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CHAPTER 1

Scientific computing: why Python?

authors Fernando Perez, Emmanuelle Gouillart

1.1 The scientist’s needs

• Get data (simulation, experiment control)

• Manipulate and process data.

• Visualize results... to understand what we are doing!

• Communicate on results: produce figures for reports or publications, write presentations.

1.2 Specifications

• Rich collection of already existing bricks corresponding to classical numerical methods or basic actions: we
don’t want to re-program the plotting of a curve, a Fourier transform or a fitting algorithm. Don’t reinvent the
wheel!

• Easy to learn: computer science neither is our job nor our education. We want to be able to draw a curve, smooth
a signal, do a Fourier transform in a few minutes.

• Easy communication with collaborators, students, customers, to make the code live within a labo or a company:
the code should be as readable as a book. Thus, the language should contain as few syntax symbols or unneeded
routines that would divert the reader from the mathematical or scientific understanding of the code.

• Efficient code that executes quickly... But needless to say that a very fast code becomes useless if we spend too
much time writing it. So, we need both a quick development time and a quick execution time.

• A single environment/language for everything, if possible, to avoid learning a new software for each new prob-
lem.

1.3 Existing solutions

Which solutions do the scientists use to work?
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Compiled languages: C, C++, Fortran, etc.

• Advantages:

– Very fast. Very optimized compilers. For heavy computations, it’s difficult to outperform these languages.

– Some very optimized scientific libraries have been written for these languages. Ex: blas (vector/matrix
operations)

• Drawbacks:

– Painful usage: no interactivity during development, mandatory compilation steps, verbose syntax (&, ::,
}}, ; etc.), manual memory management (tricky in C). These are difficult languages for non computer
scientists.

Scripting languages: Matlab

• Advantages:

– Very rich collection of libraries with numerous algorithms, for many different domains. Fast execution
because these libraries are often written in a compiled language.

– Pleasant development environment: comprehensive and well organized help, integrated editor, etc.

– Commercial support is available.

• Drawbacks:

– Base language is quite poor and can become restrictive for advanced users.

– Not free.

Other script languages: Scilab, Octave, Igor, R, IDL, etc.

• Advantages:

– Open-source, free, or at least cheaper than Matlab.

– Some features can be very advanced (statistics in R, figures in Igor, etc.)

• Drawbacks:

– fewer available algorithms than in Matlab, and the language is not more advanced.

– Some softwares are dedicated to one domain. Ex: Gnuplot or xmgrace to draw curves. These programs
are very powerful, but they are restricted to a single type of usage, such as plotting.

What about Python?

• Advantages:

– Very rich scientific computing libraries (a bit less than Matlab, though)

– Well-thought language, allowing to write very readable and well structured code: we “code what we think”.

– Many libraries for other tasks than scientific computing (web server management, serial port access, etc.)

– Free and open-source software, widely spread, with a vibrant community.

• Drawbacks:

– less pleasant development environment than, for example, Matlab. (More geek-oriented).

– Not all the algorithms that can be found in more specialized softwares or toolboxes.
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CHAPTER 2

Building blocks of scientific computing
with Python

author Emmanuelle Gouillart

• Python, a generic and modern computing language

– Python language: data types (string, int), flow control, data collections (lists, dictionaries), patterns,
etc.

– Modules of the standard library.

– A large number of specialized modules or applications written in Python: web protocols, web framework,
etc. ... and scientific computing.

– Development tools (automatic tests, documentation generation)

• IPython, an advanced Python shell

http://ipython.scipy.org/moin/

3
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• Numpy : provides powerful numerical arrays objects, and routines to manipulate them.

>>> import numpy as np
>>> t = np.arange(10)
>>> t
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> print t
[0 1 2 3 4 5 6 7 8 9]
>>> signal = np.sin(t)

http://www.scipy.org/

• Scipy : high-level data processing routines. Optimization, regression, interpolation, etc:

>>> import numpy as np
>>> import scipy
>>> t = np.arange(10)
>>> t
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> signal = t**2 + 2*t + 2+ 1.e-2*np.random.random(10)
>>> scipy.polyfit(t, signal, 2)
array([ 1.00001151, 1.99920674, 2.00902748])

http://www.scipy.org/

• Matplotlib : 2-D visualization, “publication-ready” plots

http://matplotlib.sourceforge.net/
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• Mayavi : 3-D visualization

http://code.enthought.com/projects/mayavi/

• and many others.
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CHAPTER 3

A (very short) introduction to Python

authors Chris Burns, Christophe Combelles, Emmanuelle Gouillart, Gaël Varoquaux

Python for scientific computing

We introduce here the Python language. Only the bare minimum necessary for getting started with Numpy
and Scipy is addressed here. To learn more about the language, consider going through the excellent tutorial
http://docs.python.org/tutorial. Dedicated books are also available, such as http://diveintopython.org/.

3.1 First steps

Python is a programming language, as are C, Fortran, BASIC, PHP, etc. Some specific features of Python are as
follows:

• an interpreted (as opposed to compiled) language. Contrary to e.g. C or Fortran, one does not compile Python
code before executing it. In addition, Python can be used interactively: many Python interpreters are available,
from which commands and scripts can be executed.

• a free software released under an open-source license: Python can be used and distributed free of charge, even
for building commercial software.

• multi-platform: Python is available for all major operating systems, Windows, Linux/Unix, MacOS X, most
likely your mobile phone OS, etc.

