computational Physics – ver2018 206 / 503

How to generate, make and use libraries (on Unix)
Shared library

tux => export LD LIBRARY PATH=$LD LIBRARY PATH : .

tux => l dd Main
l i nux−vdso . so .1 (0 x00007f f f f4576000)
l i bMyL ib . so (0 x00002b8745f1c000)
l i b g f o r t r a n . so .3 => / usr / l i b / x86 64−l i nux−gnu /

l i b g f o r t r a n . so .3 (0 x00002b874613d000)
l ibm . so .6 => / l i b / x86 64−l i nux−gnu / l ibm . so .6 (0

x00002b8746463000)
l i b g c c s . so .1 => / l i b / x86 64−l i nux−gnu / l i b g c c s . so .1 (0

x00002b8746767000)
l ibquadmath . so .0 => / usr / l i b / x86 64−l i nux−gnu /

l ibquadmath . so .0 (0 x00002b874697e000)
l i b c . so .6 => / l i b / x86 64−l i nux−gnu / l i b c . so .6 (0

x00002b8746bbf000)
/ l i b 6 4 / ld−l i nux−x86−64.so .2 (0 x0000558b81992000)

tux => Main
x = 2.00000000
x + 2 = 4.00000000

TFY4235/FYS8904 Computational Physics – ver2018 207 / 503

How to generate, make and use libraries (on Unix)
Compile your own library from source

Example : OpenBLAS — An optimized BLAS (and LAPACK) library
urlwww.openblas.net/

1 Downloaded the latest version of the library from github
git clone https://github.com/xianyi/OpenBLAS.git

2 Generation of serial library, do
make USE_THREAD=0 FC=gfortran

3 Installed the library to ˜/Tmp/OpenBLAS (or whatever you prefer)
make PREFIX=˜/Tmp/OpenBLAS/ install

4 (optional) OpenBLAS contains both the BLAS and LAPACK.
However, most of my Makefiles have separate BLAS and LAPACK libraries.
Therefore, for compatibility reasons, I prefer to make the following two links
in the installation directory

ln -s libopenblas.a libblas.a
ln -s libopenblas.a liblapack.a

For more details see https://pleiades.ucsc.edu/hyades/OpenBLAS

TFY4235/FYS8904 Computational Physics – ver2018 208 / 503

https://pleiades.ucsc.edu/hyades/OpenBLAS

Section 6

Eigenvalue problems

TFY4235/FYS8904 Computational Physics – ver2018 209 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

8 Numerical integration

TFY4235/FYS8904 Computational Physics – ver2018 210 / 503

Outline II
9 Random numbers

10 Ordinary differential equations

11 Partial differential equations

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 211 / 503

Eigenvalue problems

Definition: Eigenvalues and eigenvectors

If for a matrix A ∈ FN×N , a vector x ∈ FN , and a scalar λ ∈ F

Ax = λx , x 6= 0

then λ is an eigenvalue with corresponding eigenvector x of the matrix A
(F = C or R).

The above definition concerns the right eigenvalue problem; similarly, a left
eigenvector is defined as a row vector xL satisfying xLA = λxL.
Unless otherwise stated, the term eigenvector will here mean the right
eigenvector.

The above right eigenvector problem is equivalent to a set of N equations
in N unknowns x i (and unknown λi).
The eigenvalue problem consists in finding all N eigenvalues (distinct or
not) and the corresponding eigenvectors.

TFY4235/FYS8904 Computational Physics – ver2018 212 / 503

Eigenvalue problems

The eigenvalue problem can be rewritten as

(A− λI) x = 0,

where I denotes the identity matrix.

This equation provides a solution to the problem if and only if the determinant
is zero, namely

|A− λI | = 0,

which in turn means that the determinant is a polynomial of degree N in λ and
in general we will have N distinct zeros.

TFY4235/FYS8904 Computational Physics – ver2018 213 / 503

Eigenvalue problems

The eigenvalues of a matrix A ∈ CN×N are thus the N roots of its
characteristic polynomial

P(λ) = det(λI − A),

or

P(λ) =
N∏

i=1

(λi − λ) .

The set of these roots is called the spectrum of A and is denoted as λ(A). If
λ(A) = {λ1, λ2, . . . , λN} then we have

det(A) = λ1λ2 . . . λN ,

and if we define the trace of A as

Tr(A) =
n∑

i=1

aii

then Tr(A) = λ1 + λ2 + · · ·+ λn.
TFY4235/FYS8904 Computational Physics – ver2018 214 / 503

Eigenvalue problems

How can we numerically solve the eigenvalue problem?

To illustrate the procedure, we will in the following assume (for simplicity) that
our matrix is real and symmetric, that is, A ∈ RN×N and A = AT . The matrix A
has N eigenvalues λ1 . . . λN (distinct or not). Let D be the diagonal matrix with
the eigenvalues on the diagonal

D =


λ1 0 0 0 . . . 0 0
0 λ2 0 0 . . . 0 0
0 0 λ3 0 0 . . . 0
. .
0 λn−1
0 0 λN

 = diag(λ1, λ2, . . . , λN).

If A is real and symmetric then there exists a real orthogonal matrix S such
that

S−1AS = ST AS = diag(λ1, λ2, . . . , λN),

and for j ∈ [1,N] we have AS(:, j) = λjS(:, j).

TFY4235/FYS8904 Computational Physics – ver2018 215 / 503

Eigenvalue problems

We say that a matrix B is a similarity transform of A if

B = S−1AS,

Similarity transformations preserves the eigenvalues

If matrices A and B are related by the similarity transformation A = SBS−1,
then

λ(A) = λ(B),

that is, the two matrices have the same eigenvalues.

Note: The eigenvectors of A and B are in general different!

TFY4235/FYS8904 Computational Physics – ver2018 216 / 503

Eigenvalue problems

To prove this we start with the eigenvalue problem and a similarity
transformed matrix B.

Ax = λx and B = S−1AS.

We multiply the first equation on the left by S−1 and insert S−1S = I between
A and x . Then we get

(S−1AS)(S−1x) = λS−1x , (3)

which is the same as
B
(

S−1x
)

= λ
(

S−1x
)
.

The variable λ is an eigenvalue of B as well, but with eigenvector S−1x .

Note : The above holds true for any invertable matrix S not only an orthogonal
matrix.

TFY4235/FYS8904 Computational Physics – ver2018 217 / 503

Eigenvalue problems

Strategy for obtaining the eigenvalues of A ∈ FN×N numerically
1 Perform a series of similarity transformations on the original matrix A, in

order to reduce it either into a diagonal form or into a tridiagonal form.
2 Thereafter, use specialized routines for tridiagonal systems!

Various slightly different algorithms are used to find the eigenvalues and
eigenvectors of the matrix A depending on its properties, e.g. depending on
the matrix being

real symmetric / real non-symmetric
Hermissian / non-Hermissian
tridiagonal
upper / lower Hessenberg
etc.

TFY4235/FYS8904 Computational Physics – ver2018 218 / 503

Eigenvalue problems

In short, the basic philosophy of finding eigenvalues/eigenvectors are:

either apply subsequent similarity transformations (direct method) so that

ST
N . . .S

T
1 A S1 . . .SN = D,

or apply subsequent similarity transformations so that A becomes
tridiagonal (Householder) or upper/lower triangular (QR method).
Thereafter, techniques for obtaining eigenvalues from tridiagonal
matrices can be used.

or use so-called power methods

or use iterative methods (Krylov, Lanczos, Arnoldi).
These methods are popular for huge matrix problems.

TFY4235/FYS8904 Computational Physics – ver2018 219 / 503

Eigenvalue problems

General recommendation for numerically solving eigenvalue problems

Dense matrices of order “N ≤ 105”
use library routines (LAPACK)
Computational complexity: O(N3) when A ∈ FN×N

Sparse matrices/dense (“N ≥ 105”)
use iterative techniques (ARPACK and TRLAN; FORTRAN libraries)

Lanczos
Arnoldi
Krylov

The field of solving eigensystems is a complex matter, so we will not cover the
rather technical details here!

TFY4235/FYS8904 Computational Physics – ver2018 220 / 503

Eigenvalue problems

Direct or non-iterative methods require O(N3) operations for an N × N
matrix.

Historic overview:
Year N Library
1950 20 (Wilkinson)
1965 200 (Forsythe et al.)
1980 2000 Linpack
1995 20000 Lapack
2012 ∼ 105 Lapack

Ratio of computational complexity :

N3
2012

N3
1950

∼ (104)3 = 1012

Progress in computer hardware during period 1950–2012

∼ 1flop (1950) −→ petaflops = 1015 flops (2012)

TFY4235/FYS8904 Computational Physics – ver2018 221 / 503

Eigenvalue problems

Iterative methods for eigensystems

If the matrix to diagonalize is large and sparse, direct methods simply
become impractical, also because many of the direct methods tend to
destroy sparsity.

As a result large dense matrices may arise during the diagonalization
procedure

The idea behind iterative methods is to project the N−dimensional
problem onto a lower dimensional vector spaces, so-called Krylov
subspaces

Matrix Ax = b Ax = λx
A = A† Conjugate gradient Lanczos algorithm
A 6= A† GMRES etc Arnoldi algorithm

TFY4235/FYS8904 Computational Physics – ver2018 222 / 503

Eigenvalue problems
Software

Software for eigenvalue calculations

LAPACK : http://www.netlib.org/lapack/
LAPACK95 : http://www.netlib.org/lapack95/
ARPACK : http://www.caam.rice.edu/software/ARPACK/ or
https://en.wikipedia.org/wiki/ARPACK

Efficient special routines exist for calculating only the largest eigenvalues
(and corresponding eivenvectors); see ARPACK for details

TFY4235/FYS8904 Computational Physics – ver2018 223 / 503

http://www.netlib.org/lapack/
http://www.netlib.org/lapack95/
http://www.caam.rice.edu/software/ARPACK/
https://en.wikipedia.org/wiki/ARPACK

Eigenvalue problems

Generalized Eigenssystems

Let A and B be matrices of the compatible dimensions.

Then following system is referred to as the generalized eigensystem

Ax = λBx

Technically it is equivalent to solving B−1Ax = λx , but B−1 is computationally
expensive to obtain.

These problems are solved by LAPACK in an efficient way (without first
calculating B−1)!

TFY4235/FYS8904 Computational Physics – ver2018 224 / 503

The remaining slides of this section were not covered in the lectures

TFY4235/FYS8904 Computational Physics – ver2018 225 / 503

Largest eigenvalue (not covered in the lectures)

If only one eigenvalue is to be determined — or just a few — including
corresponding eigenvectors, one may use simple iterative methods.
We assume Sp(A) ⊂ R for simplicity. Let λm = max(Sp(A)).

Iteration scheme

X ′k = AXk−1

Xk =
X ′k
‖X ′k‖

We will denote Vi a normalized eigenvector associated to the eigenvalue
λi .

TFY4235/FYS8904 Computational Physics – ver2018 226 / 503

Largest eigenvalue

Start with a decomposition on (Vi)i∈J1;NK:

Xk−1 =
N∑

i=1

c i
k−1Vi

X ′k = AXk−1 =
N∑

i=1

c i
k−1λiVi

Xk =
X ′k
‖X ′k‖

=
N∑

i=1

c i
kλiVi

c i
k =

c i
k−1√∑N

i=1(c i
k−1λi)2

c i
k −−−→k→∞

δim

when λm = Xk−1.X ′k , Xk = Vm.

TFY4235/FYS8904 Computational Physics – ver2018 227 / 503

Determining any eigenvalue

We still assume Sp(A) ⊂ R.

(A− λIN)−1Vj =
1

λj − λ
Vj

Iteration scheme

X ′k = (A− λIN)−1Xk−1

Xk =
X ′k
‖X ′k‖

Converges to the eigenvalue closest to λ

λj = λ+
1

Xk−1.X ′k

TFY4235/FYS8904 Computational Physics – ver2018 228 / 503

Lambert-Weaire’s algorithm (not covered in the
lectures)

Lambert and Wearie, Phys. Stat. Solidii B, 101, 591 (1980)
Burton and Lambert, Europhys. Lett. 5, 161 (1988)

The problem is still to find AVi = λiVi .
This is an algorithm to count the number of eigenvalues being smaller
than some specific value λ.
The aim is to eliminate one by one the N directions of the original
problem, by transforming the N × N matrix A into a (N − 1)× (N − 1)
matrix A′ having λi , i ∈ J1; N − 1K as eigenvalues.

TFY4235/FYS8904 Computational Physics – ver2018 229 / 503

Lambert-Weaire’s algorithm

Example: N = 2 (
a11 a12
a21 a22

)(
v1
v2

)
= λ

(
v1
v2

)
The system of equations reads:

(a11 − λ)v1 + a12v2 = 0
a21v1 + (a22 − λ)v2 = 0

We eliminate v2.
(a11 − λ)v1 −

a12a21

a22 − λ
v1 = 0

We rewrite this as (
a11 −

a12a21

a22 − λ

)
v1 = λv1

This is now a 1× 1 eigenvalue problem with A′ = a11 − a12a21
a22−λ .

TFY4235/FYS8904 Computational Physics – ver2018 230 / 503

Lambert-Weaire’s algorithm

The N × N case. ∀i ∈ J1,NK,

N∑
j=1

aijvj = λvi

We eliminate vN and find
N−1∑
j=1

a′ijvj = λvi

where a′ij = aij − aiN aNj
aNN−λ . We do this recursively:

(*)

a(k)
ij = a(k−1)

ij −
a(k−1)

i,N−k+1a(k−1)
N−k+1,j

a(k−1)
N−k+1,N−k+1 − λ

TFY4235/FYS8904 Computational Physics – ver2018 231 / 503

Lambert-Weaire’s algorithm

If we now choose a value λ, the negative eigenvalue theorem states that the
number of eigenvalues verifying λi < λ is equal to the number of times the
denominator in (*) - (a(k−1)

N−k+1,N−k+1 − λ) - has been negative for k = 1, · · · ,N.
This is a simple, powerful, and largely forgotten algorithm!

TFY4235/FYS8904 Computational Physics – ver2018 232 / 503

Section 7

Spectral methods

TFY4235/FYS8904 Computational Physics – ver2018 233 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods
Fourier transform
Wavelet transform

TFY4235/FYS8904 Computational Physics – ver2018 234 / 503

Outline II
8 Numerical integration

9 Random numbers

10 Ordinary differential equations

11 Partial differential equations

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 235 / 503

Fourier Transform

The Fourier transform is employed to transform signals between the time (or
spatial) domain and the frequency (wave vector) domain

f (t) F−→ f̂ (ω) = F [f](ω)

The formal definition reads:

f̂ (ω) =

∫ ∞
−∞

dt f (t) eiωt (forward transform)

f (t) =

∫ ∞
−∞

dω
2π

f̂ (ω) e−iωt (inverse transform)

Note: there exist numerous conventions regarding how the factor of 2π are
distributed among the forward and backward transform. Check your
implementation!

TFY4235/FYS8904 Computational Physics – ver2018 236 / 503

Discretely sampled data

f (t) is sampled evenly at ∆ time intervals [fk ≡ f (tk) with tk = k∆]
Nyquist critical frequency:

ωc ≡
π

∆

[
fc ≡

1
2∆

]
The Nyquist-Shannon sampling theorem:
If a continuous function f (t), sampled at interval ∆, is bandwidth limited
to frequencies smaller in magnitude than ωc , i.e., if f̂ (ω) = 0 for all
|ω| > ωc , then f (t) is completely determined by its samples {fk}N−1

k=0 .

If the sampled function is not bandwidth limited to less than the Nyquist
critical frequency, then the amplitudes for the frequencies outside this
interval is spuriously moved into that range. This is called aliasing.

TFY4235/FYS8904 Computational Physics – ver2018 237 / 503

Discrete Fourier Transform

Assume N consecutive sampled values, with sampling interval ∆,

fk ≡ f (tk), tk ≡ k∆, k = 0,1,2, ...,N − 1.

where N is assumed even (for simplicity).

The discrete Fourier transform can then be used to find the Fourier
transform at frequencies:

ωn ≡ 2π
n

N∆
, n = −N

2
, ...,

N
2
.

The inverse Fourier transform, f̂ (ωn), can then be approximated by a
discrete sum:

f̂ (ωn) =

∫ ∞
−∞

dt f (t) eiωnt ≈
N−1∑
k=0

∆ fk eiωntk = ∆
N−1∑
k=0

fk e2πikn/N

TFY4235/FYS8904 Computational Physics – ver2018 238 / 503

Discrete Fourier Transform

The summation in (the continuous Fourier transform)

f̂ (ωn) ≈ ∆
N−1∑
k=0

fk e2πikn/N

is known as the discrete Fourier transform (DFT)

f̂n =
N−1∑
k=0

fk e2πikn/N
[
f̂ (ωn) ≈ ∆f̂n

]

Inverse discrete Fourier transform (IDFT):

fk =
1
N

N−1∑
k=0

f̂n e−2πikn/N

Note : the prefactor 1/N is not always included in the IDFT

(normalized/non-normalized IDFT)

TFY4235/FYS8904 Computational Physics – ver2018 239 / 503

Discrete Fourier Transform

How much computation is involved in doing the discrete Fourier transform?

WN ≡ e2πi/N =⇒ f̂n =
N−1∑
k=0

W nk
N fk

The vector of fk ’s is multiplied by a matrix with (n,k)th element equal WN
to the power nk , resulting in the vector of f̂n’s. This matrix multiplication,
and therefore the discrete Fourier transform, is an O(N2) process.

Using an algorithm called the fast Fourier transform (FFT), it is possible
to compute the discrete Fourier transform in O(N log2 N) operations.

TFY4235/FYS8904 Computational Physics – ver2018 240 / 503

Fast Fourier Transform (FFT)

The basic idea behind the (radix-2) FFT8 is to write the Fourier transform over
N points as two Fourier transforms over N/2 points.9

One way this can be derived is through the Danielson-Lanczos lemma:

f̂n =
N−1∑
k=0

fk W nk
N , WN = e2πi/N (N’th root of unity)

=

N/2−1∑
k=0

f2k W n(2k)
N +

N/2−1∑
k=0

f2k+1 W n(2k+1)
N

=

N/2−1∑
k=0

f2k W nk
N/2 + W n

N

N/2−1∑
k=0

f2k+1 W nk
N/2

= f̂ e
n + W n

N f̂ o
n

8For more info see Wikipedia.
9The FFT-method was popularized by a publication of J. W. Cooley and J. W. Tukey in 1965,

but it was later (1984) discovered that those two authors had independently re-invented an
algorithm known to Carl Friedrich Gauss around 1805.

TFY4235/FYS8904 Computational Physics – ver2018 241 / 503

http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm

Fast Fourier Transform (FFT)

Hence

f̂n = f̂ e
n + W n

N f̂ o
n

f̂ e
n : even components, length N/2

f̂ o
n : odd components, length N/2

Can be used recursively until the problem is reduced to finding the Fourier
transform of length 1 (assume N = 2p, p ∈ Z+):

N
N/2 N/4

N/4

N/2 N/4
N/4

· · ·

︸ ︷︷ ︸
log2 N

Each layer requires N operations, and there is a total of log2 N layers resulting
in N log2 N operations.

TFY4235/FYS8904 Computational Physics – ver2018 242 / 503

Cooley-Tukey FFT algorithm

Generalization of the algorithm above is:
Perform N1 DFTs of size N2.
Multiply by complex roots of unity called twiddle factors.
Perform N2 DFTs of size N1.

TFY4235/FYS8904 Computational Physics – ver2018 243 / 503

Examples FFT

numpy: real-to-complex
>>> impor t numpy as np
>>> x=np . random . rand (8)
>>> x
ar ray ([0.54528432 , 0.53861951 , 0.44141222 , 0.30055361 ,

0.66794224 , 0.53216542 , 0.78834189 , 0.77609837])

>>> X=np . f f t . r f f t (x)
>>> X
ar ray ([4.59041758+0. j , 0.21816672+0.67862686 j ,

−0.01652755+0.00586704 j , −0.46348258−0.01523247 j ,
0.29554377+0. j])

>>> np . f f t . i r f f t (X)
ar ray ([0.54528432 , 0.53861951 , 0.44141222 , 0.30055361 ,

0.66794224 , 0.53216542 , 0.78834189 , 0.77609837])

>>> x .sum ()
4.5904175817116109

The transform np.fft.rfft(x) is normalized!
TFY4235/FYS8904 Computational Physics – ver2018 244 / 503

Examples FFT

numpy: complex-to-complex

>>> impor t numpy as np
>>> x=np . random . rand (8)
>>> x
ar ray ([0.54528432 , 0.53861951 , 0.44141222 , 0.30055361 ,

0.66794224 , 0.53216542 , 0.78834189 , 0.77609837])

>>> X=np . f f t . f f t (x)
>>> X
ar ray ([4.59041758+0. j , 0.21816672+0.67862686 j ,

−0.01652755+0.00586704 j , −0.46348258−0.01523247 j ,
0.29554377+0. j , −0.46348258+0.01523247 j ,
−0.01652755−0.00586704 j , 0.21816672−0.67862686 j])

>>> np . f f t . i f f t (X) # removed the l a s t two dig i ts
ar ray ([0.545284 +0.000000e+00 j , 0.538619 −1.509072e−17j ,

0.441412 +1.387778e−16j , 0.300553 +1.052963e−16j ,
0.667942 +0.000000e+00 j , 0.532165 +1.266485e−17j ,
0.788341 −1.387778e−16j , 0.776098 −1.028704e−16 j])

TFY4235/FYS8904 Computational Physics – ver2018 245 / 503

Fast Fourier Transform (FFT)

Depending on implementation, FFTs may be
normalized
unnormalized

FFTs exists in different flavors
real-to-complex
complex-to-complex

Before using an FFT-library, check its
normalization convention (i.e. factors of 2π)
sign convention
storage convention

Figuring out the conventions used can be a pain!

