TFY4235/FYS8904 Problemset 5 Spring 2015

Institutt for fysikk

Problem 1.
Generate a 100×100 symmetric (why symmetric?) matrix whose elements are randomly distributed on the interval $[-1,1]$.
a) Use a "canned" routine (like that from LAPACK) to find all the eigenvalues of the matrix. Average the results over many samples. Find the distribution of the largest eigenvalues and show them in a histogram.
b) Repeat the above calculation using an iterative method. First find the largest and the smallest eigenvalues of the matrix. Use the Lambert-Weaire algorithm (see lecture notes) to map out the remaining 98 eigenvalues to within - say - 1% accuracy. Average the results over many samples. Find the distribution of the largest eigenvalues and show them in a histogram.
c) Compare the CPU time of the direct and iterative methods. How does the comparison come out if only, say, the largest eigenvalue is needed?