• a very readable language with clear non-verbose syntax

• a language for which a large variety of high-quality packages are available for various applications, from web
frameworks to scientific computing.

• a language very easy to interface with other languages, in particular C and C++.

6
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• Some other features of the language are illustrated just below. For example, Python is an object-oriented lan-
guage, with dynamic typing (an object’s type can change during the course of a program).

See http://www.python.org/about/ for more information about distinguishing features of Python.

Start the Ipython shell (an enhanced interactive Python shell):

• by typing “Ipython” from a Linux/Mac terminal, or from the Windows cmd shell,

• or by starting the program from a menu, e.g. in the Python(x,y) or EPD menu if you have installed one these
scientific-Python suites.

If you don’t have Ipython installed on your computer, other Python shells are available, such as the plain Python shell
started by typing “python” in a terminal, or the Idle interpreter. However, we advise to use the Ipython shell because
of its enhanced features, especially for interactive scientific computing.

Once you have started the interpreter, type

>>> print "Hello, world!"
Hello, world!

The message “Hello, world!” is then displayed. You just executed your first Python instruction, congratulations!

To get yourself started, type the following stack of instructions

>>> a = 3
>>> b = 2*a
>>> type(b)
<type ’int’>
>>> print b
6
>>> a*b
18
>>> b = ’hello’
>>> type(b)
<type ’str’>
>>> b + b
’hellohello’
>>> 2*b
’hellohello’

Two objects a and b have been defined above. Note that one does not declare the type of an object before assigning
its value. In C, conversely, one should write:

int a;
a = 3;

In addition, the type of an object may change. b was first an integer, but it became a string when it was assigned
the value hello. Operations on integers (b=2*a) are coded natively in the Python standard library, and so are some
operations on strings such as additions and multiplications, which amount respectively to concatenation and repetition.

3.1. First steps 7
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A bag of Ipython tricks

• Several Linux shell commands work in Ipython, such as ls, pwd, cd, etc.
• To get help about objects, functions, etc., type help object. Just type help() to get started.
• Use tab-completion as much as possible: while typing the beginning of an object’s name (variable, func-

tion, module), press the Tab key and Ipython will complete the expression to match available names. If
many names are possible, a list of names is displayed.

• History: press the up (resp. down) arrow to go through all previous (resp. next) instructions starting with
the expression on the left of the cursor (put the cursor at the beginning of the line to go through all previous
commands)

• You may log your session by using the Ipython “magic command” %logstart. Your instructions will be
saved in a file, that you can execute as a script in a different session.

In [1]: %logstart commandes.log
Activating auto-logging. Current session state plus future input saved.
Filename : commandes.log
Mode : backup
Output logging : False
Raw input log : False
Timestamping : False
State : active

3.2 Basic types

3.2.1 Numerical types

Integer variables:

>>> 1 + 1
2
>>> a = 4

floats

>>> c = 2.1

complex (a native type in Python!)

>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5

and booleans:

>>> 3 > 4
False
>>> test = (3 > 4)
>>> test
False
>>> type(test)
<type ’bool’>

8 Chapter 3. A (very short) introduction to Python
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A Python shell can therefore replace your pocket calculator, with the basic arithmetic operations +, -, \*, /, %
(modulo) natively implemented:

>>> 7 * 3.
21.0
>>> 2**10
1024
>>> 8%3
2

Warning: Integer division

>>> 3/2
1

Trick: use floats:

>>> 3/2.
1.5

>>> a = 3
>>> b = 2
>>> a/b
1
>>> a/float(b)
1.5

• Scalar types: int, float, complex, bool:

>>> type(1)
<type ’int’>
>>> type(1.)
<type ’float’>
>>> type(1. + 0j )
<type ’complex’>

>>> a = 3
>>> type(a)
<type ’int’>

• Type conversion:

>>> float(1)
1.0

3.2.2 Containers

Python provides many efficient types of containers, in which collections of objects can be stored.

Lists

A list is an ordered collection of objects, that may have different types. For example

3.2. Basic types 9
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>>> l = [1, 2, 3, 4, 5]
>>> type(l)
<type ’list’>

• Indexing: accessing individual objects contained in the list:

>>> l[2]
3

Counting from the end with negative indices:

>>> l[-1]
5
>>> l[-2]
4

Warning: Indexing starts at 0 (as in C), not at 1 (as in Fortran or Matlab)!

• Slicing: obtaining sublists of regularly-spaced elements

>>> l
[1, 2, 3, 4, 5]
>>> l[2:4]
[3, 4]

Warning: Note that l[start:stop] contains the elements with indices i such as start<= i < stop (i
ranging from start to stop-1). Therefore, l[start:stop] has (stop-start) elements.

Slicing syntax: l[start:stop:stride]

All slicing parameters are optional:

>>> l[3:]
[4, 5]
>>> l[:3]
[1, 2, 3]
>>> l[::2]
[1, 3, 5]

Lists are mutable objects and can be modified:

>>> l[0] = 28
>>> l
[28, 2, 3, 4, 5]
>>> l[2:4] = [3, 8]
>>> l
[28, 2, 3, 8, 5]

Note: The elements of a list may have different types:

>>> l = [3, 2, ’hello’]
>>> l
[3, 2, ’hello’]
>>> l[1], l[2]
(2, ’hello’)

10 Chapter 3. A (very short) introduction to Python
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As the elements of a list can be of any type and size, accessing the i th element of a list has a complexity O(i). For
collections of numerical data that all have the same type, it is more efficient to use the array type provided by the
Numpy module, which is a sequence of regularly-spaced chunks of memory containing fixed-sized data istems. With
Numpy arrays, accessing the i‘th‘ element has a complexity of O(1) because the elements are regularly spaced in
memory.