TFY4235/FYS8904 Computational Physics – ver2018 246 / 503

FFT Software

Use a library for doing FFTs!

Software for doing FFTs:
FFTW : Fastest Fourier Transform in the west — www.fftw.org/

FFTPACK : www.netlib.org/fftpack/

GSL: GNU scientific Library — www.gnu.org/software/gsl/

SLATEC : www.netlib.org/slatec/

scipy : www.netlib.org/slatec/

TFY4235/FYS8904 Computational Physics – ver2018 247 / 503

www.fftw.org/
www.netlib.org/fftpack/
www.gnu.org/software/gsl/
www.netlib.org/slatec/‎
www.netlib.org/slatec/‎

Why are Fourier transforms so useful?

Physical description is sometimes simpler in the Fourier domain (FD)

Some mathematical operations are simpler in the FD (e.g. ODEs)

Periodic signals are often of interest.

Harmonic dependence/Superposition

Some numerical operations can be done much faster via FFTs (e.g.
convolutions)

TFY4235/FYS8904 Computational Physics – ver2018 248 / 503

Convolution

Typical situation in experiments:

Measure a signal s(t) with a given tool to produce the measured signal m(t).
Ideally s(t) and m(t) should be equal but the measuring tool has a response
function r(t) so that

m(t) = (r ∗ s) (t) =

∫ ∞
−∞

dτ r(τ) s(t − τ)

m(t) — measured signal [m(t) 6= s(t)]
s(t) — signal to measure
r(t) — response function of the tool

Question : How can we obtain s(t) from the knowledge of m(t)?

Convolution theorem

F [r ∗ s] = F [r]F [s] = r̂(ω)ŝ(ω)

TFY4235/FYS8904 Computational Physics – ver2018 249 / 503

Convolution

The convolution operation

(r ∗ s)(t) =

∫ ∞
−∞

dτ r(τ) s(t − τ)

can be discretized and defined like:

s(t)→ sj , r(t)→ rj ,

(r ∗ s)j ≡
M/2∑

k=−M/2+1

rk sj−k .

Here M is the finite duration of the response function.

rk 6= 0 for −M/2 ≤ k ≤ M/2.

TFY4235/FYS8904 Computational Physics – ver2018 250 / 503

Convolution - Interpretation of rj

Input signal sj in channel j :
r0 gives how much of sj remains in channel j .
r1 gives how much of sj is sent into channel j + 1.
And so on. . .

Identity response:
r0 = 1, rk = 0, k 6= 0

TFY4235/FYS8904 Computational Physics – ver2018 251 / 503

Convolution - Interpretation of rj

(f ∗ g)(t) =

∫ ∞
−∞

dτ f (τ) g(t − τ)

TFY4235/FYS8904 Computational Physics – ver2018 252 / 503

Discrete Convolution Theorem

The discrete convolution theorem: If a signal sj is periodic with period N, so
that it is completeley determined by the N values s0, . . . , sN−1, then its
discrete convolution with a response function of finite duration N is a member
of the discrete Fourier pair,

N/2∑
k=−N/2+1

rk sj−k ⇐⇒ SnRn

Sn: is the discrete Fourier transform of the values sj (j = 0, . . . ,N − 1)
Rn: is the discrete Fourier transform of the values rk (k = 0, . . . ,N − 1)

TFY4235/FYS8904 Computational Physics – ver2018 253 / 503

Treatment of end effects by zero padding

Almost always, one is interested in a response function whose duration M
is much shorter than the length of the data set N. In this case one can
simply extend the response function to length N by padding it with zeros.

If s is not periodic with period N, then data from “higher” channels will be
folded into the 0 channel. This can be fixed by adding zero padding:

sk = 0, k = N + 1, . . . ,N + M.

TFY4235/FYS8904 Computational Physics – ver2018 254 / 503

Deconvolution

To try and undo the smearing done to a dataset from a known response
function, the function

(r ∗ s)j︸ ︷︷ ︸
known

≡
N/2∑

k=−N/2+1

rk︸︷︷︸
known

sj−k︸︷︷︸
unknown

is solved with respect to sj . This is a set of simultaneous linear equations that
is unrealistic to solve in most cases.

The problem can be solved very quickly using the FFT. Just divide the
transform of the convolution by the transform of the response to get the
transform of the deconvoluted signal.

This procedure won’t work if Rn = 0. This indicated that the original
convolution has lost all information at that one frequency. The process is
also generally sensitive to noise in the input and to how well the response
rk is known.

TFY4235/FYS8904 Computational Physics – ver2018 255 / 503

Wavelet transform

To be written!

TFY4235/FYS8904 Computational Physics – ver2018 256 / 503

Section 8

Numerical integration

TFY4235/FYS8904 Computational Physics – ver2018 257 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

8 Numerical integration
One-dimensional integration

TFY4235/FYS8904 Computational Physics – ver2018 258 / 503

Outline II
Multidimensional integrals

9 Random numbers

10 Ordinary differential equations

11 Partial differential equations

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 259 / 503

Numerical integration

Main classes of integration routines
1 One-dimensional numerical integration (or ”quadratures”)

Newton-Cotes quadratures
Gaussian quadratures

2 Multi-dimensional numerical integration (or “cubatures”)
Sparse grid methods
Monte-Carlo integration

a b

∫ b

a

f(x)dx

x

y

TFY4235/FYS8904 Computational Physics – ver2018 260 / 503

One-dimensional numerical integration

Statement of the problem in 1D
The generic problem is to numerically calculate (evaluate)

I(a,b) =

∫ b

a
dx f (x)

The choice of integration method has to consider
trivial, but first ask yourself, does the integral really exist
are the integration limits finite or not
is f (x) continuous and known for all x ∈ [a,b] or only on {xi}N

i=1

does f (x) have any singularities in the interval a to b
is f (x) oscillatory
is f (x) computationally expensive to obtain
what accuracy is needed

TFY4235/FYS8904 Computational Physics – ver2018 261 / 503

One-dimensional numerical integration

A change of variable may be useful!

Definite integrals∫ b

a
dx f (x) =

b − a
2

∫ 1

−1
du f

(
b − a

2
u +

b + a
2

)
; x =

b − a
2

u +
b + a

2

Improper integrals∫ ∞
0

dx f (x) =

∫ 1

0
du

f
(1

u − 1
)

u2 ; x =
1
u
− 1

∫ ∞
−∞

dx f (x) =

∫ ∞
0

dx [f (x) + f (−x)]

or use the transformation x = (1− u)/u (which maps the entire real line on
[0,1]).

TFY4235/FYS8904 Computational Physics – ver2018 262 / 503

Quadrature rules

Consider the integral

I(a,b) =

∫ b

a
dx f (x)

where it is assumed that (i) f (x) is continuous; and (ii) a and b are finite

A quadrature formula is a linear combination of the f (xn) such that

I(a,b) =

∫ b

a
dx f (x) ≈

∑
n

wnf (xn)

where
wn are called weights (normally wn > 0 to void cancellations)
xn are called abscissas (or mesh points; xn ∈ [a,b])

TFY4235/FYS8904 Computational Physics – ver2018 263 / 503

Quadrature rules

Two main classes:

Newton-Cotes quadratures
the abscissas xn are equally spaced, and the weights wn are determined
so that the formula is exact for polynomials of as high degree as possible.

xn given and wn determined

Gaussian quadrature
both the abscissas xn and the weights wn are chosen so that the formula
is exact for polynomials of as high a degree as possible.
This leads to non-equidistant xn’s!

both xn and wn are determined

TFY4235/FYS8904 Computational Physics – ver2018 264 / 503

Quadrature rules

Comments
If the function f (x) is given explicitly instead of simply being tabulated at
the values xn, the best numerical method is the Gaussian quadratures

By picking the abscissas xn to sample the function, the Gaussian
quadrature produces more accurate approximations for the same number
of points

However, the Gaussian quadratures are significantly more complicated to
implement than the Newton-Cotes quadratures.

TFY4235/FYS8904 Computational Physics – ver2018 265 / 503

Newton-Cotes quadratures

The Newton-Cotes quadratures are extremely useful and straightforward
methods for calculating

I(a,b) =

∫ b

a
dx f (x)

Method: To integrate f (x) over [a,b] using a Newton-Cotes quadrature do

choose the xn equally spaced throughout [a,b] and calculate fn = f (xn)

find a (Lagrange interpolating) polynomial which approximates the
tabulated function
choose wn so that the formula is exact for polynomials of as high a
degree as possible

Note: Newton-Cotes quadratures may be ”closed” or ”open” depending on
endpoints being included or not

TFY4235/FYS8904 Computational Physics – ver2018 266 / 503

Newton-Cotes quadratures

Closed rules
The closed formulas use the end points of subintervals. If we use N
subintervals, the stepsize is h = (b − a)/N, and we get N + 1 points

x0 = a, x1 = a + h, . . . , xN−1 = b − h, xN = b

Open rules
The open formulas use the midpoints of subintervals. If we use N
subintervals, the stepsize is again h = (b − a)/N, and we get N points

x1/2 = a + h/2, x3/2 = a + 3h/2, . . . , xN−1/2 = b − h/2

TFY4235/FYS8904 Computational Physics – ver2018 267 / 503

Newton-Cotes quadratures

Comments:

Newton-Cotes formulas are not recommended for more than 7 points,
because the weights become large, and some of them are negative,
which leads to cancellation.

There is still an easy way to use more points, for higher accuracy: we
simply subdivide [a,b] into smaller intervals, and use a lower order
Newton-Cotes formula on each subinterval. These are the repeated,
extended or compound Newton-Cotes formulas

Using lower order rules repeatedly, together with some simple
extrapolation, is actually more efficient than using higher order rules. If
you ever need the higher order rules, you can look them up in a book.

TFY4235/FYS8904 Computational Physics – ver2018 268 / 503

Newton-Cotes quadratures

Some Classical Newton-Cotes quadratures

Midpoint rule: open 1 point Newton-Cotes quadrature (N = 1)
Trapezoidal rule: closed 2 point Newton-Cotes quadrature (N = 1)
Simpson’s rule: closed 3 point Newton-Cotes quadrature (N = 2)

We will now revisit these methods!

TFY4235/FYS8904 Computational Physics – ver2018 269 / 503

Midpoint rule (or Rectangle method)

Local rule: With only one point, we can only
interpolate a polynomial of degree 0, i.e. a
constant.∫ b

a
f (x) dx ≈ (b − a) f

(
a + b

2

)
Local error : (b−a)3

24 f (2)(ξ), ξ ∈ [a,b]

Extended formula (open); Repeated midpoint rule (x0 = a; xN = b)∫ b

a
f (x) dx =

∫ x1

x0

f (x) dx +

∫ x2

x1

f (x) dx + . . .

∫ xN

xN−1

f (x) dx ; h =
b − a

N

≈ h
[
f (x1/2) + f (x3/2) + . . .+ f (xN−1/2)

]
= h

N∑
n=1

f (xn−1/2),

Global error : (b−a)h2

24 f (2)(ξ) = O(h2)

TFY4235/FYS8904 Computational Physics – ver2018 270 / 503

Trapezoidal rule

Local rule: We have two points, so we can
interpolate a polynomial of degree 1, i.e. a
straight line.∫ b

a
f (x) dx ≈b − a

2
[f (a) + f (b)]

Local error : − (b−a)3

12 f (2)(ξ), ξ ∈ [a,b]

Extended formula (closed)

∫ b

a
f (x) dx ≈ h

[
1
2

f (x0) + f (x1) + f (x2) + . . .+ f (xN−1) +
1
2

f (xN)

]
,

xn = x0 + nh

Global error : − (b−a)h2

12 f (2)(ξ) = O(h2)

TFY4235/FYS8904 Computational Physics – ver2018 271 / 503

Trapezoidal rule

Easy to implement numerically through the following simple algorithm

∫ b

a
f (x) dx ≈ h

[
1
2

f (x0) + f (x1) + f (x2) + . . .+ f (xN−1) +
1
2

f (xN)

]
,

xn = x0 + nh

Choose the number of mesh points and fix the step.
Calculate f (a) and f (b)

Perform a loop over n = 1 to n − 1 (f (a) and f (b) are known) and sum up
the terms f (a + h) + f (a + 2h) + f (a + 3h) + · · ·+ f (b − h). Each step in
the loop corresponds to a given value a + nh.
Add f (a)/2 and f (b)/2 to the sum.
Multiply the final result by h.

TFY4235/FYS8904 Computational Physics – ver2018 272 / 503

Trapezoidal rule

C++ code for the Trapezoidal rule

double t r a p e z o i d a l r u l e (double a , double b , i n t n ,
double (∗ func) (double))

{
double trapez sum ;
double fa , fb , x , step ;
i n t j ;
s tep =(b−a) / ((double) n) ;
fa =(∗ func) (a) / 2 . ;
fb =(∗ func) (b) / 2 . ;
trapez sum = 0 . ;
for (j =1; j <= n−1; j ++){

x= j ∗step+a ;
trapez sum +=(∗ func) (x) ;

}
trapez sum =(trapez sum+fb+ fa) ∗step ;
return trapez sum ;

} / / end f u n c t i o n f o r t r a p e z o i d a l r u l e

TFY4235/FYS8904 Computational Physics – ver2018 273 / 503

Trapezoidal rule

Pay attention to the way we transfer the name of a function. This gives us the
possibility to define a general trapezoidal method, where we give as input the
name of the function.

double t r a p e z o i d a l r u l e (double a , double b , i n t n ,
double (∗ func) (double))

We call this function simply as something like this

i n t e g r a l = t r a p e z o i d a l r u l e (a , b , n , mysuperduperfunct ion) ;

TFY4235/FYS8904 Computational Physics – ver2018 274 / 503

Simpson’s rule

Local rule : Simpson’s rule is the three-point
closed Newton-Cotes quadrature∫ b

a
f (x) dx ≈ b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
.

Local error : − (b−a)5

90 f (4)(ξ), ξ ∈ [a,b]

Extended formula (closed)∫ b

a
f (x) dx ≈ h

3

[
f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + · · ·

+ 4f (xN−1) + f (xN)

]
.

Global error : − (b−a)h4

180 f (4)(ξ) = O(h4)

TFY4235/FYS8904 Computational Physics – ver2018 275 / 503

General order-N Newton-Cotes quadrature

The basic idea behind all integration methods is to approximate the integral

I =

∫ b

a
f (x)dx ≈

N∑
n=1

wnf (xn),

where wn and xn are the weights and the chosen mesh points, respectively.

Simpson’s rule gives

wn = {h/3,4h/3,2h/3,4h/3, . . . ,4h/3,h/3} ,

for the weights, while the trapezoidal rule resulted in

wn = {h/2,h,h, . . . ,h,h/2} .

In general, an integration formula which is based on a Taylor series using N
points, will integrate exactly a polynomial P of degree N − 1. That is, the N
weights wn can be chosen to satisfy N linear equations.

TFY4235/FYS8904 Computational Physics – ver2018 276 / 503

General order-N Newton-Cotes quadrature

Given N + 1 distinct points x0, . . . , xN ∈ [a,b] and N + 1 values y0, . . . , yN
there exists a unique polynomial PN with the property

PN(xj) = yj j = 0, . . . ,N

One such possibility is the Lagrange interpolation polynomial given by

PN(x) =
N∑

k=0

lk (x)yk ,

with the Lagrange factors

lk (x) =
N∏

i = 0
i 6= k

x − xi

xk − xi
k = 0, . . . ,N

Example: N = 1

P1(x) = y0
x − x1

x0 − x1
+ y1

x − x0

x1 − x0
=

y1 − y0

x1 − x0
x − y1x0 + y0x1

x1 − x0
,

which we recognize as the equation for a straight line.
TFY4235/FYS8904 Computational Physics – ver2018 277 / 503

General order-N Newton-Cotes quadrature

The polynomial interpolatory quadrature of order N with equidistant
quadrature points xk = a + kh and step h = (b − a)/N is called the
Newton-Cotes quadrature formula of order N.

The integral is ∫ b

a
f (x)dx ≈

∫ b

a
PN(x)dx =

N∑
k=0

wk f (xk)

with

wk = h
(−1)N−k

k !(N − k)!

∫ N

0

N∏
j = 0
j 6= k

(z − j)dz,

for k = 0, . . . ,N.

For details check the literature!

TFY4235/FYS8904 Computational Physics – ver2018 278 / 503

Software

QUADPACK is a library providing several Newton-Cotes quadratures

It is part of or being used by
Slatec
GSL
Matlab (quad function)
Scientific Python (scipy.integrate.quad)

More information on QUADPACK :
https://en.wikipedia.org/wiki/QUADPACK
http://nines.cs.kuleuven.be/software/QUADPACK/

QUADPACK can be found here:
http://www.netlib.org/quadpack/
https://people.sc.fsu.edu/˜jburkardt/f_src/quadpack/
quadpack.html

TFY4235/FYS8904 Computational Physics – ver2018 279 / 503

https://en.wikipedia.org/wiki/QUADPACK
http://nines.cs.kuleuven.be/software/QUADPACK/
http://www.netlib.org/quadpack/
https://people.sc.fsu.edu/~jburkardt/f_src/quadpack/quadpack.html
https://people.sc.fsu.edu/~jburkardt/f_src/quadpack/quadpack.html

Gaussian quadratures

TFY4235/FYS8904 Computational Physics – ver2018 280 / 503

Gaussian quadratures

Newton-Cotes methods based on Taylor series using N + 1 points will
integrate exactly a polynomial P of degree N. If a function f (x) can be
approximated with a polynomial of degree N

f (x) ≈ PN(x),

with N + 1 mesh points we should be able to integrate exactly the
polynomial PN .

Gaussian quadrature methods promise more than this. We can get a
better polynomial approximation with order greater than N + 1 to f (x) and
still get away with only N + 1 mesh points.

More precisely, we approximate

f (x) ≈ P2N+1(x),

and with only N + 1 mesh points these methods promise that∫
f (x)dx ≈

∫
P2N+1(x)dx =

N∑
i=0

wiP2N+1(xi),

TFY4235/FYS8904 Computational Physics – ver2018 281 / 503

Gaussian Quadratures

A quadrature formula ∫ b

a
W (x)f (x)dx ≈

N∑
i=0

wi f (xi),

with N + 1 distinct quadrature points (mesh points) is a called a Gaussian
quadrature formula if it integrates all polynomials p ∈ P2N+1 exactly, that is∫ b

a
W (x)p(x)dx =

N∑
i=0

wip(xi),

It is assumed that W (x) is continuous and positive and that the integral∫ b

a
W (x)dx

exists. Note that the replacement of f →Wg is normally a better
approximation due to the fact that we may isolate possible singularities of W
and its derivatives at the endpoints of the interval.

TFY4235/FYS8904 Computational Physics – ver2018 282 / 503

Gaussian quadratures

But which xi and wi to use?

The theoretical foundation behind Gaussian quadratures is interesting,
but will not be covered here!

The abscissas xi are related to othogonal polynomials (e.g. Legendre
polynomials) in the sense that they are the zeroes for these polynomials

The weights wi are determined so that the integrator is exact for a
polynomial up to a given order

Library routines give you the sets {wi} and {xi} for a given Gaussian
quadrature

The homepage of John Burkardt offers many of these and other routines:
http://people.sc.fsu.edu/˜jburkardt/

TFY4235/FYS8904 Computational Physics – ver2018 283 / 503

http://people.sc.fsu.edu/~jburkardt/

Gaussian quadratures

Examples: Gauss-Legendre quadrature on [−1,1] (here W (x) = 1)

Abscissas values:
Oder 1:

xi = 0

Oder 2:

xi = −0.5773502691896257
0.5773502691896257

Oder 4:

xi = −0.8611363115940526
−0.3399810435848563

0.3399810435848563
0.8611363115940526

After : http://people.sc.fsu.edu/˜jburkardt/f_src/int_exactness_legendre/int_

exactness_legendre.html

TFY4235/FYS8904 Computational Physics – ver2018 284 / 503

http://people.sc.fsu.edu/~jburkardt/f_src/int_exactness_legendre/int_exactness_legendre.html
http://people.sc.fsu.edu/~jburkardt/f_src/int_exactness_legendre/int_exactness_legendre.html

Gaussian quadratures

Examples: Gauss-Legendre quadrature on [−1,1] (not equidistant sampling)

After : http://people.sc.fsu.edu/˜jburkardt/f_src/int_exactness_legendre/int_

exactness_legendre.html

TFY4235/FYS8904 Computational Physics – ver2018 285 / 503

http://people.sc.fsu.edu/~jburkardt/f_src/int_exactness_legendre/int_exactness_legendre.html
http://people.sc.fsu.edu/~jburkardt/f_src/int_exactness_legendre/int_exactness_legendre.html

Gaussian quadratures

What if the integrand is not smooth?

Even though the integrand is not smooth, we could render it smooth by
extracting from it the weight function of an orthogonal polynomial, i.e., we are
rewriting

I =

∫ b

a
f (x)dx =

∫ b

a
W (x)g(x)dx ≈

N∑
i=0

wig(xi),

where g is smooth and W is the weight function, which is to be associated
with a given orthogonal polynomial.

TFY4235/FYS8904 Computational Physics – ver2018 286 / 503

Gaussian quadratures

The weight function W is non-negative in the integration interval x ∈ [a,b]

such that for any N ≥ 0,
∫ b

a |x |NW (x)dx is integrable.

The naming weight function arises from the fact that it may be used to
give more emphasis to one part of the interval than another.

