TFY4235/FYS8904 Problemset 9 Spring 2015

NTNU
0
Institutt for
fysikk

Problem 1.

Solve the equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\omega_{0}^{2} y=0 \tag{1}
\end{equation*}
$$

numerically for different initial conditions and tabulate the solutions graphically in the $\left\{y, y^{\prime}\right\}$ plane. Do the same with the equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\omega_{0}^{2} y+\beta y^{3}=0 \tag{2}
\end{equation*}
$$

Discuss the solution. Compare the behavior of the numerical solutions using explicit and implicit Euler integration.

Also solve the ODEs using the classic Runge-Kutta method. How does the precision and computational speed compare to the results obtained by the use of the explicit and implicit Euler integration.