Python offers a large panel of functions to modify lists, or query them. Here are a few examples; for more details, see
http://docs.python.org/tutorial/datastructures.html#more-on-lists

Add and remove elements:

>>> l = [1, 2, 3, 4, 5]
>>> l.append(6)
>>> l
[1, 2, 3, 4, 5, 6]
>>> l.pop()
6
>>> l
[1, 2, 3, 4, 5]
>>> l.extend([6, 7]) # extend l, in-place
>>> l
[1, 2, 3, 4, 5, 6, 7]
>>> l = l[:-2]
>>> l
[1, 2, 3, 4, 5]

Reverse l:

>>> r = l[::-1]
>>> r
[5, 4, 3, 2, 1]

Concatenate and repeat lists:

>>> r + l
[5, 4, 3, 2, 1, 1, 2, 3, 4, 5]
>>> 2 * r
[5, 4, 3, 2, 1, 5, 4, 3, 2, 1]

Sort r (in-place):

>>> r.sort()
>>> r
[1, 2, 3, 4, 5]

Note: Methods and Object-Oriented Programming

The notation r.method() (r.sort(), r.append(3), l.pop()) is our first example of object-oriented pro-
gramming (OOP). Being a list, the object r owns the method function that is called using the notation .. No further
knowledge of OOP than understanding the notation . is necessary for going through this tutorial.

Note: Discovering methods:

In IPython: tab-completion (press tab)

In [28]: r.
r.__add__ r.__iadd__ r.__setattr__
r.__class__ r.__imul__ r.__setitem__

3.2. Basic types 11
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r.__contains__ r.__init__ r.__setslice__
r.__delattr__ r.__iter__ r.__sizeof__
r.__delitem__ r.__le__ r.__str__
r.__delslice__ r.__len__ r.__subclasshook__
r.__doc__ r.__lt__ r.append
r.__eq__ r.__mul__ r.count
r.__format__ r.__ne__ r.extend
r.__ge__ r.__new__ r.index
r.__getattribute__ r.__reduce__ r.insert
r.__getitem__ r.__reduce_ex__ r.pop
r.__getslice__ r.__repr__ r.remove
r.__gt__ r.__reversed__ r.reverse
r.__hash__ r.__rmul__ r.sort

Strings

Different string syntaxes (simple, double or triple quotes):

s = ’Hello, how are you?’
s = "Hi, what’s up"
s = ’’’Hello,

how are you’’’
s = """Hi,

what’s up?’’’

In [1]: ’Hi, what’s up ? ’
------------------------------------------------------------

File "<ipython console>", line 1
’Hi, what’s up?’

^
SyntaxError: invalid syntax

The newline character is \n, and the tab characted is \t.

Strings are collections as lists. Hence they can be indexed and sliced, using the same syntax and rules.

Indexing:

>>> a = "hello"
>>> a[0]
’h’
>>> a[1]
’e’
>>> a[-1]
’o’

(Remember that Negative indices correspond to counting from the right end.)

Slicing:

>>> a = "hello, world!"
>>> a[3:6] # 3rd to 6th (excluded) elements: elements 3, 4, 5
’lo,’
>>> a[2:10:2] # Syntax: a[start:stop:step]
’lo o’
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>>> a[::3] # every three characters, from beginning to end
’hl r!’

Accents and special characters can also be handled in Unicode strings (see
http://docs.python.org/tutorial/introduction.html#unicode-strings).

A string is an immutable object and it is not possible to modify its characters. One may however create new strings
from an original one.

In [53]: a = "hello, world!"
In [54]: a[2] = ’z’
---------------------------------------------------------------------------
TypeError Traceback (most recent call
last)

/home/gouillar/travail/sgr/2009/talks/dakar_python/cours/gael/essai/source/<ipython
console> in <module>()

TypeError: ’str’ object does not support item assignment
In [55]: a.replace(’l’, ’z’, 1)
Out[55]: ’hezlo, world!’
In [56]: a.replace(’l’, ’z’)
Out[56]: ’hezzo, worzd!’

Strings have many useful methods, such as a.replace as seen above. Remember the a. object-oriented notation
and use tab completion or help(str) to search for new methods.

Note: Python offers advanced possibilities for manipulating strings, looking for patterns or format-
ting. Due to lack of time this topic is not addressed here, but the interested reader is referred
to http://docs.python.org/library/stdtypes.html#string-methods and http://docs.python.org/library/string.html#new-
string-formatting

• String substitution:

>>> ’An integer: %i; a float: %f; another string: %s’ % (1, 0.1, ’string’)
’An integer: 1; a float: 0.100000; another string: string’

>>> i = 102
>>> filename = ’processing_of_dataset_%03d.txt’%i
>>> filename
’processing_of_dataset_102.txt’

Dictionnaries

A dictionnary is basically a hash table that maps keys to values. It is therefore an unordered container:

>>> tel = {’emmanuelle’: 5752, ’sebastian’: 5578}
>>> tel[’francis’] = 5915
>>> tel
{’sebastian’: 5578, ’francis’: 5915, ’emmanuelle’: 5752}
>>> tel[’sebastian’]
5578
>>> tel.keys()
[’sebastian’, ’francis’, ’emmanuelle’]
>>> tel.values()
[5578, 5915, 5752]

3.2. Basic types 13
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>>> ’francis’ in tel
True

This is a very convenient data container in order to store values associated to a name (a string for a date, a name, etc.).
See http://docs.python.org/tutorial/datastructures.html#dictionaries for more information.