Weight function Interval Polynomial
W (x) = 1 x ∈ [a,b] Legendre
W (x) = e−x2 −∞ ≤ x ≤ ∞ Hermite
W (x) = e−x 0 ≤ x ≤ ∞ Laguerre
W (x) = 1/(

√
1− x2) −1 ≤ x ≤ 1 Chebyshev

TFY4235/FYS8904 Computational Physics – ver2018 287 / 503

Legendre

I =

∫ 1

−1
f (x)dx

a(1− x2)P − b2P + (1− x2)
d
dx

(
(1− x2)

dP
dx

)
= 0

Here a and b are a constants. For b = 0 we obtain the Legendre polynomials
as solutions, whereas b 6= 0 yields the so-called associated Legendre
polynomials. The corresponding polynomials P are

Lk (x) =
1

2k k !

dk

dxk (x2 − 1)k k = 0,1,2, . . . ,

which, up to a factor, are the Legendre polynomials Lk . The latter fulfil the
orthorgonality relation ∫ 1

−1
Li (x)Lj (x)dx =

2
2i + 1

δij ,

and the recursion relation

(j + 1)Lj+1(x) + jLj−1(x)− (2j + 1)xLj (x) = 0.

TFY4235/FYS8904 Computational Physics – ver2018 288 / 503

Laguerre

I =

∫ ∞
0

f (x)dx =

∫ ∞
0

xαe−xg(x)dx .

These polynomials arise from the solution of the differential equation(
d2

dx2 −
d
dx

+
λ

x
− l(l + 1)

x2

)
L(x) = 0,

where l is an integer l ≥ 0 and λ a constant. They fulfil the orthorgonality
relation ∫ ∞

−∞
e−xLm(x)Ln(x)dx = δmn,

and the recursion relation

(n + 1)Ln+1(x) = (2n + 1− x)Ln(x)− nLn−1(x).

TFY4235/FYS8904 Computational Physics – ver2018 289 / 503

Hermite

In a similar way, for an integral which goes like

I =

∫ ∞
−∞

f (x)dx =

∫ ∞
−∞

e−x2
g(x)dx .

we could use the Hermite polynomials in order to extract weights and mesh
points. The Hermite polynomials are the solutions of the following differential
equation

d2H(x)

dx2 − 2x
dH(x)

dx
+ (λ− 1)H(x) = 0.

They fulfil the orthorgonality relation∫ ∞
−∞

e−x2
Hm(x)Hn(x)dx =

√
π2nn! δmn,

and the recursion relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

TFY4235/FYS8904 Computational Physics – ver2018 290 / 503

Some examples

Integral : Evaluate the integral∫ 3

0
dx

1
2 + x2 =

1√
2

arctan
(√

18/4
)
≈ 0.7992326575 . . .

Results :

N Trapezoidal Simpson Gauss-Legendre
10 0.798861 0.799231 0.799233
20 0.799140 0.799233 0.799233
40 0.799209 0.799233 0.799233

100 0.799229 0.799233 0.799233
1000 0.799233 0.799233 0.799233

Python : Calculate the integral over f (x) from a to b via
scipy.integrate.quadrature(f,a,b)
scipy.integrate.quad(f,a,b)

TFY4235/FYS8904 Computational Physics – ver2018 291 / 503

Some examples

Integral : Evaluate the integral∫ 100

1
dx

exp(−x)

x
≈ 0.2193839344 . . .

Results :

N Trapezoidal Simpson Gauss-Legendre
10 1.821020 1.214025 0.1460448
20 0.912678 0.609897 0.2178091
40 0.478456 0.333714 0.2193834

100 0.273724 0.231290 0.2193839
1000 0.219984 0.219387 0.2193839

TFY4235/FYS8904 Computational Physics – ver2018 292 / 503

Some Terminology : Numerical integration

Adaptive integrators : a process in which the integral of a function f (x) is
approximated using static quadrature rules on adaptively refined
subintervals of the integration domain.

Automatic integrators : tries to obtain a given tolerance automatically

Nested integrators: An efficient calculation chooses the sequence of N in
such a way that previous function values can be reused. This is called
nesting.

TFY4235/FYS8904 Computational Physics – ver2018 293 / 503

Quadratures not discussed

Gauss-Kronrod quadrature
a variant of Gaussian quadrature, in which the evaluation points are
chosen so that an accurate approximation can be computed by re-using
the information produced by the computation of a less accurate
approximation, i.e. Gauss-Kronrod quadrature are nested.

Clenshaw-Curtis quadrature (Fejér quadratures)
Based on an expansion of the integrand in terms of Chebyshev
polynomials. A change of variables x = cos θ is done and a discrete
cosine transform (DCT) is used to calculate the resulting series.
Clenshaw-Curtis quadrature naturally leads to nested quadrature rules.
Special Clenshaw-Curtis quadratures exist for integrands W (x)f (x) with
a weight function W (x) that is highly oscillatory, e.g. a sinusoid or Bessel
functions. These methods are useful for high-accuracy integration of
rapid oscillating integrands.

Due to the nested nature of the Gauss-Kronrod and Clenshaw-Curtis
quadratures they are frequently used for adaptive quadratures!

TFY4235/FYS8904 Computational Physics – ver2018 294 / 503

Some examples

Use Pythons scipy package to calculate
∫ 4

0 dx x2

>>> from sc ipy impor t i n t e g r a t e
>>> func = lambda x : x∗∗2
>>> sc ipy . i n t e g r a t e . quad (func , 0 , 4)
(21.333333333333332 , 2.3684757858670003e−13)
>>> pr in t (4∗∗3 / 3 .) # a n a l y t i c a l resul t
21.3333333333

TFY4235/FYS8904 Computational Physics – ver2018 295 / 503

Romberg quadrature

Romberg integration is a powerful method
It consists of repeatably using an integrator for stepsizes, say, h, h/2, h/4
etc. and than extrapolating to h→ 0
Romberg integration is “Richardson extrapolation” (a sequence
acceleration method) applied to integration
Romberg was a professor in Trondheim (NTH)

Example: see e.g.
https://en.wikipedia.org/wiki/Romberg%27s_method

TFY4235/FYS8904 Computational Physics – ver2018 296 / 503

https://en.wikipedia.org/wiki/Romberg%27s_method

Ways of increasing integration accuracy

Question : How can one increase the accuracy of a numerical integration?

Increasing the number of points (not always a good idea, why not?)
Using a more accurate integrator
Using subdivision of the integration domain
Using an automatic adaptive integrator (which typically uses subdivision)

We will now look at some of these possibilities!

TFY4235/FYS8904 Computational Physics – ver2018 297 / 503

Adaptive methods

Assume that we want to compute an integral using say the trapezoidal rule. We
limit ourselves to a one-dimensional integral. Our integration domain is defined by
x ∈ [a,b]. The algorithm goes as follows

We compute our first approximation by computing the integral for the full domain. We
label this as I(0). It is obtained by calling our previously discussed function
trapezoidal rule as

I0 = t r a p e z o i d a l r u l e (a , b , n , function) ;

In the next step we split the integration in two, with c = (a + b)/2. We compute then
the two integrals I(1L) and I(1R)

I1L = t r a p e z o i d a l r u l e (a , c , n , function) ;
I1R = t r a p e z o i d a l r u l e (c , b , n , function) ;

With a given defined tolerance, being a small number provided by us, we estimate the
difference |I(1L) + I(1R) − I(0)| < tolerance. If this test is satisfied, our first approximation
is satisfactory.

If not, set up a recursive procedure where the integral is split into subsequent
subintervals until our tolerance is satisfied.

TFY4235/FYS8904 Computational Physics – ver2018 298 / 503

Adaptive methods

function [I , n f] = adaptsimp (f , a , b , t o l) ;
% ADAPTSIMP c a l l s the recursive function ADAPTREC to compute the i n t e g r a l o f the
% vector−valued function f over [a , b] ; t o l i s the des i red absolu te accuracy ;
% nf i s the number of function eva lua t ions .
% G. Da lqu i s t and A Bjorck , Numerical Methods in S c i e n t i f i c Computing , (SIAM ,

2008) .
f f = f e v a l (f , [a , (a+b) / 2 , b]) ;
n f = 3 ; % I n i t i a l Simpson approximat ion
I1 = (b − a) ∗ [1 , 4 , 1]∗ f f ’/6;
% Recursive computation
[I,nf] = adaptrec(f,a,b,ff,I1,tol,nf);
function [I,nf] = adaptrec(f,a,b,ff,I1,tol,nf);
h = (b - a)/2;
fm = feval(f, [a + h/2, b - h/2]);
nf = nf + 2;
% Simpson approximations for left and right subinterval
fR = [ff(2); fm(2); ff(3)];
fL = [ff(1); fm(1); ff(2)];
IL = h*[1, 4, 1]*fL/6;
IR = h*[1, 4, 1]*fR/6;
I2 = IL + IR;
I = I2 + (I2 - I1)/15;
% Extrapolated approximation
if abs(I - I2) > tol
% Refine both subintervals
[IL,nf] = adaptrec(f,a,a+h,fL,IL,tol/2,nf);
[IR,nf] = adaptrec(f,b-h,b,fR,IR,tol/2,nf);
I = IL + IR;

end

TFY4235/FYS8904 Computational Physics – ver2018 299 / 503

Adaptive methods

Example: Use the MATLAB routine adaptsimp to integrate

I =

∫ 4

−4

dx
1 + x2 = 2.65163532733607.

Results

I tolerance n Error
2.6516250211 10−4 41 1.0 10−5

2.6516352064 10−5 81 1.2 10−7

2.651635327353 10−6 153 −1.7 10−11

Here n is the no. of function calls.

TFY4235/FYS8904 Computational Physics – ver2018 300 / 503

Adaptive methods

The recommended canned integration routines are typically adaptive

For instance, QAGS from QUADPACK uses an adaptive Gauss-Kronrod
quadratures, and it is the main routine used in

scipy.integrate.quad
Matlab/Octave : quad
GSL: gsl integration qags

TFY4235/FYS8904 Computational Physics – ver2018 301 / 503

Numerical integration one-dimension:
Recommendations

The general recommendation I would give for numerical integration is:

Adaptive Gauss-Kronrod or Clenshaw-Curtis quadratures if f (x) is know
for any argument x

e.g. QAGS from quadpack (available through various libraries)

Newton-Cotes if f (x) is tabulated

TFY4235/FYS8904 Computational Physics – ver2018 302 / 503

Software: One-dimensional numerical integration

The following software packages provide numerical integration routines:

QUADPACK library (part of Slatec)
http://en.wikipedia.org/wiki/QUADPACK

GNU Scientific Library (contains QUADPACK)
Boost C++ libraries www.boost.org/
Python scipy
NAG Numerical Libraries (commercial)

Another good source is
John Burkardt homepage:
http://people.sc.fsu.edu/˜jburkardt/

TFY4235/FYS8904 Computational Physics – ver2018 303 / 503

http://en.wikipedia.org/wiki/QUADPACK
www.boost.org/
http://people.sc.fsu.edu/~jburkardt/

Software: QUADPACK

QAGS: uses global adaptive quadrature based on 21-point
Gauss-Kronrod quadrature within each subinterval, with acceleration by
Peter Wynn’s epsilon algorithm

QAGI: is the only general-purpose routine for infinite intervals, and maps
the infinite interval onto the semi-open interval (0,1] using a
transformation that uses the same approach as QAGS, except with
15-point rather than 21-point Gauss-Kronrod quadrature.

For an integral over the whole real line, the transformation used is
x = (1− t)/t∫ +∞

−∞
f (x)dx =

∫ 1

0

dt
t2

[
f
(

1− t
t

)
+ f
(
−1− t

t

)]
.

QUADPACK also contains routines for singular integrands (QAGP), and
Cauchy principle value integrals (QAWC) (to be discussed next)

See : http://en.wikipedia.org/wiki/QUADPACK
TFY4235/FYS8904 Computational Physics – ver2018 304 / 503

http://en.wikipedia.org/wiki/QUADPACK

Numerical integration of singular integrands

Question : How can one evaluate the integral

I(a,b) =

∫ b

a
dx f (x)

if f (x) has a singularity in the interval [a,b]?

First question to ask:
where is the singularity located
what kind of singularity; algebraic, logarithmic, etc.

Various approaches:
“ignore” the singularity (not in general a good idea)
specially designed Gaussian quadrature handling the singularity as a
weighting function
“transformation trick”: transform it away analytically
“subtraction trick”: subtract off the singularity and treat it analytically

TFY4235/FYS8904 Computational Physics – ver2018 305 / 503

Numerical integration of singular integrands

Numerical integration of singular integrands, may, or-may-not, be done
successfully with a normal quadrature rule if we avoid the singular point.

However, we stress such strategy may not be successful, so real care should
be taken. For instance for oscillatory integrands, the method of “ignoring the
singularity” does not work well.

Homework: Try this approach to the integrals (eg. using Simpson and/or
Gauss-Legendre quadratures)

Integral 1

I1 =

∫ 1

0
dx

1√
x

= 2

Integral 2

I2 =

∫ 1

0
dx

1
x

sin

(
1
x

)
= 0.624713 . . .

TFY4235/FYS8904 Computational Physics – ver2018 306 / 503

Numerical integration of singular integrands

First advice : investigate if one can transform or modify the given problem
analytically to make it more suitable for numerical integration

Example 1: Numerically calculate (singularity at x = 0)

I =

∫ 1

0
dx

ex
√

x

However, make a change of variable x = t2, to get

I = 2
∫ 1

0
dt exp(t2)

which is well-behaved.

Alternatively one may do a few integrations by part!

TFY4235/FYS8904 Computational Physics – ver2018 307 / 503

Numerical integration of singular integrands

Alternatively one may construct a special Newton-Cotes rule the integral with
weight function W (x) = 1/

√
x∫ 2h

0
dx

f (x)√
x
≈
√

2h [w0f (0) + w1f (h) + w2f (2h)] .

Using the method of undetermined coefficients for polynomials f (x) = 1, x , x2

gives ∫ 2h

0
dx

f (x)√
x
≈
√

2h
[

12
15

f (0) +
16
15

f (h) +
2

15
f (2h)

]
.

Show this yourself!

TFY4235/FYS8904 Computational Physics – ver2018 308 / 503

Numerical integration of singular integrands

Example 2: A more general form

Numerically calculate for f (x) ∈ C[0,1]

I =

∫ 1

0
dx

f (x)

x1/α , α ≥ 2

Here a change of variable x = tα results in

I = α

∫ 1

0
dt tα−2f (tα)

which is also well-behaved and better suited for numerical evaluation.

TFY4235/FYS8904 Computational Physics – ver2018 309 / 503

Numerical integration of singular integrands

Example 3: What to do with this integral for f (x) ∈ C[0,1]

I =

∫ 1

0
dx ln(x)f (x)

Question: What to do here regarding the logarithmic singularity at x = 0?

TFY4235/FYS8904 Computational Physics – ver2018 310 / 503

Numerical integration of singular integrands

Example 3: What to do with this integral for f (x) ∈ C[0,1]

I =

∫ 1

0
dx ln(x)f (x)

Question: What to do here regarding the logarithmic singularity at x = 0?

Possible answer : A change of variable x = e−t , will do the job since it implies

I = −
∫ ∞

0
dt te−t f (e−t)

which is a well behaved improper integral (that can be transformed to a finite
integration domain).

TFY4235/FYS8904 Computational Physics – ver2018 311 / 503

Numerical integration of singular integrands

Second advice : If the singular points are known, but can not be
transformed away, then the integral should first be broken up into several
pieces so that all the singularities are located at one (or both) ends of the
interval [a,b].

Say we have a singularity at c ∈ [a,b], then do∫ b

a
dx f (x) =

∫ c

a
dx f (x) +

∫ b

c
dx f (x)

Many integrals can then be treated by weighted quadrature rules, i.e., the
singularity is incorporated into the weight function

Comments: Many canned integration routines, like QAGS from QUADPACK,
do this for you automatically!

TFY4235/FYS8904 Computational Physics – ver2018 312 / 503

Numerical integration of singular integrands

Elimination of the singularity by subtracting it off and treat it analytically

Consider again the integral

I =

∫ b

a
dx f (x)

where f (x) has an integrable singularity in [a,b] that can not be transformed
away. Assume that g(x) has a similar behavior to f (x) around the singularity.

Then do

I =

∫ b

a
dx g(x) +

∫ b

a
dx [f (x)− g(x)] ≡ IA + IN

where IA is treated analytically, and IN numerically since it does not have a
singularity.

This methods only works if a function g(x) can be found that allows an
analytic treatment.

TFY4235/FYS8904 Computational Physics – ver2018 313 / 503

Numerical integration of singular integrands

Example: Elimination of the singularity by subtracting

I =

∫ 1

0
dx

cos x√
x

=

∫ 1

0
dx

1√
x

+

∫ 1

0
dx

cos x − 1√
x

= 2 +

∫ 1

0
dx

cos x − 1√
x

.

In evaluating the last integral numerically one has to explicitly use that

cos x − 1 ≈ −x2

2
+ . . .

Note: How small the argument has to be for this to be true depends on the
precision (single/double) that the calculation is done in!

TFY4235/FYS8904 Computational Physics – ver2018 314 / 503

Cauchy principle value integrals

Cauchy principle value integrals do appear in physics when dealing with e.g.
dispersion relations and Greens functions for scattering problems.

Definition: Cauchy principle value

If the following integral, for b ∈ [a, c] and f (x) singular at x = b, is finite

I = P
∫ c

a
dx f (x) = lim

ε→0+

[∫ b−ε

a
f (x) dx +

∫ c

b+ε

f (x) dx

]

then it is the Cauchy principle value (denoted P).

Note first of all that one has to be careful in how the limit is taken:

lim
a→0+

(∫ −a

−1

dx
x

+

∫ 1

a

dx
x

)
= 0,

lim
a→0+

(∫ −2a

−1

dx
x

+

∫ 1

a

dx
x

)
= ln 2

Only the first integral is a Cauchy principle value integral (a distribution)!
TFY4235/FYS8904 Computational Physics – ver2018 315 / 503

Cauchy principle value integrals

Example: Calculate the Cauchy principle value of

P
∫ ∞

0

dx
x2 + x − 2

Analytically one finds (by straightforwardly using the definition):

P
∫ ∞

0

1
x2 + x − 2

=
1
3
P
∫ ∞

0

(
1

x − 1
− 1

x + 2

)
dx

=
1
3

lim
ε→0

[∫ 1−ε

0

(
1

x − 1
− 1

x + 2

)
dx +

∫ ∞
1+ε

(
1

x − 1
− 1

x + 2

)
dx

]

=
1
3

lim
ε→0

[
[log(1− x)− log(x + 2)]1−ε0 + [log(x − 1)− log(x + 2)]∞1+ε

]
=

1
3

lim
ε→0

[log(ε)− log(3− ε) + log(2)− log(ε) + log(3 + ε)]

=
log(2)

3

where we have used that limR→∞ log
(

R−1
R+2

)
= 0.

TFY4235/FYS8904 Computational Physics – ver2018 316 / 503

Cauchy principle value integrals

How can one calculate Cauchy principle value integrals numerically?

Consider the integral where y ∈ [a,b] and f (x) ∈ C[a,b] (Hilbert transform)

I(y) = P
∫ b

a
dx

f (x)

x − y
= lim
ε→0+

[∫ y−ε

a

f (x)

x − y
dx +

∫ b

y+ε

f (x)

x − y
dx

]
However, only the region around the singularity at x = y is problematic:

P
∫ b

a
dx

f (x)

x − y
=

∫ y−∆

a

f (x)

x − y
dx + P

∫ y+∆

y−∆

dx
f (x)

x − y
+

∫ b

y+∆

f (x)

x − y
dx

The first and last integral are calculated by standard methods.

For the Principle value integral we make a change of variable x = u∆ + y to
get

I∆(y) = P
∫ y+∆

y−∆

dx
f (x)

x − y
= P

∫ 1

−1
du

f (u∆ + y)

u

TFY4235/FYS8904 Computational Physics – ver2018 317 / 503

Cauchy principle value integrals

Now we use the “subtraction trick” to calculate I∆(y)

I∆(y) = P
∫ 1

−1
du
[

f (u∆ + y)− f (y)

u
+

f (y)

u

]
= P

∫ 1

−1
du
[

f (u∆ + y)− f (y)

u

]
+ f (y)P

∫ 1

−1
du

1
u︸ ︷︷ ︸

0

=

∫ 1

−1
du
[

f (u∆ + y)− f (y)

u

]
where we in the last transition have taken advantage of the integrand no
longer is singular since

lim
u→0

[f (∆u + y)− f (y)] = 0

Calculate I∆(y) by Gauss-Legendre quadratures of EVEN order (why?)

TFY4235/FYS8904 Computational Physics – ver2018 318 / 503

Examples : Cauchy principle value integrals

The routine QAWC from QUADPACK calculates Cauchy principle value
integrals, and here we demonstrate the scipy interface to this library

Example: Verify that

P
∫ 1

−1
dx

1 + sin(x)

x
= 2

∫ 1

0

sin(x)

x
= 2 Si(1) ≈ 1.8921661407343662

Scipy code

impor t numpy as np
impor t sc ipy . i n t e g r a t e
P \ i n t {−1}ˆ1 dx (1 + sin (x)) / (x − wvar)
numerator=lambda x : 1 + np . sin (x) ;
sc ipy . i n t e g r a t e . quad (numerator ,−1 ,1 , weight=’cauchy’ , wvar=0)
(1.8921661407343664 , 2.433608869978343e−13)

TFY4235/FYS8904 Computational Physics – ver2018 319 / 503

Multidimensional integrals

The multidimensional integral

In(a,b) =

∫ b1

a1

dx1

∫ b2

a2

dx2 . . .