A dictionnary can have keys (resp. values) with different types:

>>> d = {’a’:1, ’b’:2, 3:’hello’}
>>> d
{’a’: 1, 3: ’hello’, ’b’: 2}

More container types

• Tuples

Tuples are basically immutable lists. The elements of a tuple are written between brackets, or just separated by
commas:

>>> t = 12345, 54321, ’hello!’
>>> t[0]
12345
>>> t
(12345, 54321, ’hello!’)
>>> u = (0, 2)

• Sets: non ordered, unique items:

>>> s = set((’a’, ’b’, ’c’, ’a’))
>>> s
set([’a’, ’c’, ’b’])
>>> s.difference((’a’, ’b’))
set([’c’])

3.3 Control Flow

Controls the order in which the code is executed.

3.3.1 if/elif/else

In [1]: if 2**2 == 4:
...: print(’Obvious!’)
...:

Obvious!

Blocks are delimited by indentation

Type the following lines in your Python interpreter, and be careful to respect the indentation depth. The Ipython
shell automatically increases the indentation depth after a column : sign; to decrease the indentation depth, go four
spaces to the left with the Backspace key. Press the Enter key twice to leave the logical block.
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In [2]: a = 10

In [3]: if a == 1:
...: print(1)
...: elif a == 2:
...: print(2)
...: else:
...: print(’A lot’)
...:

A lot

Indentation is compulsory in scripts as well. As an exercise, re-type the previous lines with the same indentation in a
script condition.py, and execute the script with run condition.py in Ipython.

3.3.2 for/range

Iterating with an index:

In [4]: for i in range(4):
...: print(i)
...:

0
1
2
3

But most often, it is more readable to iterate over values:

In [5]: for word in (’cool’, ’powerful’, ’readable’):
...: print(’Python is %s’ % word)
...:

Python is cool
Python is powerful
Python is readable

3.3.3 while/break/continue

Typical C-style while loop (Mandelbrot problem):

In [6]: z = 1 + 1j

In [7]: while abs(z) < 100:
...: z = z**2 + 1
...:

In [8]: z
Out[8]: (-134+352j)

More advanced features

break out of enclosing for/while loop:
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In [9]: z = 1 + 1j

In [10]: while abs(z) < 100:
....: if z.imag == 0:
....: break
....: z = z**2 + 1
....:
....:

continue the next iteration of a loop.:

>>> a = [1, 0, 2, 4]
>>> for element in a:
... if element == 0:
... continue
... print 1. / element
...
1.0
0.5
0.25

3.3.4 Conditional Expressions

• if object

Evaluates to True:

– any non-zero value

– any sequence with a length > 0

Evaluates to False:

– any zero value

– any empty sequence

• a == b

Tests equality, with logics:

In [19]: 1 == 1.
Out[19]: True

• a is b

Tests identity: both objects are the same

In [20]: 1 is 1.
Out[20]: False

In [21]: a = 1

In [22]: b = 1

In [23]: a is b
Out[23]: True
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• a in b

For any collection b: b contains a

>>> b = [1, 2, 3]
>>> 2 in b
True
>>> 5 in b
False

If b is a dictionary, this tests that a is a key of b.

3.3.5 Advanced iteration

Iterate over any sequence

• You can iterate over any sequence (string, list, dictionary, file, ...)

In [11]: vowels = ’aeiouy’

In [12]: for i in ’powerful’:
....: if i in vowels:
....: print(i),
....:
....:

o e u

>>> message = "Hello how are you?"
>>> message.split() # returns a list
[’Hello’, ’how’, ’are’, ’you?’]
>>> for word in message.split():
... print word
...
Hello
how
are
you?

Few languages (in particular, languages for scienfic computing) allow to loop over anything but integers/indices. With
Python it is possible to loop exactly over the objects of interest without bothering with indices you often don’t care
about.

Warning: Not safe to modify the sequence you are iterating over.

Keeping track of enumeration number

Common task is to iterate over a sequence while keeping track of the item number.

• Could use while loop with a counter as above. Or a for loop:

In [13]: for i in range(0, len(words)):
....: print(i, words[i])
....:
....:
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0 cool
1 powerful
2 readable

• But Python provides enumerate for this:

>>> words = (’cool’, ’powerful’, ’readable’)
>>> for index, item in enumerate(words):
... print index, item
...
0 cool
1 powerful
2 readable

Looping over a dictionary

Use iteritems:

In [15]: d = {’a’: 1, ’b’:1.2, ’c’:1j}

In [15]: for key, val in d.iteritems():
....: print(’Key: %s has value: %s’ % (key, val))
....:
....:

Key: a has value: 1
Key: c has value: 1j
Key: b has value: 1.2

3.3.6 List Comprehensions

In [16]: [i**2 for i in range(4)]
Out[16]: [0, 1, 4, 9]

Exercise

Compute the decimals of Pi using the Wallis formula:

Note: Good practices

• Indentation: no choice!
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Indenting is compulsory in Python. Every commands block following a colon bears an additional indentation level
with respect to the previous line with a colon. One must therefore indent after def f(): or while:. At the end of
such logical blocks, one decreases the indentation depth (and re-increases it if a new block is entered, etc.)

Strict respect of indentation is the price to pay for getting rid of { or ; characters that delineate logical blocks in other
languages. Improper indentation leads to errors such as

------------------------------------------------------------
IndentationError: unexpected indent (test.py, line 2)

All this indentation business can be a bit confusing in the beginning. However, with the clear indentation, and in the
absence of extra characters, the resulting code is very nice to read compared to other languages.

• Indentation depth:

Inside your text editor, you may choose to indent with any positive number of spaces (1, 2, 3, 4, ...). However, it is
considered good practice to indent with 4 spaces. You may configure your editor to map the Tab key to a 4-space
indentation. In Python(x,y), the editor Scite is already configured this way.

• Style guidelines

Long lines: you should not write very long lines that span over more than (e.g.) 80 characters. Long lines can be
broken with the \ character

>>> long_line = "Here is a very very long line \
... that we break in two parts."

Spaces

Write well-spaced code: put whitespaces after commas, around arithmetic operators, etc.:

>>> a = 1 # yes
>>> a=1 # too cramped

A certain number of rules for writing “beautiful” code (and more importantly using the same conventions as anybody
else!) are given in the Style Guide for Python Code.

• Use meaningful object names

Self-explaining names improve greatly the readibility of a code.

3.4 Defining functions

3.4.1 Function definition

In [56]: def test():
....: print(’in test function’)
....:
....:

In [57]: test()
in test function

Warning: Function blocks must be indented as other control-flow blocks.
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3.4.2 Return statement

Functions can optionally return values.

In [6]: def disk_area(radius):
...: return 3.14 * radius * radius
...:

In [8]: disk_area(1.5)
Out[8]: 7.0649999999999995

Note: By default, functions return None.

Note: Note the syntax to define a function:

• the def keyword;

• is followed by the function’s name, then

• the arguments of the function are given between brackets followed by a colon.

• the function body ;

• and return object for optionally returning values.

3.4.3 Parameters

Mandatory parameters (positional arguments)

In [81]: def double_it(x):
....: return x * 2
....:

In [82]: double_it(3)
Out[82]: 6

In [83]: double_it()
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)

/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/<ipython console> in <module>()

TypeError: double_it() takes exactly 1 argument (0 given)

Optional parameters (keyword or named arguments)

In [84]: def double_it(x=2):
....: return x * 2
....:

In [85]: double_it()
Out[85]: 4

In [86]: double_it(3)
Out[86]: 6

Keyword arguments allow you to specify default values.
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Warning: Default values are evaluated when the function is defined, not when it is called.

In [124]: bigx = 10

In [125]: def double_it(x=bigx):
.....: return x * 2
.....:

In [126]: bigx = 1e9 # Now really big

In [128]: double_it()
Out[128]: 20

More involved example implementing python’s slicing:

In [98]: def slicer(seq, start=None, stop=None, step=None):
....: """Implement basic python slicing."""
....: return seq[start:stop:step]
....:

In [101]: rhyme = ’one fish, two fish, red fish, blue fish’.split()

In [102]: rhyme
Out[102]: [’one’, ’fish,’, ’two’, ’fish,’, ’red’, ’fish,’, ’blue’, ’fish’]

In [103]: slicer(rhyme)
Out[103]: [’one’, ’fish,’, ’two’, ’fish,’, ’red’, ’fish,’, ’blue’, ’fish’]

In [104]: slicer(rhyme, step=2)
Out[104]: [’one’, ’two’, ’red’, ’blue’]

In [105]: slicer(rhyme, 1, step=2)
Out[105]: [’fish,’, ’fish,’, ’fish,’, ’fish’]

In [106]: slicer(rhyme, start=1, stop=4, step=2)
Out[106]: [’fish,’, ’fish,’]

The order of the keyword arguments does not matter:

In [107]: slicer(rhyme, step=2, start=1, stop=4)
Out[107]: [’fish,’, ’fish,’]

but it is good practice to use the same ordering as the function’s definition.

Keyword arguments are a very convenient feature for defining functions with a variable number of arguments, espe-
cially when default values are to be used in most calls to the function.

3.4.4 Passed by value

Can you modify the value of a variable inside a function? Most languages (C, Java, ...) distinguish “passing by value”
and “passing by reference”. In Python, such a distinction is somewhat artificial, and it is a bit subtle whether your
variables are going to be modified or not. Fortunately, there exist clear rules.

Parameters to functions are refereence to objects, which are passed by value. When you pass a variable to a function,
python passes the reference to the object to which the variable refers (the value). Not the variable itself.
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If the value is immutable, the function does not modify the caller’s variable. If the value is mutable, the function may
modify the caller’s variable in-place:

>>> def try_to_modify(x, y, z):
... x = 23
... y.append(42)
... z = [99] # new reference
... print(x)
... print(y)
... print(z)
...
>>> a = 77 # immutable variable
>>> b = [99] # mutable variable
>>> c = [28]
>>> try_to_modify(a, b, c)
23
[99, 42]
[99]
>>> print(a)
77
>>> print(b)
[99, 42]
>>> print(c)
[28]

Functions have a local variable table. Called a local namespace.

The variable x only exists within the function foo.

3.4.5 Global variables

Variables declared outside the function can be referenced within the function:

In [114]: x = 5

In [115]: def addx(y):
.....: return x + y
.....:

In [116]: addx(10)
Out[116]: 15

But these “global” variables cannot be modified within the function, unless declared global in the function.