∫ bn

an

dxn f (x)

can be calculated as repeated one-dimensional integrals
This is valid for any numerical integration method
Numerical integration over more than one dimension is sometimes
described as “cubatures”
Different integration methods can be applied in different dimensions

Challenge: “Curse of dimensionality”
The exponentially rising cost associated with simple product grids

Ex: With 106 function eval. leaves about 2 points per direction in 20D!

This cost is unaffordable, but worse, it is unnecessary !

TFY4235/FYS8904 Computational Physics – ver2018 320 / 503

Sparse grid methods —Smolyak quadratures

Sparse grids avoid the exponentially rising cost associated with simple
product grids, and can produce more accurate results than a Monte Carlo
approach if the function has bounded derivatives of sufficient order.

Tensor product grid Sparse grid

TFY4235/FYS8904 Computational Physics – ver2018 321 / 503

Sparse grid methods — Smolyak quadratures

developed by the Russian mathematician Sergey A. Smolyak
based on a sparse tensor product construction
Smolyak’s quadrature rule : more efficient method of integrating
multidimensional functions
Sparse Grid = Sum of Selected Product Rule (more efficient)

Tutorial: http://www.math.tu-berlin.de/˜garcke/paper/
sparseGridTutorial.pdf

Software http://people.sc.fsu.edu/˜jburkardt

TFY4235/FYS8904 Computational Physics – ver2018 322 / 503

http://www.math.tu-berlin.de/~garcke/paper/sparseGridTutorial.pdf
http://www.math.tu-berlin.de/~garcke/paper/sparseGridTutorial.pdf
http://people.sc.fsu.edu/~jburkardt

Monte-Carlo integration

Trivial example : Calculate π by random numbers!

π = 4
A◦
A�

= 4 lim
N�→∞

N◦
N�

TFY4235/FYS8904 Computational Physics – ver2018 323 / 503

Monte-Carlo integration

Define

I =

∫
Ω

dnx f (x); V =

∫
Ω

dnx

Then we do the approximation

I ≈ QN ≡ V 〈f (x)〉 = V
1
N

N∑
i=1

f (x i)

Given the estimation of I from QN , the error bars of QN can be estimated by
the sample variance using the unbiased estimate of the variance:

σ2
N =

1
N − 1

N∑
i=1

(f (x i)− 〈f 〉)2
.

The error in the Monte Carlo integration is however independent of D and
scales as σN ∼ 1/

√
N, always!

The aim in Monte Carlo calculations is to have σN as small as possible
after N samples. The results from one sample represents, since we are
using concepts from statistics, a “measurement”.

TFY4235/FYS8904 Computational Physics – ver2018 324 / 503

The volume of an n-dimensional sphere

The n-dimensional sphere of radius R, the “Euclidean ball”, is the volume
bounded by the surface |x | = R where x ∈ Rn.
The volume of such a sphere is

Vn(R) =

∫
|x |<R

dnx

Homework: Calculate the volume Vn(R) for different values of n ∈ N0!

TFY4235/FYS8904 Computational Physics – ver2018 325 / 503

Section 9

Random numbers

TFY4235/FYS8904 Computational Physics – ver2018 326 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

8 Numerical integration

TFY4235/FYS8904 Computational Physics – ver2018 327 / 503

Outline II
9 Random numbers

Uniform pseudo random number generators
Nonuniform pseudo random number generators

10 Ordinary differential equations

11 Partial differential equations

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 328 / 503

Random numbers

A computer is adeterministic machine!
Are random numbers possible to generate on a computer?

Application of random numbers
Scientific Computing
Statistics
Cryptography
Gambling

Physics
Monte Carlo simulations
Statistical physics
Algorithmic modeling

TFY4235/FYS8904 Computational Physics – ver2018 329 / 503

Random numbers

Use of Random Number Generators (RNGs)

In principle, RNGs are needed in any application where unpredictable results
are required.

For most applications it is desirable to have fast RNGs that produce
numbers that are as random as possible
However, these two properties are often inversely proportional to each
other
Excellent RNGs are often slow, whereas poor RNGs are typically fast

Good introduction :
Helmut G. Katzgraber, Random Numbers in Scientific Computing: An Introduction,
arXiv:1005.4117, 2010; http://arxiv.org/abs/1005.4117

TFY4235/FYS8904 Computational Physics – ver2018 330 / 503

http://arxiv.org/abs/1005.4117

Random numbers

Main classes of RNGs:

True RNGs
True random numbers are generated
There are no correlations in the sequence of numbers

special hardware typically needed (exception /dev/random)
True RNGs are generally slow; limited use for large-scale computer simul.
Debugging difficult; No restart of the sequence

Buy random numbers from www.random.org/

Pseudo RNGs (PRNGs)
are fast (no need for post-processing)
do not require special hardware and therefore are very portable
easy debugging: the exact sequence of RNs may be reproduced

have finite sequence lengths
the numbers produced may be correlated (i.e. know your generator!)

TFY4235/FYS8904 Computational Physics – ver2018 331 / 503

/dev/random
www.random.org/

Pseudo Random Number Generators

Good pseudo RNGs should be
Random
Reproducible
Portable
Efficient

Random numbers from any distribution, takes uniform random numbers,
denoted U(0,1), as the starting point.

No universal PRNG!
There is NO universal pseudo random number generator (PRNG).
Always test your PRNG in the application you have in mind!

The field of PRNGs is evolving quickly;
A generator that was considered good in the past, may no longer be “good”.

TFY4235/FYS8904 Computational Physics – ver2018 332 / 503

Uniform deviates; U(0,1)

Algorithm: Uniform PRNGs

Generate a sequence of numbers x1, x2 ,x3, . . ., using a recurrence of the form

xi = f (xi−1, xi−2, . . . , xi−n)

where n initial numbers (seed block) are needed to start the recurrence.

All PRNGs have this structure; the magic lies in finding a function f (·) that
produces numbers that are “as random as possible”.
The initial values — the seed — determines the sequence of random
numbers.

Methods for generating uniform pseudo random numbers U(0,1):
Linear congruential generators
Lagged Fibonacci generators
Other commonly-used PRNGs

TFY4235/FYS8904 Computational Physics – ver2018 333 / 503

Uniform deviates
Linear congruential generators

Linear congruential generators

These generators, in their simplest implementation, are of the form

Ii+1 = (aIi + c) mod m (integer)

ri+1=
Ii+1

m
∈ [0,1) (float)

with
I0: a seed value 0 ≤ I0 < m
a: the multiplier 0 ≤ a < m
c: the increment 0 ≤ c < m
m: the modulus; (typically a large integer)

Ii is an integer between 0 and m − 1
period ≤ m hopefully period ≈ m

TFY4235/FYS8904 Computational Physics – ver2018 334 / 503

Uniform deviates
Linear congruential generators

The choice of constants (I0,a, c,m) influence the quality of the generator
Mathematicians have partly guided us how to pick “magic numbers”
sequential correlations show up
Park-Miller generator : c = 0

Some choices:
“Minimal Standard Generator” (Lewis, Goodman and Miller (1969))

a = 16 807; c = 0; and m = 231 − 1 = 2147483647 ∼ 109 [using 32-bits
integer]
good for generating unsigned 32-bit random integers
very fast and full period of 231 − 1 ∼ 109 (often too short for floats)
little sequential correlations

drand48()
a = 25214903917, c = 11 and m = 248 ∼ 1014

TFY4235/FYS8904 Computational Physics – ver2018 335 / 503

Uniform deviates
Linear congruential generators

“Minimal Standard Generator” does not show sequential correlations

Plotting R j (n) = (xj , xj+n) reveals no pattern whatsoever in the plotted points.

TFY4235/FYS8904 Computational Physics – ver2018 336 / 503

Uniform deviates
Example of a bad generator

Example of a bad generator: RANDU (a = 65539, c = 0, and m = 231) used
on the IBM mainframe computers in the 1960s

103 triplets of successive random numbers produced with RANDU plotted in
three-dimensional space.

TFY4235/FYS8904 Computational Physics – ver2018 337 / 503

Uniform deviates
Lagged Fibonacci generators

Lagged Fibonacci generators

These generators are of the form

xi = (xi−j � xi−k) mod m, 0 < j < k ,

where � denotes a binary operator, i.e. addition, multiplication or exclusive
OR (XOR; “one or the other but not both”)

Typically m = 2M with M = 32 or 64.
Requires a seed block of size k to be initialized (often with a Linear
congruential generator)
When � is a multiplication [addition] one talks about multiplicative
[additative] lagged Fibonacci generators

The name derives from the similarity to the Fibonacci series

xi = xi−1 + xi−2 → {1,1,2,3,5,8,13,21, . . .}

TFY4235/FYS8904 Computational Physics – ver2018 338 / 503

Uniform deviates
Lagged Fibonacci generators

Lagged Fibonacci generators are intended as an improvement over linear congruential
generators and, in general, they are not only fast but most of them pass all standard
empirical random number generator tests.

Examples of Lagged Fibonacci generators are

r1279()

multiplicative generator with k = 1279
period approximately 10394

has passed all known PRNG tests
the “standard” generator in e.g. GNU Scientific Library

r250(); not a so good generator!
k = 250; � = XOR
For many years the “standard generator” in numerical simulations

Problem: Energy per spin in the Ising model at the critical temperature was
approximately 42 standard deviations off the known exact result (1992)

TFY4235/FYS8904 Computational Physics – ver2018 339 / 503

Uniform deviates
Other generators

Mersenne Twister; mt19937(), mt19937-64()

Developed in 1997, and passed almost all known tests
among the most frequently used generators of today
fast generator
Period 219937 − 1 ≈ 106001

period determined by Mersenne primes (Mn = 2n − 1, n ∈ N)
available in 32 and 64-bits architectures
available in C/C++, Fortran, GSL, Matlab, Python, Boost etc.
en.wikipedia.org/wiki/Mersenne_twister

WELL generators — Well Equidistributed Long-period Linear
originally developed by Panneton, L’Ecuyer and Matsumoto
The idea is to provide better equidistribution and bit mixing with an
equivalent period length and speed as the Mersenne Twister

TFY4235/FYS8904 Computational Physics – ver2018 340 / 503

en.wikipedia.org/wiki/Mersenne_twister

How to test the quality of PRNGs?

Various different test suites have been developed with the sole purpose of
testing PRNGs.

Simple tests for N PRNs from U(0,1)

correlation test : 〈xixi+n〉 − 〈x〉2 < O(1/
√

N)
moment test :

〈
xk〉− 1/(k + 1) < O(1/

√
N)

Graphical test : plot R i = (xi , xi+1) etc.

DIEHARD by George Marsaglia
consists of 16 different tests
For more details visit
http://en.wikipedia.org/wiki/Diehard_tests

There is NO ultimate test!
Therefore run your code with different PRNGs.
If the results agree within error bars and the PRNGs used are from different
families, the results are likely to be trusted.

TFY4235/FYS8904 Computational Physics – ver2018 341 / 503

http://en.wikipedia.org/wiki/Diehard_tests

Recommendations for U(0,1) PRNGs

For any scientific applications we recommend :

Good (and fast) generators
Mersenne Twister
multiplicative lagged Fibonacci generator such as r1279()
WELL generators

Avoid
any home-cooked routines
use of linear congruential generators
the family of Unix built-in generators drand48()
Numerical Recipes ran0(), ran1() and ran2()

Warning: Implementation of PRNGs on a computer is not always trivial, because of the
different numerical range of the integers specified by the computer language or
hardware.

PRNGs are therefore not necessarily easily portable!

TFY4235/FYS8904 Computational Physics – ver2018 342 / 503

Final recommendations

Dealing with random numbers can be a delicate issue. Therefore. . .

Always try to run your simulations with two different PRNGs from different
families, at least for small testing instances. One option would be to use
an excellent but slow PRNG versus a very good but fast PRNG. For the
production runs then switch to the fast one.
To ensure data provenance always store the information of the PRNG as
well as the seed used (better even the whole code) with the data. This
will allow others to reproduce your results.
Use trusted PRNG implementations. As much as it might feel good to
make your own PRNG, rely on those who are experts in creating these
delicate generators.
Know your PRNG’s limits: How long is the period? Are there known
problems for certain applications? Are there correlations at any time
during the sequence?
Be careful with parallel simulations.

Recommendations from : http://arxiv.org/abs/1005.4117

TFY4235/FYS8904 Computational Physics – ver2018 343 / 503

http://arxiv.org/abs/1005.4117

Examples

Fortran 90

program random
i m p l i c i t none
real , dimension (10) : : vec

! se t a random seed
c a l l random seed ()
! generate a sequence of 10 pseudo−random numbers
c a l l random number (vec)
write (∗ ,’(5F10.6)’) vec (1 : 5)
write (∗ ,’(5F10.6)’) vec (6 : 1 0)

end program random

output

0.997560 0.566825 0.965915 0.747928 0.367391
0.480637 0.073754 0.005355 0.347081 0.342244

In gfortran, the built in PRNG is the KISS (Keep It Simple Stupid) random
number generator!

TFY4235/FYS8904 Computational Physics – ver2018 344 / 503

Examples

numpy

>>> impor t numpy as np
>>> np . random . rand (3 ,2)
ar ray ([[0.90526062 , 0.88377706] ,

[0.97982437 , 0.27525055] ,
[0.69037667 , 0.2779478]])

In addition to the uniform and Gaussian distribution np.random contains about
35 different distributions!

TFY4235/FYS8904 Computational Physics – ver2018 345 / 503

Nonuniform PRNGs

Often in scientific applications one needs other pdf’s than the uniform U(0,1).

There are mainly two methods for generating such random deviates:
Transformation methods
Rejection method

They both require that one or several U(0,1) random numbers are generated.

TFY4235/FYS8904 Computational Physics – ver2018 346 / 503

Transformation of random variables

Given a probability distribution function p(x)

The corresponding cumulative distribution function reads

P(x) =

∫ x

−∞
dx ′p(x ′), 0 ≤ P(x) ≤ 1

If we are able to find the inverse of P(x), we may construct the random
deviates from p(x) as

P(x) = ξ =⇒ x = P−1(ξ),

where ξ = U(0,1) are uniformly distributed random numbers

The numbers x are then from the pdf p(x)

TFY4235/FYS8904 Computational Physics – ver2018 347 / 503

Transformation of random variables

Algorithm
1 Generate ξ = U(0,1)

2 Calculate x = P−1(ξ), which is distributed according to p(x)

This hinges on having an explicit expression for P−1(·).
This is is not always possible!

TFY4235/FYS8904 Computational Physics – ver2018 348 / 503

Exponential deviates

p(x) = e−x 0 < x <∞
P(x) = 1− e−x

Transformation (with ξ = ξ′ = U(0,1))

P(x) = ξ =⇒ x = − ln(1− ξ) = − ln(ξ′)

Code: from Numerical Recipes in C
include <math . h>
f l o a t expdev (long ∗ idum)
/ / Returns an e x p o n e n t i a l l y d i s t r i b u t e d , p o s i t i v e ,
/ / random dev ia te o f u n i t mean , using
/ / ran1 (idum) as the source o f uni form dev ia tes .
{

f l o a t ran1 (long ∗ idum) ;
f l o a t dum;
do

dum=ran1 (idum) ;
while (dum == 0 .0) ;
return −log (dum) ;

}
TFY4235/FYS8904 Computational Physics – ver2018 349 / 503

More examples

Example 1

p(x) = βxβ−1 0 < x < 1; β > 0
P(x) = xβ

Transformation [with ξ = U(0,1)]

P(x) = ξ =⇒ x = P−1(ξ) = (ξ)1/β

Example 2

p(x) = αx−α−1 1 < x <∞; α > 0
P(x) = 1− x−α

Transformation

P(x) = ξ =⇒ x = (1− ξ)−1/α = (ξ′)−1/α

TFY4235/FYS8904 Computational Physics – ver2018 350 / 503

Gaussian deviates — The Box-Müller algorithm

Probability density function

p(x) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
mean µ and standard deviation σ

Cumulative distribution function (cdf)

P(x) =

∫ x

−∞
dx ′

1√
2πσ2

exp

(
− (x ′ − µ)2

2σ2

)
is not known in closed form (an error-function).

However, we do not know how to calculate P−1(·) in closed form!

TFY4235/FYS8904 Computational Physics – ver2018 351 / 503

Gaussian deviates —- The Box-Müller algorithm

The Box-Müller algorithm
Trick : go from 1D to 2D and convert to polar coordinates (x1, x2)→ (r , φ)
(we here for simplicity assume µ = 0 and σ = 1)

1
2π

exp

(
−x2

1 + x2
2

2

)
dx1 dx2 =

1
2π

exp

(
− r2

2

)
r dr dφ = pφ(φ)pr (r)drdφ

pφ(φ) =
1

2π
pr (r) = r exp

(
− r2

2

)
The cumulative distribution function for pr (r)

Pr (r) =

∫ r

0
dr ′ r ′ exp

(
− r ′2

2

)
= 1− exp

(
r2

2

)
can be inverted to give [Pr (r) = ξ]

r =
√
−2 ln(1− ξ) =

√
−2 ln ξ′

TFY4235/FYS8904 Computational Physics – ver2018 352 / 503

Gaussian deviates —- The Box-Müller algorithm

To generate two Gaussian random numbers we do

1 Generate ξ1 = U(0,1) and ξ2 = U(0,1) (uncorrelated)
2 Calculate

x1 = r cos(φ) =
√
−2 ln ξ1 cos(2πξ2)

x2 = r sin(φ) =
√
−2 ln ξ1︸ ︷︷ ︸

r

sin(2πξ2)︸ ︷︷ ︸
sin(φ)

3 The numbers x1 and x2 are uncorrelated Gaussian (or Normal) random
deviates of mean 0 and standard deviation 1

Standard Gaussian random variables are typically denoted N(0,1)

Try this out for yourself! How can you make sure that the result is correct?

TFY4235/FYS8904 Computational Physics – ver2018 353 / 503

Rejection method

The rejection method (von Newmann 1947) is a general and powerful
technique for generating random deviates from a distribution p(x).

In principle p(x) can be any pdf!

Assumptions
p(x) is computable (and is a pdf)
p(x) ≤ f (x) for ∀x (f is a comparison function)
F (x) =

∫ x
−∞ dx ′f (x ′) exists and is invertable

Note : It is always possible to choose

f (x) = max p(x)

even if it may not be the best choice!

TFY4235/FYS8904 Computational Physics – ver2018 354 / 503

Rejection method

Algorithm
1 Generate ξ1 = U(0,A), where A = F (∞)

2 Calculate x0 = F−1(ξ1)

3 Generate ξ2 = U(0, f (x0))

4 Number x0 should be
accepted if ξ2 ≤ p(x0)
rejected if ξ2 > p(x0) (and start from point 1 again)

TFY4235/FYS8904 Computational Physics – ver2018 355 / 503

Rejection method

Comments
make sure to choose a comparison function f (x) for which F−1(ξ) is
known analytically
the fraction of rejected points just depends on the ratio of the area under
the comparison function to the area under p(x) (the details of F and p do
not matter)

Note the special case where f (x) = pm = maxx p(x)

ξ1 = U(0,F (∞)) and ξ2 = U(0,pm)

TFY4235/FYS8904 Computational Physics – ver2018 356 / 503

Multivariate Gaussian variables

Assume

Multi-dimensions : x = (x1, x2, . . . , xN)

Zero-mean : 〈xi〉 = 0
Covariance : Σij =

〈
xixj
〉

TFY4235/FYS8904 Computational Physics – ver2018 357 / 503

Multivariate Gaussian variables

Define the covariance matrix

Σ =


Σ11 Σ12 Σ13 . . .
Σ21 Σ22 Σ23 . . .
Σ31 Σ32 Σ33 . . .

...
...

...
...


Then the multivariate Gaussian distribution reads

p(x) =
1√

(2π)N |Σ|
exp

(
−1

2
xT Σ−1x

)
,

In particular if Σ is diagonal it follows

p(x) =
N∏

i=1

1√
2πΣii

exp

(
− x2

i
2Σii

)
i.e. , product of N uncorrelated 1D Gaussian distributions.

TFY4235/FYS8904 Computational Physics – ver2018 358 / 503

Multivariate Gaussian variables

In general the quadratic form xT Σ−1x is non-diagonal.
However, it can be diagonalized by a linear transformation x = T y where T is
an orthogonal (rotation) matrix; T T T = 1

xT Σ−1x = yT
(

T T Σ−1T
)

y

= yT Σ̃
−1

y

=
N∑

i=1

y2
i

Σ̃ii

were we have defined

Σ̃ = T T ΣT = T−1ΣT =
(

T−1Σ−1T
)−1

=
(

T T Σ−1T
)−1

Hence, Σ̃ = T T ΣT is diagonal for a proper choice of T , and the diagonal
elements are Σ̃ii = σ2

i .

TFY4235/FYS8904 Computational Physics – ver2018 359 / 503

Multivariate Gaussian variables

Algorithm: Generation of multivariate Gaussian variables
1 Covariance matrix Σ is given
2 Diagonalize Σ, that is, find its

eigenvalies {σ2
i }N

i=1
eignvector {v i}N

i=1;

3 Construct T = [v i] with ‖v i‖ = 1 (main axis transformation)

4 Generate N independent (uncorrelated) Gaussian random variables yi
with variance σ2

i ; construct y

5 Make the transformation x = Ty

TFY4235/FYS8904 Computational Physics – ver2018 360 / 503

Section 10

Ordinary differential equations

TFY4235/FYS8904 Computational Physics – ver2018 361 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

8 Numerical integration

TFY4235/FYS8904 Computational Physics – ver2018 362 / 503

Outline II
9 Random numbers

10 Ordinary differential equations

11 Partial differential equations

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 363 / 503

Ordinary differential equations (ODEs)
General definition

Consider N ∈ N, an open subset U ⊂ RN+2, I ⊂ R, a function y : I 7→ R, and
f ∈ C1(U,R). (I, y) is a solution of the differential equation

f (x , y , y ′, · · · , y (N)) = 0

if:
y ∈ CN(I,R)

∀x ∈ I, (x , y(x), y ′(x), · · · , y (N)(x)) ∈ U
∀x ∈ I, f (x , y(x), y ′(x), · · · , y (N)(x)) = 0

This is a N th order differential equation. We can further classify ODEs.
linear
non-linear
homogeneous

To be made even more general

TFY4235/FYS8904 Computational Physics – ver2018 364 / 503

A short classification

An ODE is linear if f can be written as

f (x , y , y ′, · · · , y (N)) =
N∑

i=0

λi y (i) + r

where (λi)i∈J0;1K and r are functions.
A linear ODE is said homogeneous if r = 0.
Examples:

Linear homogeneous Linear Non-linear

Free oscillator Forced oscillator Pendulum equation

y ′′ + ω2y = 0 y ′′ + ω2y = s y ′′ + ω2 sin y = 0

TFY4235/FYS8904 Computational Physics – ver2018 365 / 503

From a N th order ODE to a set of 1st order ODEs

Consider a normalized N th order linear ODE of the form:

y (N) =
N−1∑
i=0

λi y (i) + r (4)

We introduce the applications y, A, r:

y =


y

y ′

...

y (N−1)

 A =


0 1 O

.

O 0 1

λ0 · · · λN−2 λN−1

 r =


0
...

0

r


Then y is solution of Eq. (4) on I if and only if y is solution of the set of 1st

order ODE:

y′ = Ay + r

TFY4235/FYS8904 Computational Physics – ver2018 366 / 503

From a N th order ODE to a set of 1st order ODEs

What about non-linear ODEs? The same procedure is still possible but the set
of 1st order ODEs is non-linear. In general the N th order ODE:

f (x , y , y ′, · · · , y (N)) = 0

can be written as

f (x ,Y0,Y1, · · · ,YN−1,Y ′N−1) = 0

by introducing Y0 = y and ∀i ∈ J1,N − 1K, Yi = y (i).

TFY4235/FYS8904 Computational Physics – ver2018 367 / 503

From a N th order ODE to a set of 1st order ODEs

Linear example: 2nd Newton’s law for the damped oscillator with external
excitation.

ẍ(t) = −λẋ(t)− ω2
0x(t) + a sin(ωt)

We set

x(t) =

x(t)

ẋ(t)

 A =

 0 1

−ω2
0 −λ

 r(t) =

 0

a sin(ωt)


Non-linear example: 2nd Newton’s law for the pendulum.

θ̈ = −ω2 sin θ

we set: ϑ0 = θ, and ϑ1 = θ̇, hence

ϑ̇0 = ϑ1

ϑ̇1 = −ω2 sinϑ0

TFY4235/FYS8904 Computational Physics – ver2018 368 / 503

Initial and boundary value problems

Since we can go from a N th order ODE to a set of coupled 1st order ODEs,
we are interested in solving a 1st order ODE of the form y′ = f(x ,y) on
I × C1(RN).

Initial value problem: we are looking for solution(s) verifying the initial
condition

y(x0) = y0

Note: the condition y(x0) = y0 correspond to the condition

y(x0) = ỹ0, y ′(x0) = ỹ1, · · · , y (N−1)(x0) = ỹN−1

for the corresponding N th order ODE.

TFY4235/FYS8904 Computational Physics – ver2018 369 / 503

Initial and boundary value problems

Boundary value problem: we are looking for solution(s) verifying the
boundary condition

B(x,y) = 0

where x = (x1, · · · , xm) is a set of boundary points, B a N-dimensional
algebraic operator. In practice, we have a set of n1 boundary equations at
a point a and n2 = N − n1 equations at another point b. This reads:

Ba,p(a,y) = 0, p ∈ J1,n1K
Bb,q(b,y) = 0, q ∈ J1,n2K

A simple/common class of boundary conditions is to give the value of n1
components of y at a and n2 components at b. For example:

yp(a) = ya,p, p ∈ J1,n1K
yq(b) = yb,q , q ∈ Jn1 + 1,NK

In general, the boundary value problem is related to the initial value problem
in the sense that if y is solution of the boundary value problem then there
exists a set {ỹi}J1,NK ⊂ R for which y is solution of the initial value problem
associated to it.

TFY4235/FYS8904 Computational Physics – ver2018 370 / 503

Cauchy-Lipschitz Theorem

Consider the Cauchy problem

y ′ = f (x , y)

y(x0) = ỹ0

If f is locally lipschitz continue with respect to the second variable, then a
unique (maximal) solution exists to the Cauchy problem.

F : U → V is lipschitz continue if,

∃ k ≥ 0, ∀(x , y) ∈ U2, ‖F (x)− F (y)‖V ≤ k‖x − y‖U

TFY4235/FYS8904 Computational Physics – ver2018 371 / 503

How to solve numerically the Cauchy problem?

We consider now a Cauchy problem in 1D. The resolution of higher dimension
ODE will use what follow for each equation of the set.

The key ideas to solve the Cauchy problem are:

Start from the initial point (x0, y0).
Discretize the interval I on which the problem must be solve. This defines
a step h. More advanced method can also involve adaptive step.
Compute the next point (xn+1, yn+1) based on a scheme involving the
previous step (xn, yn) (single step methods) or a set a previous steps
(multiple steps methods) and the corresponding evaluation of f at those
previous steps (or at intermediate steps).
The scheme is often based on Taylor expansions and interpolation
techniques.

TFY4235/FYS8904 Computational Physics – ver2018 372 / 503

Single and multiple step methods

Some single step methods:

Euler’s methods
Modified Euler’s methods (e.g. midpoint method)
Runge-Kutta methods

Multiple steps methods:

Adams Bashforth methods (explicit)
Adams Moulton methods (implicit)

TFY4235/FYS8904 Computational Physics – ver2018 373 / 503

Euler’s method - explicit and implicit
Euler’s methods use the 1st order Taylor expansion of y .

y(xn + h) = y(xn) + hy ′(xn) +O(h2)

Knowing yn, we construct yn+1 as:

yn+1 = yn + hf (xn, yn)

The local error from a step to another is of order O(h2).

x

y

x0 x1

y(x1)

y0

y1

exact solution

approximate solution

h

hf (x0, y0)

TFY4235/FYS8904 Computational Physics – ver2018 374 / 503

Euler’s method - explicit and implicit

Euler’s method is not recommended in practice.
requires many steps =⇒ small h =⇒ numerical round off error.
not stable

Simple example: y ′ = −λy with λ > 0

Exact solution: y(x) = y0e−λx . Hence y(x) −−−→
x→∞

0

Approximate solution given by Euler’s explicit method: yn = y0(1− λh)n.
Hence yn −−−→

n→∞
0 ⇐⇒ |1− λh| < 1.

Stability condition: h < 2
λ

TFY4235/FYS8904 Computational Physics – ver2018 375 / 503

Euler’s method - explicit and implicit

Stability can be improved by using an implicit scheme instead.

yn+1 = yn + hf (xn+1, yn+1)

Back to previous example:

yn+1 = yn − λh yn+1 ⇐⇒ yn+1 = yn
1+λh

Hence the approximate solution reads:
yn = y0

(1+λh)n −−−→
n→∞

0 unconditionally.

Drawback: difficult to implement when f does not allow an explicit calculation
of yn+1.

TFY4235/FYS8904 Computational Physics – ver2018 376 / 503

How to improve Euler’s method?

To improve Euler’s method one can:

Use a higher order Taylor expansion.
Drawback: requires to evaluate partial derivatives of f . This method is
hence not often use.
Use intermediate points.
Midpoint method
Runge-Kutta method

TFY4235/FYS8904 Computational Physics – ver2018 377 / 503

Midpoint method

Consider the midpoint between xn and xn+1: xn+1/2 = xn+xn+1
2 = xn + h

2
Two Taylor expansions around the midpoint:

y(xn + h) = y(xn+1/2) +
h
2

y ′(xn+1/2) +
h2

8
y ′′(xn+1/2) +O(h3)

y(xn) = y(xn+1/2)− h
2

y ′(xn+1/2) +
h2

8
y ′′(xn+1/2) +O(h3)

By substraction:

y(xn + h)− y(xn) = hy ′(xn+1/2) +O(h3)

Hence the midpoint method reads:
1 Use Euler’s scheme with a step h/2 to construct yn+1/2.
2 Compute the slope at that midpoint f (xn+1/2, yn+1/2).
3 Use the midpoint slope to increment yn+1 from yn.

The local error made with the midpoint method is O(h3).

TFY4235/FYS8904 Computational Physics – ver2018 378 / 503

Midpoint method

x

y

x0 x1

y(x1)

y0

y1

x 1
2

exact solution

Euler solution

midpoint solution

h

hf (x 1
2
, y 1

2
)

In practice the algorithm reads:

k1 = hf (xn, yn)

k2 = hf (xn +
h
2
, yn +

k1

2
)

yn+1 = yn + k2

TFY4235/FYS8904 Computational Physics – ver2018 379 / 503

Runge-Kutta methods

Euler’s and the midpoint methods enters in a wider class a methods known as
Runge-Kutta methods. As in the midpoint rule, the idea of higher order
Runge-Kutta methods is to cancel the error terms order by order. A largely
used method is the 4th-order Runge-Kutta method. The algorithm reads:

k1 = hf (xn, yn)

k2 = hf (xn +
h
2
, yn +

k1

2
)

k3 = hf (xn +
h
2
, yn +

k2

2
)

k4 = hf (xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6

The local error is O(h5), but the cost is 4 evaluations of f per step.

TFY4235/FYS8904 Computational Physics – ver2018 380 / 503

Multiple step methods

We have seen that steps close to the initial point are usually the most trustful,
since errors add up from step to step. The key idea of multiple steps methods
is to use several previous step to compute the next one.

TFY4235/FYS8904 Computational Physics – ver2018 381 / 503

Adams-Bashforth methods

Adams-Bashforth explicit mth order scheme
We want to use an explicit scheme which is linear in the m previous step.

yn+1 = yn + h
m∑

i=1

αi f (xn−i+1, yn−i+1)

What should we choose for (αi)i∈J1,mK?
Consider the ODE:

y ′ = f (x , y)

and integrate it between xn and xn+1.

y(xn+1)− y(xn) =

∫ xn+1

xn

dx f (x , y(x))

Then the key idea is to approximate f by its Lagrange interpolator
polynomial on the mth previous points {(xn−i+1, yn−i+1)}i∈J1,mK.

TFY4235/FYS8904 Computational Physics – ver2018 382 / 503

Adams-Bashforth methods

The Lagrange polynomial is given by:

P(x) =
m∑

i=1

f (xn−i+1, yn−i+1)pn−i+1(x) where pi (x) =
m∏

k=1,k 6=i

x − xk

xi − xk

Hence the approximation:

y(xn+1)− y(xn) ≈
∫ xn+1

xn

dx P(x) =
m∑

i=1

f (xn−i+1, yn−i+1)

∫ xn+1

xn

dx pn−i+1(x)

Then we identify the (αi)i∈J1,mK.

αi =
1
h

∫ xn+1

xn

dx pn−i+1(x)

TFY4235/FYS8904 Computational Physics – ver2018 383 / 503

Adams-Bashforth methods

Note:
The integral in αi can be computed analytically (polynomial integrand).
For a given order m, αi is independent of h. The coefficients can be
computed once and for all.
The {f (xn−i+1, yn−i+1)}i∈J1,mK should be stored.
The local error is O(hm)

This method is the equivalent of Newton-Cotes quadrature seen
previously in the course.

m β α1/β α2/β α3/β α4/β

1 1 1

2 1/2 3 -1

3 1/12 23 -16 5

4 1/24 55 -59 37 -9

TFY4235/FYS8904 Computational Physics – ver2018 384 / 503

Adams-Moulton methods

Adams-Moulton implicit m + 1th order scheme
We want to use a scheme which is linear in the m previous step and
f (xn+1, yn+1).

yn+1 = yn + h
m∑

i=0

αi f (xn−i+1, yn−i+1)

The derivation of the (αi)i∈J1,mK is similar to the explicit method.

m β α0/β α1/β α2/β α3/β

0 1 1

1 1/2 1 1

2 1/12 5 8 -1

3 1/24 9 19 -5 1

TFY4235/FYS8904 Computational Physics – ver2018 385 / 503

Comparison in a simple case

10
−4

10
−3

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

h

e
r
r
o
r

Midpoint

RK4

Adams−Bashforth 2

Adams−Bashforth 3

Adams−Bashforth 4

(a) Single precision

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

h

e
r
r
o
r

Midpoint

RK4

Adams−Bashforth 2

Adams−Bashforth 3

Adams−Bashforth 4

(b) Double precision

Cauchy problem:

y ′ = y , y(0) = 1, =⇒ y(x) = ex

Error at x = 1:
error = |e − yapprox(1)|

TFY4235/FYS8904 Computational Physics – ver2018 386 / 503

Predictor-corrector

The key idea is PEC - Predict Estimate Correct:
Predict yn+1 by using an explicit scheme.
Estimate f (xn+1, yn+1) using the predicted value of yn+1.
Correct yn+1 by using f (xn+1, yn+1) in an implicit scheme.

We can also estimate and correct several times within the same step until a a
certain accuracy is reached. These methods are then often denoted P(EC)k E
if a fixed number of iteration is chosen or P(EC)∞E if a convergence condition
is used. The later is preferred for stiff ODEs, in order to benefit the
stabilization of the implicit scheme.

TFY4235/FYS8904 Computational Physics – ver2018 387 / 503

Predictor-corrector

Example: 3rd order Adams-Bashforth-Moulton predictor-corrector method.
Assume we have computed yn, yn−1, yn−2.

Prediction: Adams-Bashforth scheme

yP
n+1 = yn +

h
12

[23 f (xn, yn)− 16 f (xn−1, yn−1) + 5 f (xn−2, yn−2)]

Estimate f P
n+1 = f (xn+1, yP

n+1) and correction: Adams-Moulton scheme

yC
n+1 = yn +

h
12

[
5 f P

n+1 + 8 f (xn, yn)− 1 f (xn−1, yn−1)
]

Repeat EC using the new yC
n+1 until |yk+1

n+1 − yk
n+1| < ε

Terminate with an estimate of f (xn+1, y last
n+1).

TFY4235/FYS8904 Computational Physics – ver2018 388 / 503

Adaptive step methods

Principle: adapt locally the step to reach a set precision.
To come

TFY4235/FYS8904 Computational Physics – ver2018 389 / 503

Two point boundary problem - Shooting method

We know now how to solve the Cauchy problem.
Can we use the same techniques to solve a boundary problem?

Yes, this is the key idea of the shooting method!

A two point boundary problem can be seen as an initial value problem.
The condition y(a) = ya and y(b) = yb relates to the condition y(a) = ya
and y ′(a) = ỹa.
Problem: how to find ỹa?

Consider the two problems

y ′′ = f (x , y , y ′), y(a) = ya, y(b) = yb (BVP)
y ′′ = f (x , y , y ′), y(a) = ya, y ′(a) = ỹa (IVP)

We will denote y(.|ỹa) a solution of the IVP. Consider the difference
F (ỹa) = y(b|ỹa)− yb. Then the two problems are equivalent on the roots of F .

TFY4235/FYS8904 Computational Physics – ver2018 390 / 503

Shooting method

Then we have to deal with the problem of finding the roots of F , but F is not
known analytically. How to proceed?

1 Solve the IVP with two arbitrary distinct value of ỹa, say ỹ (1)
a and ỹ (2)

a .

2 Evaluate F (ỹ (1)
a) and F (ỹ (2)

a). If one of them is close to 0 within a
tolerance ε, then problem solved (lucky you!). Otherwise

3 Construct a new initial condition ỹ (k+1)
a by the secant method (since in

general F ′ is not known this is an alternative to Newton-Raphson
method).

ỹ (k+1)
a = ỹ (k)

a − ỹ (k)
a − ỹ (k−1)

a

F (ỹ (k)
a)− F (ỹ (k−1)

a)
F (ỹ (k)

a)

4 Repeat 2 and 3 until |F (ỹ (k)
a)| < ε.

TFY4235/FYS8904 Computational Physics – ver2018 391 / 503

Shooting method

x

y y

a b

ya

yb

y(b|ỹ (k−1)
a)

y(b|ỹ (k)
a)

TFY4235/FYS8904 Computational Physics – ver2018 392 / 503

Shooting method

ỹa

F

ỹ
(k−1)
a ỹ

(k)
a

F (ỹ
(k−1)
a)

F (ỹ
(k)
a)

ỹ
(k+1)
a

solution

TFY4235/FYS8904 Computational Physics – ver2018 393 / 503

Shooting method

Note:
You can show as an exercise that in the linear case, the solution is given
by one iteration.
In the non-linear case, neither the existence or the unicity of a solution is
a priori guaranty in general.

TFY4235/FYS8904 Computational Physics – ver2018 394 / 503

Shooting method in N-dimension

We have treated the particular ODE y ′′ = f (x , y , y ′).
The same idea can be applied in a N th-order ODE: y′ = f(x ,y).
Consider a boundary condition of the form:

Ba,p(a,y) = 0, p ∈ J1,n1K
Bb,q(b,y) = 0, q ∈ J1,n2K.

This can be for example to specify the values of n1 components of y at a
and n2 = N − n1 components at b.
In order to use IVP methods we need to specify the N components of y at
a. Then we impose the n1 components with their true boundary values
and the n2 remaining are set ’randomly’, and seen as free parameters.
Introduce the vector of free parameters v = (v1, · · · , vn2).

TFY4235/FYS8904 Computational Physics – ver2018 395 / 503

Shooting method in N-dimension

The initial point y(a) is then given by:

y(a) = ỹ(a,v)

where ỹ already contains the n1 true boundary values at a.
Then given this initial condition, we can use IVP methods to solve this
particular Cauchy problem and determine y(b|v).
Using the boundary functional Bb,i , i ∈ J1,n2K, we can construct a
discrepancy vector F such that:

Fi (v) = Bb,i (b,y(b|v))

We must then use an iteration scheme to find v that cancels F.
ND Newton-Raphson scheme

vk+1 = vk + δv, J δv = −F

Jij =
∂Fi

∂vj
≈ Fi (v1, · · · , vj + ∆vj , · · · , vn2)− Fi (v1, · · · , vn2)

∆vj

TFY4235/FYS8904 Computational Physics – ver2018 396 / 503

Relaxation method

ODEs approximate by finite-difference equations (FDEs) on a grid.
Example:

y ′ = f (x , y) → yn − yn−1

xn − xn−1
= f

(
1
2

(xn + xn−1),
1
2

(yn + yn−1)

)
For a set of N coupled 1st order ODEs, we want to determine values of y
on M mesh points (i.e. N ×M values in total).
The idea: start with a guess of the N ×M values and make them
converge to the true value using an adequate iterative scheme.
How to find an adequate iterative scheme?

TFY4235/FYS8904 Computational Physics – ver2018 397 / 503

Relaxation method

Consider a mesh of M points, k ∈ J1,MK, with associate abscissa xk ,
x1 = a and xM = b.
Define:

E1 = Ba(x1,y1)

Ek = yk − yk−1 − (xk − xk−1) fk (xk , xk−1,yk ,yk−1), k ∈ J2,MK
EM+1 = Bb(xM ,yM)

where fk is scheme dependent, here implicit and evaluated from two
points.
A satisfactory solution is reached when it cancels E.
From a guess y, we construct a new candidate y + ∆y satisfying
E(y + ∆y) = 0. We hence Taylor expand E(y + ∆y) and solve for ∆y.

TFY4235/FYS8904 Computational Physics – ver2018 398 / 503

Relaxation method

Taylor expansion for k ∈ J2,MK:

Ek (yk + ∆yk ,yk−1 + ∆yk−1) ≈ Ek (yk ,yk−1)

+
N∑

n=1

∂Ek

∂yn,k−1
∆yn,k−1 +

N∑
n=1

∂Ek

∂yn,k
∆yn,k

Solving for ∆y:

N∑
n=1

Sj,n∆yn,k−1 +
2N∑

n=N+1

Sj,n∆yn−N,k = −Ej,k , j ∈ J1,NK

where
Sj,n =

∂Ej,k

∂yn,k−1
, Sj,n+N =

∂Ej,k

∂yn,k
, n ∈ J1,NK

S ∈MN,2N(R) for each k .

TFY4235/FYS8904 Computational Physics – ver2018 399 / 503

Relaxation method

The Taylor expansion at the boundary gives:
At k = 1

N∑
n=1

Sj,n∆yn,1 = −Ej,1, j ∈ Jn2 + 1,NK

with
Sj,n =

∂Ej,1

∂yn,1
, n ∈ J1,NK

At k = M + 1
N∑

n=1

Sj,n∆yn,M = −Ej,M+1, j ∈ J1,n2K

with
Sj,n =

∂Ej,M+1

∂yn,M
, n ∈ J1,NK

TFY4235/FYS8904 Computational Physics – ver2018 400 / 503

Relaxation method

We have then a linear system to solve for ∆y.