This doesn’t work:

In [117]: def setx(y):
.....: x = y
.....: print(’x is %d’ % x)
.....:
.....:

In [118]: setx(10)
x is 10

In [120]: x
Out[120]: 5
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This works:

In [121]: def setx(y):
.....: global x
.....: x = y
.....: print(’x is %d’ % x)
.....:
.....:

In [122]: setx(10)
x is 10

In [123]: x
Out[123]: 10

3.4.6 Variable number of parameters

Special forms of parameters:

• *args: any number of positional arguments packed into a tuple

• **kwargs: any number of keyword arguments packed into a dictionary

In [35]: def variable_args(*args, **kwargs):
....: print ’args is’, args
....: print ’kwargs is’, kwargs
....:

In [36]: variable_args(’one’, ’two’, x=1, y=2, z=3)
args is (’one’, ’two’)
kwargs is {’y’: 2, ’x’: 1, ’z’: 3}

3.4.7 Docstrings

Documention about what the function does and it’s parameters. General convention:

In [67]: def funcname(params):
....: """Concise one-line sentence describing the function.
....:
....: Extended summary which can contain multiple paragraphs.
....: """
....: # function body
....: pass
....:

In [68]: funcname ?
Type: function
Base Class: <type ’function’>
String Form: <function funcname at 0xeaa0f0>
Namespace: Interactive
File: /Users/cburns/src/scipy2009/.../<ipython console>
Definition: funcname(params)
Docstring:

Concise one-line sentence describing the function.
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Extended summary which can contain multiple paragraphs.

Note: Docstring guidelines

For the sake of standardization, the Docstring Conventions webpage documents the semantics and conventions asso-
ciated with Python docstrings.

Also, the Numpy and Scipy modules have defined a precised standard for documenting scientific func-
tions, that you may want to follow for your own functions, with a Parameters section, an
Examples section, etc. See http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines#docstring-standard and
http://projects.scipy.org/numpy/browser/trunk/doc/example.py#L37

3.4.8 Functions are objects

Functions are first-class objects, which means they can be:

• assigned to a variable

• an item in a list (or any collection)

• passed as an argument to another function.

In [38]: va = variable_args

In [39]: va(’three’, x=1, y=2)
args is (’three’,)
kwargs is {’y’: 2, ’x’: 1}

3.4.9 Methods

Methods are functions attached to objects. You’ve seen these in our examples on lists, dictionaries, strings, etc...

3.4.10 Exercices

Exercice: Quicksort

Implement the quicksort algorithm, as defined by wikipedia:

function quicksort(array)
var list less, greater
if length(array) < 2

return array
select and remove a pivot value pivot from array
for each x in array

if x < pivot + 1 then append x to less
else append x to greater

return concatenate(quicksort(less), pivot, quicksort(greater))
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Exercice: Fibonacci sequence

Write a function that displays the n first terms of the Fibonacci sequence, defined by:
• u_0 = 1; u_1 = 1
• u_(n+2) = u_(n+1) + u_n

3.5 Reusing code: scripts and modules

For now, we have typed all instructions in the interpreter. For longer sets of instructions we need to change tack and
write the code in text files (using a text editor), that we will call either scripts or modules. Use your favorite text
editor (provided it offers syntax highlighting for Python), or the editor that comes with the Scientific Python Suite you
may be using (e.g., Scite with Python(x,y)).

3.5.1 Scripts

Let us first write a script, that is a file with a sequence of instructions that are executed each time the script is called.

Instructions may be e.g. copied-and-pasted from the interpreter (but take care to respect indentation rules!). The
extension for Python files is .py. Write or copy-and-paste the following lines in a file called test.py

message = "Hello how are you?"
for word in message.split():

print word

Let us now execute the script interactively, that is inside the Ipython interpreter. This is maybe the most common use
of scripts in scientific computing.

• in Ipython, the syntax to execute a script is %run script.py. For example,

In [1]: %run test.py
Hello
how
are
you?

In [2]: message
Out[2]: ’Hello how are you?’

The script has been executed. Moreover the variables defined in the script (such as message) are now available inside
the interpeter’s namespace.

Other interpreters also offer the possibility to execute scripts (e.g., execfile in the plain Python interpreter, etc.).

It is also possible In order to execute this script as a standalone program, by executing the script inside a shell
terminal (Linux/Mac console or cmd Windows console). For example, if we are in the same directory as the test.py
file, we can execute this in a console:

epsilon:~/sandbox$ python test.py
Hello
how
are
you?
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Standalone scripts may also take command-line arguments

In file.py:

import sys
print sys.argv

$ python file.py test arguments
[’file.py’, ’test’, ’arguments’]

Note: Don’t implement option parsing yourself. Use modules such as optparse.

3.5.2 Importing objects from modules

In [1]: import os

In [2]: os
Out[2]: <module ’os’ from ’ / usr / lib / python2.6 / os.pyc ’ >

In [3]: os.listdir(’.’)
Out[3]:
[’conf.py’,
’basic_types.rst’,
’control_flow.rst’,
’functions.rst’,
’python_language.rst’,
’reusing.rst’,
’file_io.rst’,
’exceptions.rst’,
’workflow.rst’,
’index.rst’]

And also:

In [4]: from os import listdir

Importing shorthands:

In [5]: import numpy as np

Warning:

from os import *

Do not do it.
• Makes the code harder to read and understand: where do symbols come from?
• Makes it impossible to guess the functionality by the context and the name (hint: os.name is the name of the

OS), and to profit usefully from tab completion.
• Restricts the variable names you can use: os.name might override name, or vise-versa.
• Creates possible name clashes between modules.
• Makes the code impossible to statically check for undefined symbols.