TFY4235/FYS8904 Computational Physics – ver2018 401 / 503

Section 11

Partial differential equations

TFY4235/FYS8904 Computational Physics – ver2018 402 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

8 Numerical integration

TFY4235/FYS8904 Computational Physics – ver2018 403 / 503

Outline II
9 Random numbers

10 Ordinary differential equations

11 Partial differential equations
Parabolic PDEs
Hyperbolic PDEs
Elliptic PDEs
Other methods

12 Optimization

TFY4235/FYS8904 Computational Physics – ver2018 404 / 503

Partial differential equations (PDEs) in physics

In physics, PDEs appear in numerous contexts; Some examples are
Diffusion (or heat) equation

D∇2φ(x, t) =
∂φ(x, t)
∂t

Wave equation

∇2u(x , t) =
1
c2
∂2u(x , t)
∂t2

Poisson (or Laplace) equation

∇2ϕ(x) = −ρ(x)

ε

Schröding equation

− ~2

2m
∇2Ψ(x , t) + V (x)Ψ(x , t) = i~

∂

∂t
Ψ(x, t)

Question: How can one numerically solve such equations?
TFY4235/FYS8904 Computational Physics – ver2018 405 / 503

Classification of PDEs

Consider the general 2nd order PDE

A(x , y)
∂2u
∂x2 + 2B(x , y)

∂2u
∂x∂y

+ C(x , y)
∂2u
∂y2 = F (x , y ,u,

∂u
∂x

,
∂u
∂y

)

PDEs are classified as:

Parabolic
B2 − AC = 0
Diffusion/heat equation : uxx = ut

Hyperbolic
B2 − AC > 0
Wave equation : uxx − utt = 0

Elliptic
B2 − AC < 0
Laplace’s equation : uxx + uyy = 0

www.math.utep.edu/studentresources/lecture_notes/pdf/math_5314.pdf

TFY4235/FYS8904 Computational Physics – ver2018 406 / 503

www.math.utep.edu/studentresources/lecture_notes/pdf/math_5314.pdf

Classification of PDEs

Some comments about PDEs in physics
Parabolic problems in most cases describe an evolutionary process that
leads to a steady state described by an elliptic equation.

Hyperbolic equations describe the transport of some physical quantities
or information, such as waves.

Elliptic equations describe a special state of a physical system, which is
characterized by the minimum of certain quantity (often energy).

The numerical solution methods for PDEs depend strongly on what class the
PDE belongs to!

TFY4235/FYS8904 Computational Physics – ver2018 407 / 503

Parabolic PDEs

TFY4235/FYS8904 Computational Physics – ver2018 408 / 503

Diffusion equation
Parabolic PDEs

In one dimension we have thus the following equation

∇2u(x , t) =
∂u(x , t)
∂t

, or uxx = ut ,

with initial conditions, i.e., the conditions at t = 0,

u(x ,0) = g(x), 0 ≤ x ≤ L

with L = 1 the length of the x-region of interest.

The boundary conditions are

u(0, t) = a(t), t ≥ 0,
u(L, t) = b(t), t ≥ 0,

where a(t) and b(t) are two functions which depend on time only, while g(x)
depends only on the position x .

TFY4235/FYS8904 Computational Physics – ver2018 409 / 503

Diffusion equation: Explicit Scheme, Forward Euler
Parabolic PDEs

Notation : u(xi , tj) ≡ ui,j

Finite difference approximations

∂u(xi , tj)
∂t

≈ ui,j+1 − ui,j

∆t
,

and

∂2u(xi , tj)
∂x2 ≈ ui+i,j − 2ui,j + ui−1,j

∆x2 .

The one-dimensional diffusion equation can then be rewritten in its discretized
version as

ui,j+1 − ui,j

∆t
=

ui+i,j − 2ui,j + ui−1,j

∆x2 .

Defining α = ∆t/∆x2 results in the explicit scheme

ui,j+1 = αui−1,j + (1− 2α)ui,j + αui+1,j .

TFY4235/FYS8904 Computational Physics – ver2018 410 / 503

Diffusion equation: Explicit Scheme
Parabolic PDEs

Defining Uj = [u1,j ,u2,j , . . . ,uN,j]
T gives

Uj+1 = AUj

with

A =


1− 2α α 0 0 . . .
α 1− 2α α 0 . . .
.

0 . . . 0 . . . α 1− 2α


yielding

Uj+1 = AUj = · · · = AjU0

The vector U0 is known from the initial conditions!

The explicit scheme, although being rather simple to implement has a very
weak stability condition given by the CFL (Courant, Friedrichs, Levy) condition
(we have used D = 1)

D
∆t

∆x2 ≤ 1/2

TFY4235/FYS8904 Computational Physics – ver2018 411 / 503

Diffusion equation: Implicit Scheme
Parabolic PDEs

Choose now

∂u(xi , tj)
∂t

≈ u(xi , tj)− u(xi , tj − k)

k

and

∂2u(xi , tj)
∂x2 ≈ u(xi + h, tj)− 2u(xi , tj) + u(xi − h, tj)

h2

Define α = k/h2, gives

ui,j−1 = −αui−1,j + (1− 2α)ui,j − αui+1,j

Here ui,j−1 is the only known quantity.

TFY4235/FYS8904 Computational Physics – ver2018 412 / 503

Diffusion equation: : Implicit Scheme
Parabolic PDEs

In matrix from one has
AUj = Uj−1

with

A =


1 + 2α −α 0 0 . . .
−α 1 + 2α −α 0 . . .
.

0 . . . 0 . . . −α 1 + 2α


which gives

Uj = A−1Uj−1 = · · · = A−jU0

Need only to invert a (tridiagonal) matrix.

The implicit Euler scheme is unconditionally stable (for the Euclidian and
Infinity norms).

TFY4235/FYS8904 Computational Physics – ver2018 413 / 503

Diffusion equation: Brute Force Implicit Scheme,
inefficient algorithm
Parabolic PDEs

Some Fortran code:

! now invert the matrix
CALL matinv(a, ndim, det)
DO i = 1, m

DO l=1, ndim
u(l) = DOT_PRODUCT(a(l,:),v(:))

ENDDO
v = u
t = i*k
DO j=1, ndim

WRITE(6,*) t, j*h, v(j)
ENDDO

ENDDO

Question: Why is this algorithm inefficient?

TFY4235/FYS8904 Computational Physics – ver2018 414 / 503

Diffusion equation: Brief Summary of the Explicit and
the Implicit Methods
Parabolic PDEs

Explicit methods is straightforward to code, but avoid doing the matrix
vector multiplication since the matrix is tridiagonal

ut ≈
u(x , t + ∆t)− u(x , t)

∆t
=

u(xi , tj + ∆t)− u(xi , tj)
∆t

Implicit method can be applied in a brute force way as well as long as the
element of the matrix are constants

ut ≈
u(x , t)− u(x , t −∆t)

∆t
=

u(xi , tj)− u(xi , tj −∆t)
∆t

However, it is more efficient to use a linear algebra solver for tridiagonal
matrices.

TFY4235/FYS8904 Computational Physics – ver2018 415 / 503

Diffusion equation: Crank-Nicolson scheme
Parabolic PDEs

The Crank-Nicolson scheme combines the explicit and implicit scheme!

It is defined by (with θ = 1/2)

θ

∆x2

(
ui−1,j − 2ui,j + ui+1,j

)
+

1− θ
∆x2

(
ui+1,j−1 − 2ui,j−1 + ui−1,j−1

)
=

1
∆t
(
ui,j − ui,j−1

)
,

θ = 0 yields the forward formula for the first derivative and the explicit
scheme

θ = 1 yields the backward formula and the implicit scheme

For θ = 1/2 we obtain a new scheme after its inventors, Crank and
Nicolson!

TFY4235/FYS8904 Computational Physics – ver2018 416 / 503

Diffusion equation: Crank-Nicolson scheme
Parabolic PDEs

Using our previous definition of α = ∆t/∆x2 we can rewrite the latter equation
as

−αui−1,j + (2 + 2α) ui,j − αui+1,j = αui−1,j−1 + (2− 2α) ui,j−1 + αui+1,j−1,

or in matrix-vector form as

(2I + αB) Uj = (2I − αB) Uj−1,

where the vector Uj is the same as defined in the implicit case while the
matrix B is

B =


2 −1 0 0 . . .
−1 2 −1 0 . . .
.

0 . . . 0 . . . 2



TFY4235/FYS8904 Computational Physics – ver2018 417 / 503

Diffusion equation: Crank-Nicolson scheme
Parabolic PDEs

The Crank-Nicolson stencil using notation u(xj , tn)

TFY4235/FYS8904 Computational Physics – ver2018 418 / 503

Diffusion equation: Analysis
Parabolic PDEs

We now want to take a look at stability and accuracy!

Some relevant questions are
How accurate is a discretization scheme?
Is it stable for some or any choice of ∆x and ∆t?
How can this information be obtained (if relevant)?
etc

Accuracy is studied by Taylor expanding the scheme around a common point!

TFY4235/FYS8904 Computational Physics – ver2018 419 / 503

Diffusion equation: Analysis
Parabolic PDEs

We start with the forward Euler scheme and Taylor expand u(x , t + ∆t),
u(x + ∆x , t) and u(x −∆x , t) about (x , t)

u(x + ∆x , t) = u(x , t) +
∂u(x , t)
∂x

∆x +
∂2u(x , t)

2∂x2 ∆x2 +O(∆x3),

u(x −∆x , t) = u(x , t)− ∂u(x , t)
∂x

∆x +
∂2u(x , t)

2∂x2 ∆x2 +O(∆x3),

u(x , t + ∆t) = u(x , t) +
∂u(x , t)
∂t

∆t +O(∆t2).

With these Taylor expansions the approximations for the derivatives takes the
form [

∂u(x , t)
∂t

]
approx

=
∂u(x , t)
∂t

+O(∆t),[
∂2u(x , t)
∂x2

]
approx

=
∂2u(x , t)
∂x2 +O(∆x2).

It is easy to convince oneself that the backward Euler method must have the
same truncation errors as the forward Euler scheme.

TFY4235/FYS8904 Computational Physics – ver2018 420 / 503

Diffusion equation: Analysis
Parabolic PDEs

For the Crank-Nicolson scheme we also need to Taylor expand u(x + ∆x , t + ∆t)
and u(x −∆x , t + ∆t) around t ′ = t + ∆t/2.

u(x + ∆x , t + ∆t) =u(x , t ′) +
∂u(x , t ′)
∂x

∆x +
∂u(x , t ′)

∂t
∆t
2

+
∂2u(x , t ′)

2∂x2 ∆x2

+
∂2u(x , t ′)

2∂t2
∆t2

4
+
∂2u(x , t ′)
∂x∂t

∆t
2

∆x +O(∆t3)

u(x −∆x , t + ∆t) =u(x , t ′)− ∂u(x , t ′)
∂x

∆x +
∂u(x , t ′)

∂t
∆t
2

+
∂2u(x , t ′)

2∂x2 ∆x2

+
∂2u(x , t ′)

2∂t2
∆t2

4
− ∂2u(x , t ′)

∂x∂t
∆t
2

∆x +O(∆t3)

u(x + ∆x , t) =u(x , t ′) +
∂u(x , t ′)
∂x

∆x − ∂u(x , t ′)
∂t

∆t
2

+
∂2u(x , t ′)

2∂x2 ∆x2

+
∂2u(x , t ′)

2∂t2
∆t2

4
− ∂2u(x , t ′)

∂x∂t
∆t
2

∆x +O(∆t3)

u(x −∆x , t) =u(x , t ′)− ∂u(x , t ′)
∂x

∆x − ∂u(x , t ′)
∂t

∆t
2

+
∂2u(x , t ′)

2∂x2 ∆x2

+
∂2u(x , t ′)

2∂t2
∆t2

4
+
∂2u(x , t ′)
∂x∂t

∆t
2

∆x +O(∆t3)

u(x , t + ∆t) =u(x , t ′) +
∂u(x , t ′)

∂t
∆t

2
+
∂2u(x , t ′)

2∂t2 ∆t2 +O(∆t3)

u(x , t) =u(x , t ′)− ∂u(x , t ′)
∂t

∆t
2

+
∂2u(x , t ′)

2∂t2 ∆t2 +O(∆t3)

TFY4235/FYS8904 Computational Physics – ver2018 421 / 503

Diffusion equation: Analysis
Parabolic PDEs

We now insert these expansions in the approximations for the derivatives to
find [

∂u(x,t′)
∂t

]
approx

= ∂u(x,t′)
∂t +O(∆t2),[

∂2u(x,t′)
∂x2

]
approx

= ∂2u(x,t′)
∂x2 +O(∆x2).

Hence the truncation error of the Crank-Nicolson scheme is O(∆t2) and
O(∆x2), i.e. 2nd order in both space and time!

TFY4235/FYS8904 Computational Physics – ver2018 422 / 503

Diffusion equation: Analysis
Parabolic PDEs

The following table summarizes the three methods.

Scheme: Truncation Error: Stability requirements:
Crank-Nicolson O(∆x2) and O(∆t2) Stable for all ∆t and ∆x .
Backward Euler O(∆x2) and O(∆t) Stable for all ∆t and ∆x .
Forward Euler O(∆x2) and O(∆t) ∆t ≤ 1

2 ∆x2

Table: Comparison of the different schemes.

The stability criterion is derived by using the von Neumann stability criterion10

where the error is decomposed into Fourier series.

A finite difference scheme is stable if the errors made at one time step of the
calculation do not cause the errors to increase as the computations are
continued.

10http://en.wikipedia.org/wiki/Von_Neumann_stability_analysis
TFY4235/FYS8904 Computational Physics – ver2018 423 / 503

http://en.wikipedia.org/wiki/Von_Neumann_stability_analysis

Diffusion equation: Analysis
Parabolic PDEs

Illustration of the von Neumann stability criteria for the forward Euler scheme.

To be added.....!

In the mean time consult e.g. http:
//en.wikipedia.org/wiki/Von_Neumann_stability_analysis!

TFY4235/FYS8904 Computational Physics – ver2018 424 / 503

http://en.wikipedia.org/wiki/Von_Neumann_stability_analysis
http://en.wikipedia.org/wiki/Von_Neumann_stability_analysis

Diffusion equation: Analysis
Parabolic PDEs

It cannot be repeated enough, it is always very useful to find cases where one
can compare the numerics and the developed algorithms and codes with
analytic solution.

The above case is also particularly simple. We have the following partial
differential equation

∇2u(x , t) =
∂u(x , t)
∂t

,

with initial conditions

u(x ,0) = g(x) 0 < x < L.

The boundary conditions are

u(0, t) = 0 t ≥ 0, u(L, t) = 0 t ≥ 0,

TFY4235/FYS8904 Computational Physics – ver2018 425 / 503

Diffusion equation: Analysis
Parabolic PDEs

We assume that we have solutions of the form (separation of variable)

u(x , t) = F (x)G(t),

which inserted in the partial differential equation results in

F ′′

F
=

G′

G
,

where the derivative is with respect to x on the left hand side and with respect
to t on right hand side. This equation should hold for all x and t . We must
require the rhs and lhs to be equal to a constant.

We call this constant −λ2. This gives us the two differential equations,

F ′′ + λ2F = 0; G′ = −λ2G,

with general solutions

F (x) = A sin(λx) + B cos(λx); G(t) = Ce−λ
2t .

TFY4235/FYS8904 Computational Physics – ver2018 426 / 503

Diffusion equation: Analysis
Parabolic PDEs

To satisfy the boundary conditions we require B = 0 and λ = nπ/L. One
solution is therefore found to be

u(x , t) = An sin(nπx/L)e−n2π2t/L2
.

But there are infinitely many possible n values (infinite number of solutions).

Moreover, the diffusion equation is linear and because of this we know that a
superposition of solutions will also be a solution of the equation.

We may therefore write

u(x , t) =
∞∑

n=1

An sin(nπx/L)e−n2π2t/L2
.

TFY4235/FYS8904 Computational Physics – ver2018 427 / 503

Diffusion equation: Analysis
Parabolic PDEs

The coefficient An is in turn determined from the initial condition. We require

u(x ,0) = g(x) =
∞∑

n=1

An sin(nπx/L).

The coefficient An is the Fourier coefficients for the function g(x). Because of
this, An is given by (from the theory on Fourier series)

An =
2
L

∫ L

0
dx g(x) sin(nπx/L)

Different g(x) functions will obviously result in different results for An.

TFY4235/FYS8904 Computational Physics – ver2018 428 / 503

Diffusion equation: Some examples
Parabolic PDEs

Numerical examples:

Let look at the following diffusion equation

∂tC(x , t) = ∂x [D(x)∂xC(x , t)]

C(x ,0) = C0 δ (x)

where now the diffusion constant, D(x), is position dependent (and C0 some
constant).

So how should the discretization scheme for this PDE be?
In particular, how should the spatial derivatives be discretized?

TFY4235/FYS8904 Computational Physics – ver2018 429 / 503

Diffusion equation: Some examples
Parabolic PDEs

Simulation results: Diffusion with D(x) = 1 (everwhere)

(using Crank-Nicolson)

TFY4235/FYS8904 Computational Physics – ver2018 430 / 503

Diffusion equation: Some examples
Parabolic PDEs

Simulation results: Diffusion with piecewise constant D(x)

Exercise: Reproduce these results!

TFY4235/FYS8904 Computational Physics – ver2018 431 / 503

Diffusion equation: Some examples
Parabolic PDEs

Simulation results: Crank-Nicolson for the position dependent diffusion
constant

D(x) = 1 +
π

2
+ arctan

(
x − x0

∆

)

Parameters used : ∆ = 0.1m and x0 = 0m
TFY4235/FYS8904 Computational Physics – ver2018 432 / 503

Diffusion equation: Some examples
Parabolic PDEs

Subroutine Crank NicolsonDx (A,B, dx , d t)
I m p l i c i t None
Integer : : i , n
Complex (wp) : : dt , dx , Dp, Dm, alpha
Complex (wp) : : A (: , :) , B (: , :)

!A : mat r i x i n f r o n t o f Uˆ (n+1)
!B : mat r i x i n f r o n t o f Uˆ (n)
! Mar t ices i n 3−column form

n = size (A, 1)
alpha = dt / (2 . wp∗dx∗∗2)
! D i f f u s i o n constant D(x)
Dp = d i f f u s i v i t y ((1−n / 2) ∗dx+dx / 2 . wp)
Dm = d i f f u s i v i t y ((1−n / 2) ∗dx−dx / 2 . wp)
!
A(1 ,1) = 0 . wp
A(1 ,2) = 1 . wp + alpha ∗ (Dp + Dm)
A(1 ,3) = − alpha∗Dp
B(1 ,1) = 0 . wp
B(1 ,2) = 1 . wp − alpha ∗ (Dp + Dm)
B(1 ,3) = alpha∗Dp

TFY4235/FYS8904 Computational Physics – ver2018 433 / 503

Diffusion equation: Some examples
Parabolic PDEs

Code continues:

do i =2 ,n−1
Dp = d i f f u s i v i t y ((i−n / 2) ∗dx+dx / 2 . wp)
Dm = d i f f u s i v i t y ((i−n / 2) ∗dx−dx / 2 . wp)

A(i , 1) = − alpha∗Dm
A(i , 2) = 1 . wp + alpha ∗ (Dp + Dm)
A(i , 3) = − alpha∗Dp

B(i , 1) = alpha∗Dm
B(i , 2) = 1 . wp − alpha ∗ (Dp + Dm)
B(i , 3) = alpha∗Dp

end do

end Subroutine Crank NicolsonDx

TFY4235/FYS8904 Computational Physics – ver2018 434 / 503

Hyperbolic PDEs

TFY4235/FYS8904 Computational Physics – ver2018 435 / 503

Two-dimensional wave equation
Hyperbolic PDEs

Consider first the two-dimensional wave equation for a vibrating square
membrane given by the following initial and boundary conditions

λ

(
∂2u
∂x2 +

∂2u
∂y2

)
=
∂2u
∂t2 x , y ∈ [0,1], t ≥ 0

u(x , y ,0) = sin(πx)sin(2πy) x , y ∈ (0,1)

u = 0 boundary t ≥ 0
∂u/∂t |t=0 = 0 x , y ∈ (0,1)

The boundary is defined by x = 0, x = 1, y = 0 and y = 1. For simplicity we
set λ = 1.

TFY4235/FYS8904 Computational Physics – ver2018 436 / 503

Two-dimensional wave equation
Hyperbolic PDEs

Our equations depend on three variables whose discretized versions are now tl = l∆t l ≥ 0
xi = i∆x 0 ≤ i ≤ nx
yj = j∆y 0 ≤ j ≤ ny

,

and we will let ∆x = ∆y = h and nx = ny for the sake of simplicity.

We have now the following discretized partial derivatives [u(xi , yj , tl) = ul
i,j]

uxx ≈
ul

i+1,j − 2ul
i,j + ul

i−1,j

h2 ,

uyy ≈
ul

i,j+1 − 2ul
i,j + ul

i,j−1

h2 ,

and

utt ≈
ul+1

i,j − 2ul
i,j + ul−1

i,j

∆t2 .

TFY4235/FYS8904 Computational Physics – ver2018 437 / 503

Two-dimensional wave equation
Hyperbolic PDEs

We merge this into the discretized 2 + 1-dimensional wave equation as

ul+1
i,j = 2ul

i,j − ul−1
i,j +

∆t2

h2

(
ul

i+1,j − 4ul
i,j + ul

i−1,j + ul
i,j+1 + ul

i,j−1

)
,

where again we have an explicit scheme with ul+1
i,j as the only unknown

quantity. It is easy to account for different step lengths for x and y . The partial
derivative is treated in much the same way as for the one-dimensional case,
except that we now have an additional index due to the extra spatial
dimension, viz., we need to compute u−1

i,j through

u−1
i,j = u0

i,j +
∆t
2h2

(
u0

i+1,j − 4u0
i,j + u0

i−1,j + u0
i,j+1 + u0

i,j−1
)
,

in our setup of the initial conditions.

TFY4235/FYS8904 Computational Physics – ver2018 438 / 503

Two-dimensional wave equation: Code example
Hyperbolic PDEs

We show here how to implement the two-dimensional wave equation

/ / A f t e r i n i t i a l i z a t i o n s and d e c l a r a t i o n o f va r i a b l e s
for (i n t i = 0 ; i < n ; i ++) {

u [i] = new double [n] ;
uLast [i] = new double [n] ;
uNext [i] = new double [n] ;
x [i] = i ∗h ;
y [i] = x [i] ;

}
/ / i n i t i a l i z i n g
for (i n t i = 0 ; i < n ; i ++) { / / s e t t i n g i n i t i a l step

for (i n t j = 0 ; j < n ; j ++) {
uLast [i] [j] = sin (PI∗x [i]) ∗sin (2∗PI∗y [j]) ;

}
}

TFY4235/FYS8904 Computational Physics – ver2018 439 / 503

Two-dimensional wave equation: Code example
Hyperbolic PDEs

for (i n t i = 1 ; i < (n−1) ; i ++) { / / s e t t i n g f i r s t step
using the i n i t i a l d e r i v a t i v e

for (i n t j = 1 ; j < (n−1) ; j ++) {
u [i] [j] = uLast [i] [j] − ((tStep∗ tStep) / (2 . 0 ∗ h∗h)) ∗

(4∗ uLast [i] [j] − uLast [i + 1] [j] − uLast [i −1][j] − uLast [
i] [j +1] − uLast [i] [j −1]) ;

}
u [i] [0] = 0 ; / / s e t t i n g boundaries once and f o r a l l
u [i] [n−1] = 0 ;
u [0] [i] = 0 ;
u [n−1][i] = 0 ;

uNext [i] [0] = 0 ;
uNext [i] [n−1] = 0 ;
uNext [0] [i] = 0 ;
uNext [n−1][i] = 0 ;

}

TFY4235/FYS8904 Computational Physics – ver2018 440 / 503

Two-dimensional wave equation: Code example
Hyperbolic PDEs

/ / i t e r a t i n g i n t ime
double t = 0.0 + tStep ;
i n t i t e r = 0 ;

while (t < t F i n a l) {
i t e r ++;
t = t + tStep ;

for (i n t i = 1 ; i < (n−1) ; i ++) { / / computing next step
for (i n t j = 1 ; j < (n−1) ; j ++) {

uNext [i] [j] = 2∗u [i] [j] − uLast [i] [j] − ((tStep∗ tStep)
/ (h∗h)) ∗

(4∗u [i] [j] − u [i + 1] [j] − u [i −1][j] − u [i] [j +1] − u [i
] [j −1]) ;

}
}

TFY4235/FYS8904 Computational Physics – ver2018 441 / 503

Two-dimensional wave equation: Code example
Hyperbolic PDEs

for (i n t i = 1 ; i < (n−1) ; i ++) { / / s h i f t i n g r e s u l t s
down

for (i n t j = 1 ; j < (n−1) ; j ++) {
uLast [i] [j] = u [i] [j] ;
u [i] [j] = uNext [i] [j] ;

}
}

}

TFY4235/FYS8904 Computational Physics – ver2018 442 / 503

Wave equation : Closed form solution
Hyperbolic PDEs

We develop here the analytic solution for the 2 + 1 dimensional wave equation
with the following boundary and initial conditions

c2(uxx + uyy) = utt x , y ∈ (0,L), t > 0
u(x , y ,0) = f (x , y) x , y ∈ (0,L)

u(0,0, t) = u(L,L, t) = 0 t > 0
∂u
∂t

∣∣∣∣
t=0

= g(x , y) x , y ∈ (0,L)

TFY4235/FYS8904 Computational Physics – ver2018 443 / 503

Wave equation : Closed form solution
Hyperbolic PDEs

Our first step is to make the ansatz

u(x , y , t) = F (x , y)G(t),

resulting in the equation

FGtt = c2(FxxG + Fyy G),

or
Gtt

c2G
=

1
F

(Fxx + Fyy) = −ν2.

The lhs and rhs are independent of each other and we obtain two differential
equations

Fxx + Fyy + Fν2 = 0,

and
Gtt + Gc2ν2 = Gtt + Gλ2 = 0,

with λ = cν.

TFY4235/FYS8904 Computational Physics – ver2018 444 / 503

Wave equation : Closed form solution
Hyperbolic PDEs

We can in turn make the following ansatz for the x and y dependent part

F (x , y) = H(x)Q(y),

which results in
1
H

Hxx = − 1
Q

(Qyy + Qν2) = −κ2.

Since the lhs and rhs are again independent of each other, we can separate
the latter equation into two independent equations, one for x and one for y ,
namely

Hxx + κ2H = 0,

and
Qyy + ρ2Q = 0,

with ρ2 = ν2 − κ2.

TFY4235/FYS8904 Computational Physics – ver2018 445 / 503

Wave equation : Closed form solution
Hyperbolic PDEs

The second step is to solve these differential equations, which all have
trigonometric functions as solutions, viz.

H(x) = A cos(κx) + B sin(κx),

and
Q(y) = C cos(ρy) + D sin(ρy).

The boundary conditions require that F (x , y) = H(x)Q(y) are zero at the
boundaries, meaning that H(0) = H(L) = Q(0) = Q(L) = 0. This yields the
solutions

Hm(x) = sin(
mπx

L
) Qn(y) = sin(

nπy
L

),

or
Fmn(x , y) = sin(

mπx
L

) sin(
nπy

L
).

TFY4235/FYS8904 Computational Physics – ver2018 446 / 503

Wave equation : Closed form solution
Hyperbolic PDEs

With ρ2 = ν2 − κ2 and λ = cν we have an eigenspectrum λ = c
√
κ2 + ρ2 or

λmn = cπ/L
√

m2 + n2. The solution for G is

Gmn(t) = Bmn cos(λmnt) + Dmn sin(λmnt),

with the general solution of the form

u(x , y , t) =
∞∑

mn=1

umn(x , y , t) =
∞∑

mn=1

Fmn(x , y)Gmn(t).

TFY4235/FYS8904 Computational Physics – ver2018 447 / 503

Wave equation : Closed form solution
Hyperbolic PDEs

The final step is to determine the coefficients Bmn and Dmn from the Fourier
coefficients. The equations for these are determined by the initial conditions
u(x , y ,0) = f (x , y) and ∂u/∂t |t=0 = g(x , y).

The final expressions are

Bmn =
2
L

∫ L

0

∫ L

0
dxdy f (x , y) sin(

mπx
L

) sin(
nπy

L
),

and

Dmn =
2
L

∫ L

0

∫ L

0
dxdy g(x , y) sin(

mπx
L

) sin(
nπy

L
).

Inserting the particular functional forms of f (x , y) and g(x , y) one obtains the
final analytic expressions.

TFY4235/FYS8904 Computational Physics – ver2018 448 / 503

Two-dimensional wave equation
Hyperbolic PDEs

We can check our results as function of the number of mesh points and in
particular against the stability condition

∆t ≤ 1√
λ

(
1

∆x2 +
1

∆y2

)−1/2

where ∆t , ∆x and ∆y are the chosen step lengths. In our case
∆x = ∆y = h. How do we find this condition? In one dimension we can
proceed as we did for the diffusion equation.

TFY4235/FYS8904 Computational Physics – ver2018 449 / 503

Two-dimensional wave equation
Hyperbolic PDEs

The analytic solution of the wave equation in 2 + 1 dimensions has a
characteristic wave component which reads

u(x , y , t) = A exp (i(kxx + ky y − ωt))

Then from

uxx ≈
ul

i+1,j − 2ul
i,j + ul

i−1,j

∆x2 ,

we get, with ui = exp (ikxi)

uxx ≈
ui

∆x2 (exp ik∆x − 2 + exp (−ik∆x)) ,

or
uxx ≈ 2

ui

∆x2 (cos(k∆x)− 1) = −4
ui

∆x2 sin2(k∆x/2)

We get similar results for t and y .

TFY4235/FYS8904 Computational Physics – ver2018 450 / 503

Two-dimensional wave equation
Hyperbolic PDEs

We have

λ

(
∂2u
∂x2 +

∂2u
∂y2

)
=
∂2u
∂t2 ,

resulting in

λ

[
−4

ul
ij

∆x2 sin2
(

kx ∆x
2

)
− 4

ul
ij

∆y2 sin2
(

ky ∆y
2

)]
= −4

ul
ij

∆t2 sin2
(
ω∆t

2

)
,

resulting in

sin

(
ω∆t

2

)
= ±
√
λ∆t

[
1

∆x2 sin2
(

kx ∆x
2

)
+

1
∆y2 sin2

(
ky ∆y

2

)]1/2

.

The squared sine functions can at most be unity. The frequency ω is real and
our wave is neither damped nor amplified.

TFY4235/FYS8904 Computational Physics – ver2018 451 / 503

Two-dimensional wave equation
Hyperbolic PDEs

We have

sin

(
ω∆t

2

)
= ±
√
λ∆t

[
1

∆x2 sin2
(

kx ∆x
2

)
+

1
∆y2 sin2

(
ky ∆y

2

)]1/2

.

The squared sine functions can at most be unity. ω is real and our wave is
neither damped nor amplified. The numerical ω must also be real which is the
case when sin (ω∆t/2) is less than or equal to unity, meaning that

∆t ≤ 1√
λ

(
1

∆x2 +
1

∆y2

)−1/2

.

TFY4235/FYS8904 Computational Physics – ver2018 452 / 503

Two-dimensional wave equation
Hyperbolic PDEs

We modify now the wave equation in order to consider a 2 + 1 dimensional
wave equation with a position dependent velocity, given by

∂2u
∂t2 = ∇ · (λ(x , y)∇u).

If λ is constant, we obtain the standard wave equation discussed in the two
previous points. The solution u(x , y , t) could represent a model for water
waves. It represents then the surface elevation from still water. We can model
λ as

λ = gH(x , y),

with g being the acceleration of gravity and H(x , y) is the still water depth.
The function H(x , y) simulates the water depth using for example
measurements of still water depths in say a fjord or the north sea. The
boundary conditions are then determined by the coast lines as discussed in
point d) below. We have assumed that the vertical motion is negligible and
that we deal with long wavelenghts λ̃ compared with the depth of the sea H,
that is λ̃/H � 1. We neglect normally Coriolis effects in such calculations.

TFY4235/FYS8904 Computational Physics – ver2018 453 / 503

Two-dimensional wave equation
Hyperbolic PDEs

You can discretize

∇ · (λ(x , y)∇u) =
∂

∂x

(
λ(x , y)

∂u
∂x

)
+

∂

∂y

(
λ(x , y)

∂u
∂y

)
,

as follows using again a quadratic domain for x and y :

∂

∂x

(
λ(x , y)

∂u
∂x

)
≈ 1

∆x

(
λi+1/2,j

[
ul

i+1,j − ul
i,j

∆x

]
− λi−1/2,j

[
ul

i,j − ul
i−1,j

∆x

])
,

and

∂

∂y

(
λ(x , y)

∂u
∂y

)
≈ 1

∆y

(
λi,j+1/2

[
ul

i,j+1 − ul
i,j

∆y

]
− λi,j−1/2

[
ul

i,j − ul
i,j−1

∆y

])
.

TFY4235/FYS8904 Computational Physics – ver2018 454 / 503

Two-dimensional wave equation
Hyperbolic PDEs

How did we do that? Look at the derivative wrt x only:
First we compute the derivative

d
dx

(
λ(x)

du
dx

)
|x=xi ≈

1
∆x

(
λ

du
dx
|x=xi+1/2 − λ

du
dx
|x=xi−1/2

)
,

where we approximated it at the midpoint by going half a step to the right and
half a step to the left. Then we approximate

λ
du
dx
|x=xi+1/2 ≈ λxi+1/2

ui+1 − ui

∆x
,

and similarly for x = xi − 1/2.

TFY4235/FYS8904 Computational Physics – ver2018 455 / 503

Elliptic PDEs

TFY4235/FYS8904 Computational Physics – ver2018 456 / 503

Laplace’s and Poisson’s equations
Elliptic PDEs

Laplace’s equation (in 2 spatial dimensions) reads

∇2u(x) = uxx + uyy = 0.

with possible boundary conditions u(x , y) = g(x , y) on the border. There is no
time-dependence. Choosing equally many steps in both directions we have a
quadratic or rectangular grid, depending on whether we choose equal steps
lengths or not in the x and the y directions. Here we set ∆x = ∆y = h and
obtain a discretized version

uxx ≈
u(x + h, y)− 2u(x , y) + u(x − h, y)

h2 ,

and

uyy ≈
u(x , y + h)− 2u(x , y) + u(x , y − h)

h2 ,

TFY4235/FYS8904 Computational Physics – ver2018 457 / 503

Laplace’s and Poisson’s equations
Elliptic PDEs

uxx ≈
ui+1,j − 2ui,j + ui−1,j

h2 ,

and

uyy ≈
ui,j+1 − 2ui,j + ui,j−1

h2 ,

which gives when inserted in Laplace’s equation

ui,j =
1
4
[
ui,j+1 + ui,j−1 + ui+1,j + ui−1,j

]
. (5)

This is our final numerical scheme for solving Laplace’s equation. Poisson’s
equation adds only a minor complication to the above equation since in this
case we have

uxx + uyy = −ρ(x),

and we need only to add a discretized version of ρ(x) resulting in

ui,j =
1
4
[
ui,j+1 + ui,j−1 + ui+1,j + ui−1,j

]
+ ρi,j . (6)

TFY4235/FYS8904 Computational Physics – ver2018 458 / 503

Laplace’s and Poisson’s equations: Solution Approach
Elliptic PDEs

The way we solve these equations is based on an iterative scheme we
discussed in connection with linear algebra, namely the so-called Jacobi,
Gauss-Seidel and relaxation methods. The steps are rather simple.

We start with an initial guess for u(0)
i,j where all values are known.

To obtain a new solution we solve Eq. (5) or Eq. (6) in order to obtain a
new solution u(1)

i,j .
Most likely this solution will not be a solution to Eq. (5). This solution is in
turn used to obtain a new and improved u(2)

i,j .
We continue this process till we obtain a result which satisfies some
specific convergence criterion.

TFY4235/FYS8904 Computational Physics – ver2018 459 / 503

Code example for the two-dimensional diffusion
equation/Laplace

i n t Di f f us i onJacob i (i n t N, double dx , double dt ,
double ∗∗A, double ∗∗q , double abs to l) {

i n t i , j , k ;
i n t maxit = 100000;
double sum ;
double ∗∗ Aold = CreateMatr ix (N,N) ;

double D = dt / (dx∗dx) ;

TFY4235/FYS8904 Computational Physics – ver2018 460 / 503

Code example for the two-dimensional diffusion
equation/Laplace

for (i =1; i<N−1; i ++)
for (j =1; j<N−1; j ++)

Aold [i] [j] = 1 . 0 ;
/∗ Boundary Condi t ions −− a l l zeros ∗ /
for (i =0; i<N; i ++){

A [0] [i] = 0 . 0 ;
A [N−1][i] = 0 . 0 ;
A [i] [0] = 0 . 0 ;
A [i] [N−1] = 0 . 0 ;

}

TFY4235/FYS8904 Computational Physics – ver2018 461 / 503

Code example for the two-dimensional diffusion
equation/Laplace

for (k =0; k<maxit ; k++){
for (i = 1 ; i<N−1; i ++){

for (j =1; j<N−1; j ++){
A[i] [j] = d t ∗q [i] [j] + Aold [i] [j] +

D∗ (Aold [i + 1] [j] + Aold [i] [j +1] − 4.0∗Aold [i] [j] +
Aold [i −1][j] + Aold [i] [j −1]) ;

}
}
sum = 0 . 0 ;
for (i =0; i<N; i ++){

for (j =0; j<N; j ++){
sum += (Aold [i] [j]−A[i] [j]) ∗ (Aold [i] [j]−A[i] [j]) ;
Aold [i] [j] = A [i] [j] ;

}
}
i f (sqrt (sum)<abs to l) {Dest royMatr ix (Aold ,N,N) ;

return k ;
}

}
} TFY4235/FYS8904 Computational Physics – ver2018 462 / 503

Other methods

TFY4235/FYS8904 Computational Physics – ver2018 463 / 503

Other methods

Other methods
Finite-element method
Boundary element methods

TFY4235/FYS8904 Computational Physics – ver2018 464 / 503

Section 12

Optimization

TFY4235/FYS8904 Computational Physics – ver2018 465 / 503

Outline I

1 Introduction

2 Number representation and numerical precision

3 Finite differences and interpolation

4 Linear algebra

5 How to install libraries on a Linux system

6 Eigenvalue problems

7 Spectral methods

8 Numerical integration

TFY4235/FYS8904 Computational Physics – ver2018 466 / 503

Outline II
9 Random numbers

10 Ordinary differential equations

11 Partial differential equations

12 Optimization
Optimization in one dimensions
Bisection method
Downhill simplex method
Conjugate gradient methods
Quasi-Newton method
χ2-minimization
Genetic algorithms
Constrained Optimization: Linear programming
Constrained Optimization: Non-Linear programming
Simulated annealing

TFY4235/FYS8904 Computational Physics – ver2018 467 / 503

Optimization (minimization/maximization)
Introduction

Some initial comments:
Optimization is a wide field.
Sometimes there exists a well-established method that can be used in a
black-box manner
but many optimization problems are true challenges

Note :
Maximizing f (x) is equivalent to minimizing −f (x)!
It is intimately related to methods of solving non-linear equations (for
∇f (x) = 0).

TFY4235/FYS8904 Computational Physics – ver2018 468 / 503

Optimization (minimization/maximization)
Introduction

To minimize a function f (x) in D dimensions, x ∈ RD, one has to consider
several issues:

What is the dimensionality D?
Are there constraints on x?
Is the problem linear or non-linear?
Is f (x) such that minimization is a smooth downhill process, or are there
traps in the form of local minima?
Do we want the global minimum of f (x) , or is it sufficient to make a local
minimization?
Do we have access to derivatives of f (x)?

TFY4235/FYS8904 Computational Physics – ver2018 469 / 503

Optimization (minimization/maximization)
Introduction

Some classes of optimization problems with examples of related methods

Global optimization
Simulated annealing

Local optimization without derivatives
Bisection method
Downhill simplex method

Local optimization with derivatives
Quasi-Newton
Conjugate gradient

Constrained optimization
Linear programming
Non-linear programming

TFY4235/FYS8904 Computational Physics – ver2018 470 / 503

Optimization (minimization/maximization)
Introduction

General remark on precision: Let xm be the true minimum of the function f (x)
[we assume D = 1], so that

f (x) ≈ f (xm) +
1
2

(x − xm)2f ′′(xm); or f (x)− f (xm) ≈ 1
2

(x − xm)2f ′′(xm)

If |x − xm| is so small that |f (x)− f (xm)| is of the order the floating-point
precision, ε, one cannot expect to get closer to xm by any method
This gives an estimate of the error in an estimate x for the minimum
xm = x ±∆x

ε ≈ f (x)− f (xm) ≈ 1
2

(x − xm)2f ′′(xm)

so that the error in xm becomes

∆xm ≥
√
ε

√
2f (xm)

f ′′(xm)

The error in xm (∼ √ε) is typically much larger then the error in f (xm) (∼ ε)!
TFY4235/FYS8904 Computational Physics – ver2018 471 / 503

Optimization in one dimensions
Optimization

For one-dimensional optimization, there exist several methods that are both
relatively robust and fast!

Some examples are:
Bracketing
Bisection method
Golden search
Brent’s method (parabolic interpolation)
Newtons method

TFY4235/FYS8904 Computational Physics – ver2018 472 / 503

Bisection method
Optimization

Alex covered this....!
Newtons methods also works well for one-dimensions.

TFY4235/FYS8904 Computational Physics – ver2018 473 / 503

Newton’s method
Optimization

Taylor expansion gives

f (x) ≈ f (xn) + f ′(xn)(x − xn) +
1
2

f ′′(xn)(x − xn)2 + . . .

Neglecting terms of second order in x gives

f (xn+1) ≈ 0 f (xn) + f ′(xn)(xn+1 − xn) ≈ 0

which results in the the iteration scheme

xn+1 = xn −
f (xn)

f ′(xn)

This is Newton’s method also known as NewtonRaphson method.

TFY4235/FYS8904 Computational Physics – ver2018 474 / 503

Downhill simplex method
Optimization

The Downhill simplex method is an example of local optimization without
derivatives in multi-dimensions!
does not rely on information on the gradient
viewed as a generalization of bracketing to multi-dimensions

A simplex in D dimensions is a geometrical object defined by D + 1 vertices.
D = 1 : a line segment
D = 2 : a triangle
D = 3 : a tetrahedron
etc.

A simplex is a dynamical object that can grow and shrink; When it reaches the
minimum, it gives up and shrinks down around it.

The simplex method is iterative!

TFY4235/FYS8904 Computational Physics – ver2018 475 / 503

Downhill simplex method
Optimization

The Downhill simplex method consists of the following steps
1 Start from a simplex defined by vertices x1, x2, . . . xD+1 defined so that

f (x1) ≥ f (x2) ≥ . . . ≥ f (xD+1).

2 Elementary move: Improve the worst point, i.e. x1, by moving in direction
of the mean of the better points

xmean =
1
D

D+1∑
i=2

x i

by trying

xa = xmean + λ(xmean − x1)

for some λ ∈ R and xa → x1 if improved.
Illustration
https://notendur.hi.is/jonasson/olbest/sim-anneal1.pdf

TFY4235/FYS8904 Computational Physics – ver2018 476 / 503

https://notendur.hi.is/jonasson/olbest/sim-anneal1.pdf

Multi-dimensional Taylor expansion
Optimization

Let f (x) be a function in x ∈ RD with continuous 1st and 2nd partial
derivatives

Then it follows that

f (x + ∆x) ≈ f (x) + J(x) ·∆x +
1
2

∆xTH(x)∆x

where we have introduced the
Jacobian

Ji (f)(x) = ∂i f (x) J(f)(x) = ∇f (x)

Hessian matrix

Hij (f)(x) = ∂i∂j f (x) H(f)(x) = ∇⊗∇f (x)

Note that the Hessian and Jacobian are related by Hij (f)(x) = Ji (∂j f)(x).