Modules are thus a good way to organize code in a hierarchical way. Actually, all the scientific computing tools we
are going to use are modules:
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>>> import numpy as np # data arrays
>>> np.linspace(0, 10, 6)
array([ 0., 2., 4., 6., 8., 10.])
>>> import scipy # scientific computing

In Python(x,y) software, Ipython(x,y) execute the following imports at startup:

>>> import numpy
>>> import numpy as np
>>> from pylab import *
>>> import scipy

and it is not necessary to re-import these modules.

3.5.3 Creating modules

If we want to write larger and better organized programs (compared to simple scripts), where some objects are defined,
(variables, functions, classes) and that we want to reuse several times, we have to create our own modules.

Let us create a module demo contained in the file demo.py:

In this file, we defined two functions print_a and print_b. Suppose we want to call the print_a function from the
interpreter. We could execute the file as a script, but since we just want to have access to the function test_a, we are
rather going to import it as a module. The syntax is as follows.

In [1]: import demo

In [2]: demo.print_a()
a

In [3]: demo.print_b()
b

Importing the module gives access to its objects, using the module.object syntax. Don’t forget to put the module’s
name before the object’s name, otherwise Python won’t recognize the instruction.

Introspection

In [4]: demo ?
Type: module
Base Class: <type ’module’>
String Form: <module ’demo’ from ’demo.py’>
Namespace: Interactive
File: /home/varoquau/Projects/Python_talks/scipy_2009_tutorial/source/demo.py
Docstring:

A demo module.

In [5]: who
demo

In [6]: whos
Variable Type Data/Info

3.5. Reusing code: scripts and modules 27

Python Scientific lecture notes, Release 2010

------------------------------
demo module <module ’demo’ from ’demo.py’>

In [7]: dir(demo)
Out[7]:
[’__builtins__’,
’__doc__’,
’__file__’,
’__name__’,
’__package__’,
’c’,
’d’,
’print_a’,
’print_b’]

In [8]: demo.
demo.__builtins__ demo.__init__ demo.__str__
demo.__class__ demo.__name__ demo.__subclasshook__
demo.__delattr__ demo.__new__ demo.c
demo.__dict__ demo.__package__ demo.d
demo.__doc__ demo.__reduce__ demo.print_a
demo.__file__ demo.__reduce_ex__ demo.print_b
demo.__format__ demo.__repr__ demo.py
demo.__getattribute__ demo.__setattr__ demo.pyc
demo.__hash__ demo.__sizeof__

Importing objects from modules into the main namespace

In [9]: from demo import print_a, print_b

In [10]: whos
Variable Type Data/Info
--------------------------------
demo module <module ’demo’ from ’demo.py’>
print_a function <function print_a at 0xb7421534>
print_b function <function print_b at 0xb74214c4>

In [11]: print_a()
a

Warning: Module caching
Modules are cached: if you modify demo.py and re-import it in the old session, you will get the old
one.

Solution:

In [10]: reload(demo)

3.5.4 ‘__main__’ and module loading

File demo2.py:

Importing it:
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In [11]: import demo2
b

In [12]: import demo2

Running it:

In [13]: %run demo2
b
a

3.5.5 Scripts or modules? How to organize your code

Note: Rule of thumb

• Sets of instructions that are called several times should be written inside functions for better code reusability.

• Functions (or other bits of code) that are called from several scripts should be written inside a module, so
that only the module is imported in the different scripts (do not copy-and-paste your functions in the different
scripts!).

Note: How to import a module from a remote directory?

Many solutions exist, depending mainly on your operating system. When the import mymodule statement is
executed, the module mymodule is searched in a given list of directories. This list includes a list of installation-
dependent default path (e.g., /usr/lib/python) as well as the list of directories specified by the environment variable
PYTHONPATH.

The list of directories searched by Python is given by the sys.path variable

In [1]: import sys

In [2]: sys.path
Out[2]:
[’’,
’/usr/bin’,
’/usr/local/include/enthought.traits-1.1.0’,
’/usr/lib/python2.6’,
’/usr/lib/python2.6/plat-linux2’,
’/usr/lib/python2.6/lib-tk’,
’/usr/lib/python2.6/lib-old’,
’/usr/lib/python2.6/lib-dynload’,
’/usr/lib/python2.6/dist-packages’,
’/usr/lib/pymodules/python2.6’,
’/usr/lib/pymodules/python2.6/gtk-2.0’,
’/usr/lib/python2.6/dist-packages/wx-2.8-gtk2-unicode’,
’/usr/local/lib/python2.6/dist-packages’,
’/usr/lib/python2.6/dist-packages’,
’/usr/lib/pymodules/python2.6/IPython/Extensions’,
u’/home/gouillar/.ipython’]

Modules must be located in the search path, therefore you can:

• write your own modules within directories already defined in the search path (e.g. ‘/usr/local/lib/python2.6/dist-
packages’). You may use symbolic links (on Linux) to keep the code somewhere else.
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• modify the environment variable PYTHONPATH to include the directories containing the user-defined mod-
ules. On Linux/Unix, add the following line to a file read by the shell at startup (e.g. /etc/profile, .profile)

export PYTHONPATH=$PYTHONPATH:/home/emma/user_defined_modules

On Windows, http://support.microsoft.com/kb/310519 explains how to handle environment variables.