TFY4235/FYS8904 Computational Physics – ver2018 477 / 503

Multi-dimensional Taylor expansion
Optimization

The Hessian matrix corresponding to the function f (x) written out in detail:

H(f) =



∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xn

∂2f
∂x2 ∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2 ∂xn

...
...

. . .
...

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

· · · ∂2f
∂x2

n


.

TFY4235/FYS8904 Computational Physics – ver2018 478 / 503

Multi-dimensional Taylor expansion
Optimization

Minimizing the function f (x) in D-dimensions, can be viewed as solving
∇f (x) = 0, which is a system of D generally non-linear equations

One has

f (x ′) = f (x) + ∇f (x) · (x ′ − x) +
1
2

(x ′ − x)T H(x)(x ′ − x) + . . .

Now taking the gradient with respect to primed coordinates gives

∇′f (x ′) = ∇f (x) + H(x)(x ′ − x) + . . .

If the true minimum is at x ′, so that ∇′f (x ′) = 0, one has after neglecting
higher order terms

H(x)(x ′ − x) = −∇f (x),

that is, a linear system in δx = x ′ − x with the Hessian being the system
matrix and b = −∇f (x) being the right-hand-side!

Methods from solving linear systems can be used for minimizing functions!
TFY4235/FYS8904 Computational Physics – ver2018 479 / 503

Conjugate gradient method
Optimization

For instance, if the Hessian is available, we could solve the linear system

H(x)(x ′ − x) = −∇f (x)

to find the minimum x ′ by the use of the conjugate gradient method that we
have seen previously.

Note that the Hessian (for a well-behaved function) is symmetric as required!

We will therefore not discuss this further here!

TFY4235/FYS8904 Computational Physics – ver2018 480 / 503

Quasi-Newton method
Optimization

To calculating the true minimum using ∇′f (x ′) = 0 and

f (x ′) = f (x) + ∇f (x) · (x ′ − x) +
1
2

(x ′ − x)T H(x)(x ′ − x) + . . .

has some disadvantages:
1st and 2nd derivatives are needed
the inverse of the Hessian matrix must be calculated

These issues makes the above methods in many cases impractical (but used
in e.g. the Levenberg-Marquardt method for χ2-minimization.

Instead in the quasi-Newton method, one performs the following iterative
steps starting from some initial guess x0

x i+1 = x i − λiHi (x) · ∇f (x i)

where λi is determined by line minimization, where Hi is a D × D matrix
constructed so that Hi → H−1 when i →∞.

See Numerical Recipes (or other sources) for details!
TFY4235/FYS8904 Computational Physics – ver2018 481 / 503

Quasi-Newton method
Optimization

Quasi-Newton (or variable metric methods) in muti-dimensions come in two
flavors (which only differ in some minor details):

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
http://en.wikipedia.org/wiki/BFGS_method

Davidon-Fletcher-Powell (DFP) formula
http://en.wikipedia.org/wiki/DFP_updating_formula

other variants
http://en.wikipedia.org/wiki/Quasi-Newton_method

The main idea is to base iterations on the multi-dimensional Taylor expansion,
but using an approximate Hessian constructed “as one goes”!
In quasi-Newton methods the Hessian matrix does not need to be computed.
The Hessian is updated by analyzing successive gradient vectors instead.

Comments : In practical applications, the BFGS approach seems to be
preferred!

TFY4235/FYS8904 Computational Physics – ver2018 482 / 503

http://en.wikipedia.org/wiki/BFGS_method
http://en.wikipedia.org/wiki/DFP_updating_formula
http://en.wikipedia.org/wiki/Quasi-Newton_method

Quasi-Newton method
Optimization

Some comments
The quasi-Newton method is often comparable in efficiency to the
conjugate-gradient method
However it requires more memory if D is large
Memory requirement scales as D2 for the quasi-Newton method and as
D for the conjugate-gradient method.
Unlike the conjugate-gradient method, the quasi-Newton methods do not
require the Hessian matrix to be evaluated directly.

TFY4235/FYS8904 Computational Physics – ver2018 483 / 503

χ2-minimization
Optimization

We just saw that we may solve the often non-linear equations ∇f (x) = 0
to find the minimum for f (x).
Usually this is an impractical method (as mentioned previously)

Exception: curve fitting

Problem : Fit the data points (xi , yi) with errors σi (i = 1, . . . ,N) to a
functional form f (x ,a), where a = (a1, . . . ,aM) are parameters (M < N)

Cost function : This can be done by minimizing the cost function

χ2(a) =
N∑

i=1

(
yi − f (xi ; a)

σi

)2

with respect to a.

TFY4235/FYS8904 Computational Physics – ver2018 484 / 503

χ2-minimization
Optimization

Two possibilities
Linear problems : f (x ; a) depends linearly on ai for all i .
Non-linear problems : f (x ; a) depends non-linearly on ai .

Levenberg-Marquardt algorithm

The linear problems result in a linear system of equations that is simple to
solve; the non-linear problem is harder!

TFY4235/FYS8904 Computational Physics – ver2018 485 / 503

χ2-minimization
Optimization

Linear χ2-fitting

Assume that f (x ,a) is a linear combination of some basis functions fk (x)

f (x ,a) =
M∑

k=1

ak fk (x)

The cost function becomes

χ2(a) =
N∑

i=1

(
yi − f (xi ; a)

σi

)2

=
N∑

i=1

(
bi −

M∑
k=1

Aik ak

)2

= |b − Aa|

where bi = yi/σi and Aik = fk (xi)/σi .
Now minimizing χ2(a) gives

∇χ2(a) = 0 ⇒ AT Aa = AT b

which can be solved, for instance, by the singular value decomposition (why?)!

TFY4235/FYS8904 Computational Physics – ver2018 486 / 503

χ2-minimization
Optimization

Non-Linear χ2-fitting: Levenberg-Marquardt method (is one possibility)

The Levenberg-Marquardt method can be taught of as a combination of the
steepest descent and Newton method!

Cost function

χ2(a) =
N∑

i=1

(
yi − f (xi ; a)

σi

)2

Gradient (or Jacobian)

∂χ2(a)

∂ak
= −2

N∑
i=1

yi − f (xi ,a)

σ2
i

∂f (xi ; a)

∂ak

Hessian

∂2χ2(a)

∂ak∂al
= 2

N∑
i=1

1
σ2

i

[
∂f (xi ; a)

∂ak

∂f (xi ; a)

∂al
− {yi − f (xi ; a)} ∂

2f (xi ; a)

∂ak∂al

]
TFY4235/FYS8904 Computational Physics – ver2018 487 / 503

χ2-minimization
Optimization

Hessian (continued): The last term of the Hessian should be small if we
are near the minimum (so that the fit is good). Note that it vanishes
exactly if f depends linearly on ai .
For convenience, this term is neglected to give an approximate Hessian

∂2χ2(a)

∂ak∂al
≈ Akl = 2

N∑
i=1

1
σ2

i

∂f (xi ; a)

∂ak

∂f (xi ; a)

∂al

Defining

βk = −1
2
∂χ2(a)

∂ak
αkl =

1
2

Akl =
1
2
∂2χ2(a)

∂ak∂al
δak = a′k − ak

A steepest decent step would be δak = const βk , but the LM-method
uses a modified steepest decent step

TFY4235/FYS8904 Computational Physics – ver2018 488 / 503

χ2-minimization
Optimization

Step type I: The “steepest decent like” step used in the LM-algorithm is

δak =
1

λαkk
βk

where λ is a constant (see below) and αkk is introduced because the
different components ak may behave very differently
Note that αkk is guaranteed to be positive due to the use of the
approximate Hessian

Step type II: A Newton step becomes:

a′ = a − A(a)−1∇χ2(a)
∑

l

αkl δal = βk

The Levengerg-Marquardt method can be seen as an elegant way to
interpolate between these two types of steps, by changing the
parameter λ

TFY4235/FYS8904 Computational Physics – ver2018 489 / 503

χ2-minimization
Optimization

This is achieved by considering the following “LM-equation system”

∑
l

α̃kl δal = βl α̃kl =

{
αkk (1 + λ) k = l
αkl k 6= l

Observations

λ→ 0 : a Newton step because α̃kl and αkl are the same in this limit

λ� 1 (or λ→∞): modified Steepest decent step because the diagonal
elements dominates the matrix α̃kl

TFY4235/FYS8904 Computational Physics – ver2018 490 / 503

χ2-minimization
Optimization

The steps of the Levenberg-Marquardt method
1 Pick some initial a (“guess parameters”) and a large value for λ

2 Solve the “LM-equation system”∑
l

α̃kl δal = βk

for δa and calculate χ2(a + δa)

3 Update
If χ2(a + δa) < χ2(a), update a → anew = a + δa; decrease λ and continue
to step 2
If χ2(a + δa) ≥ χ2(a), increase λ (decreasing the step size) and go back to
step 2 without changing a.

Iterate till some stopping criterion is reached!

TFY4235/FYS8904 Computational Physics – ver2018 491 / 503

χ2-minimization
Optimization

The steps of the Levenberg-Marquardt method
1 Pick some initial a (“guess parameters”) and a large value for λ

2 Solve the “LM-equation system”∑
l

α̃kl δal = βk

for δa and calculate χ2(a + δa)

3 Update
If χ2(a + δa) < χ2(a), update a → anew = a + δa; decrease λ and continue
to step 2
If χ2(a + δa) ≥ χ2(a), increase λ (decreasing the step size) and go back to
step 2 without changing a.

Iterate till some stopping criterion is reached!

TFY4235/FYS8904 Computational Physics – ver2018 492 / 503

χ2-minimization
Optimization

Software implementing the Levengerg-Marquardt method
MinPack (contained in Slatec) is a Fortran library for the solving of
systems of nonlinear equations, or the least squares minimization of the
residual of a set of linear or nonlinear equations.

www.netlib.org/minpack/
various C/C++ wrappers exist for this library

GNU Scientific Library

Practical issues: What to do when we cannot calculate the (approximate)
Hessian analytically?

TFY4235/FYS8904 Computational Physics – ver2018 493 / 503

www.netlib.org/minpack/‎

χ2-minimization
Optimization

Numerical examples

To appear later....

TFY4235/FYS8904 Computational Physics – ver2018 494 / 503

Genetic algorithms
Optimization

To appear later....

TFY4235/FYS8904 Computational Physics – ver2018 495 / 503

Constrained Optimization: Linear programming
Optimization

To appear later....

TFY4235/FYS8904 Computational Physics – ver2018 496 / 503

Constrained Optimization: Non-Linear programming
Optimization

To appear later....

TFY4235/FYS8904 Computational Physics – ver2018 497 / 503

Simulated annealing
Optimization

Simulated annealing

Simulated annealing (1983) is a method for doing global optimization!

Global minimization is generally very hard, because the system tends to
get trapped in local minima
Simulated annealing is an attempt to circumvent this problem by using
the so-called Metropolis algorithm

The function to minimize is though of as an energy E
In the Metropolis algorithm, steps upward in E do occur [with probability
exp(−∆E/kBT)], as is needed to escape from local minima.
The “temperature” T serves as a control parameter
One typically starts at high T (high mobility) and reduce T till the system
freezes
The hope is that the final frozen state is the global energy minimum

TFY4235/FYS8904 Computational Physics – ver2018 498 / 503

The Metropolis algorithm (1953)

TFY4235/FYS8904 Computational Physics – ver2018 499 / 503

Recall from Statistical Physics
Optimization

Consider a system that can be found in many different states x (e.g. a system
of N spins {si}J1,NK), x = (s1, · · · , sN) is the state vector of spins.

We want to compute a thermal average of some quantity A (e.g. the average
spin).
We know from statistical physics that in thermal equilibrium this average is
given by:

〈A〉 =
1
Z

∑
x

A(x)e−H(x)/T =
∑
x

A(x)PB(x)

T : temperature;
H(x): Hamiltonian of the system in state x ;
Z =

∑
x e−H(x)/kBT is the partition function;

PB(x) =
[
e−H(x)/kBT

]
/Z is the Boltzmann distribution;

kB is the Boltzmann constant.

TFY4235/FYS8904 Computational Physics – ver2018 500 / 503

Recall from Statistical Physics
Optimization

We can also define the free energy F such that

Z = e−F/kBT , i.e., F = −kBT ln Z

In the following we will use the notation PB(x) = e−S(x).

TFY4235/FYS8904 Computational Physics – ver2018 501 / 503

Position of the problem
Optimization

How would you compute 〈A〉?

NOT TO DO!

Brute force: compute A for all configurations and average them.
Problem: the number of configurations explodes, usually exponentially,
with the number of particles.
Example: # states = 2N for N spin systems, so even for a rather small
system N = 100 this yields # states ≈ 1.3× 1030 which is quite a lot.

Direct sampling: generate configurations at random and average those.
Problems: e−H/kBT varies exponentially and most of the generated
states give negligible contribution to the average. Z has to be calculated
also and is a source of error.

TFY4235/FYS8904 Computational Physics – ver2018 502 / 503

Importance sampling
Optimization

Recall from Monte Carlo integration
One can approximate ∫

Ω

dnx f (x) ≈ V
N

N∑
i=1

f (xi)

with an error estimate given by σN where

σ2
N =

1
N − 1

N∑
i=1

[f (xi)− 〈f 〉]2

The error scales as 1/
√

N but if f has quick variations the scaling factor may
become large. In order to reduce the variance, one should make a smart
choice for xi . Instead of sampling x uniformly on V , one can instead rewrite
the integral as∫

Ω

f (x) dnx =

∫
Ω

f (x)

p(x)
p(x) dnx =

∫
y(Ω)

f (x(y))

p(x(y))
dny

where p is interpreted as a probability density. If y is sampled uniformly then x
will be sampled following p.

TFY4235/FYS8904 Computational Physics – ver2018 503 / 503

Importance sampling
Optimization

This yields

〈f 〉 =
1
N

N∑
i=1

f (xi)

p(xi)

with the error estimated by

σ2
N =

1
N − 1

N∑
i=1

[
f (xi)

p(xi)
−
〈

f
p

〉]2

Then the variance is reduced if f/p is slowly varying.

The idea here: generate configuration according to the Boltzmann
distribution. The difficult part is then to draw states following the Boltzmann
distribution. A method to do this is the Metropolis algorithm.

TFY4235/FYS8904 Computational Physics – ver2018 504 / 503

Metropolis Algorithm
Optimization

Consider a Markov chain for the sequence of states xn. The probability for
going from state xn to xn+1 is given by the transition probability W (xn+1|xn).

Master equation

Pn+1(x)− Pn(x) =
∑

y

[W (x |y)Pn(y)−W (y |x)Pn(x)]

What to choose for W such that P converges to the Boltzmann
distribution?

Sufficient condition on W for P −−−→
n→∞

PB

Ergodicity: any state can be reached after a finite number of steps.
Detailed balance: e−S(x)W (y |x) = e−S(y)W (x |y)

TFY4235/FYS8904 Computational Physics – ver2018 505 / 503

Proof
Optimization

1 Show that PB(x) = e−S(x) is indeed an equilibrium solution of the Master
equation.

Direct from the Master equation.

Another way to see it is that at equilibrium going from state x to y does
not change P. Indeed:

P(y) =

∫
dx W (y |x)P(x)

=

∫
dx e−S(x)W (y |x)

=

∫
dx e−S(y)W (x |y)

= e−S(y)

∫
dx W (y |x)

= e−S(y)

TFY4235/FYS8904 Computational Physics – ver2018 506 / 503

Proof
Optimization

2 Show that Pn converges to PB. For this we need a measure for the
convergence. Consider ‖Pn − PB‖ =

∫
dx |Pn(x)− e−S(x)|.

‖Pn+1 − PB‖ =

∫
dy |Pn+1(y)− e−S(y)|

=

∫
dy |

∫
dx Pn(x)W (y |x)− e−S(y)|

=

∫
dy |

∫
dx
[
Pn(x)W (y |x)− e−S(y)W (x |y)

]
|

=

∫
dy |

∫
dx
[
Pn(x)W (y |x)− e−S(x)W (y |x)

]
|

=

∫
dy |

∫
dx
[
Pn(x)− e−S(x)

]
W (y |x)|

≤
∫

dy
∫

dx |Pn(x)− e−S(x)|W (y |x)

≤
∫

dx |Pn(x)− e−S(x)| = ‖Pn − PB‖

TFY4235/FYS8904 Computational Physics – ver2018 507 / 503

Contruction of W
Optimization

Trial-acceptance decomposition:

W (y |x) = t(y |x)a(y |x)

where t(y |x) is the trial probability to pick up a new state y knowing that the
current state is x , and a(y |x) is the probability to accept this new state.
Symmetric trial probability are often used then the detailed balance reads

e−S(x)a(y |x) = e−S(y)a(x |y)

Common choices for a are
Metropolis acceptance probability

a(y |x) = min

(
1,

e−S(y)

e−S(x)

)
Smooth acceptance probability

a(y |x) =
1

1 + eS(y)

eS(x)

Note: the sequence of states is correlated. Care must be taken when
performing the average.

TFY4235/FYS8904 Computational Physics – ver2018 508 / 503

Monte Carlo using Metropolis algorithm
Optimization

Monte Carlo using Metropolis algorithm
1 Start from an initial state x = x0.
2 Draw a new state x̃ according to the trial probability t(x̃ |xn).
3 Accept the new state with probability a(x̃ |xn) satisfying the detailed

balance:
if accepted set: xn+1 ← x̃
if rejected set: xn+1 ← xn

4 Repeat steps 2–3 until equilibrium is reached and enough data have
been generated. Discard non-equilibrium steps for the averaging.

Questions
How do we know when equilibrium is reached?
How much data must be collected?

TFY4235/FYS8904 Computational Physics – ver2018 509 / 503

Example: Ising model
Optimization

The Ising model
Consider a system of N spins, where each spin si is located at position i on a
d-dimensional cubic lattice. Each spin can take the value ±1.

The Hamiltonian of the system is

H = −J
∑
〈i,j〉

sisj

where J is the coupling constant and
∑
〈i,j〉 denotes a sum over all

nearest-neighbour pair of sites.

We are interested in the magnetization. At thermal equilibrium the
magnetization M is given by

M =

∑
states

∑
i sie−H/T∑

states e−H/T

TFY4235/FYS8904 Computational Physics – ver2018 510 / 503

Example: Ising model
Optimization

What to choose for W? Consider the change in energy ∆H due to a switch of
a spin si .

∆H = −J∆si

∑
j

sj

where the sum is over the neighbour of i . We then try with W = e−∆H/T . The
algorithm reads:

Start from the initial state ∀i ∈ J1,NK, si = 1.
Draw a spin si at random on the lattice. The considered trial is si → −si .
Compute W = e−∆H/T .
Draw r ∈ [0,1] from a uniform distribution.

if W > r then si ← −si .
if W < r then do not switch.
Note: if ∆H < 0 then W > 1 which make the switch accepted for sure.
increment time n→ n + 1.

Repeat, until enough data have been collected for the average.

TFY4235/FYS8904 Computational Physics – ver2018 511 / 503

Example: Ising model
Optimization

0 5 10 15 20 25 30

5

10

15

20

25

30

(a) Initial config. T = Tc/2
0 5 10 15 20 25 30

5

10

15

20

25

30

(b) Initial config. T = 3Tc/2

0 5 10 15 20 25 30

5

10

15

20

25

30

(c) Equilibrium. T = Tc/2
0 5 10 15 20 25 30

5

10

15

20

25

30

(d) Equilibrium. T = 3Tc/2

Figure: Spin lattice. Lattice size L = 30, 400 sweeps.

TFY4235/FYS8904 Computational Physics – ver2018 512 / 503

Example: Ising model
Optimization

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

T/Tc

m

Simulation
Exact solution

Figure: Normalized magnetization as a function of temperature. Lattice size L = 100.

TFY4235/FYS8904 Computational Physics – ver2018 513 / 503

Some comments
Optimization

How to average in a proper way?
Eliminate boundary effects by using periodic boundary condition.
When selecting a spin, do it randomly, not sequentially!
The Monte Carlo time step should not be taken as a one switch of spin.
An appropriate MC time that should be considered is one under which, on
average, all spins have been attempted. This is also called a MC sweep.
Discard a sufficient number of MC sweeps before collecting data for
averages. This avoid the average to be biased by initial configurations
that are far away from the equilibrium.
It is also a good idea to only average on every other sweep or so, in order
to reduce correlation between consecutive steps. But do not throw away
most of your data for that purpose.
Assuming a run gives Nsweep uncorrelated sweep to average over, make
Nrun runs to estimate error as

∆A =
σ√
Nrun

How to speed it up?
Make a table of possible w = e−∆H/T and look it up instead of computing
the same thing all the time.TFY4235/FYS8904 Computational Physics – ver2018 514 / 503

Importance sampling for the energy
Optimization

In statistical physics, one is often interested in the partition function Z ,
because many quantities can be deduced from it. Example:

〈E〉 =
1
Z

∑
x

H(x)e−H(x)/T = −T 2 d
dT

ln Z

Rather than summing over all states, one may sum over all energies:

Z =
∑

x

e−H(x)/T =
∑

E

g(E)e−E/T

where g is the density of states.

TFY4235/FYS8904 Computational Physics – ver2018 515 / 503

	Introduction
	Number representation and numerical precision
	Finite differences and interpolation
	Linear algebra
	How to install libraries on a Linux system
	Eigenvalue problems
	Spectral methods
	Numerical integration
	Random numbers
	Ordinary differential equations
	Partial differential equations
	Optimization