• or modify the sys.path variable itself within a Python script.

import sys
new_path = ’/home/emma/user_defined_modules’
if new_path not in sys.path:

sys.path.append(new_path)

This method is not very robust, however, because it makes the code less portable (user-dependent path) and because
you have to add the directory to your sys.path each time you want to import from a module in this directory.

See http://docs.python.org/tutorial/modules.html for more information about modules.

3.5.6 Packages

A directory that contains many modules is called a package. A package is a module with submodules (which can have
submodules themselves, etc.). A special file called __init__.py (which may be empty) tells Python that the directory
is a Python package, from which modules can be imported.

sd-2116 /usr/lib/python2.6/dist-packages/scipy $ ls
[17:07]
cluster/ io/ README.txt@ stsci/
__config__.py@ LATEST.txt@ setup.py@ __svn_version__.py@
__config__.pyc lib/ setup.pyc __svn_version__.pyc
constants/ linalg/ setupscons.py@ THANKS.txt@
fftpack/ linsolve/ setupscons.pyc TOCHANGE.txt@
__init__.py@ maxentropy/ signal/ version.py@
__init__.pyc misc/ sparse/ version.pyc
INSTALL.txt@ ndimage/ spatial/ weave/
integrate/ odr/ special/
interpolate/ optimize/ stats/
sd-2116 /usr/lib/python2.6/dist-packages/scipy $ cd ndimage
[17:07]

sd-2116 /usr/lib/python2.6/dist-packages/scipy/ndimage $ ls
[17:07]
doccer.py@ fourier.pyc interpolation.py@ morphology.pyc setup.pyc
doccer.pyc info.py@ interpolation.pyc _nd_image.so
setupscons.py@
filters.py@ info.pyc measurements.py@ _ni_support.py@
setupscons.pyc
filters.pyc __init__.py@ measurements.pyc _ni_support.pyc tests/
fourier.py@ __init__.pyc morphology.py@ setup.py@

From Ipython:

In [1]: import scipy

In [2]: scipy.__file__
Out[2]: ’/usr/lib/python2.6/dist-packages/scipy/__init__.pyc’
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In [3]: import scipy.version

In [4]: scipy.version.version
Out[4]: ’0.7.0’

In [5]: import scipy.ndimage.morphology

In [6]: from scipy.ndimage import morphology

In [17]: morphology.binary_dilation ?
Type: function
Base Class: <type ’function’>
String Form: <function binary_dilation at 0x9bedd84>
Namespace: Interactive
File: /usr/lib/python2.6/dist-packages/scipy/ndimage/morphology.py
Definition: morphology.binary_dilation(input, structure=None,
iterations=1, mask=None, output=None, border_value=0, origin=0,
brute_force=False)
Docstring:

Multi-dimensional binary dilation with the given structure.

An output array can optionally be provided. The origin parameter
controls the placement of the filter. If no structuring element is
provided an element is generated with a squared connectivity equal
to one. The dilation operation is repeated iterations times. If
iterations is less than 1, the dilation is repeated until the
result does not change anymore. If a mask is given, only those
elements with a true value at the corresponding mask element are
modified at each iteration.

3.6 Input and Output

To be exhaustive, here are some informations about input and output in Python. Since we will use the Numpy methods
to read and write files, you may skip this chapter at first reading.

We write or read strings to/from files (other types must be converted to strings). To write in a file:

>>> f = open(’workfile’, ’w’) # opens the workfile file
>>> type(f)
<type ’file’>
>>> f.write(’This is a test \nand another test’)
>>> f.close()

To read from a file

In [1]: f = open(’workfile’, ’r’)

In [2]: s = f.read()

In [3]: print(s)
This is a test
and another test

In [4]: f.close()
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For more details: http://docs.python.org/tutorial/inputoutput.html

3.6.1 Iterating over a file

In [6]: f = open(’workfile’, ’r’)

In [7]: for line in f:
...: print line
...:
...:
This is a test

and another test

In [8]: f.close()

File modes

• Read-only: r

• Write-only: w

– Note: Create a new file or overwrite existing file.

• Append a file: a

• Read and Write: r+

• Binary mode: b

– Note: Use for binary files, especially on Windows.

3.7 Standard Library

Note: Reference document for this section:

• The Python Standard Library documentation: http://docs.python.org/library/index.html

• Python Essential Reference, David Beazley, Addison-Wesley Professional

3.7.1 os module: operating system functionality

“A portable way of using operating system dependent functionality.”

Directory and file manipulation

Current directory:

In [17]: os.getcwd()
Out[17]: ’/Users/cburns/src/scipy2009/scipy_2009_tutorial/source’

List a directory:
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In [31]: os.listdir(os.curdir)
Out[31]:
[’.index.rst.swo’,
’.python_language.rst.swp’,
’.view_array.py.swp’,
’_static’,
’_templates’,
’basic_types.rst’,
’conf.py’,
’control_flow.rst’,
’debugging.rst’,
...

Make a directory:

In [32]: os.mkdir(’junkdir’)

In [33]: ’junkdir’ in os.listdir(os.curdir)
Out[33]: True

Rename the directory:

In [36]: os.rename(’junkdir’, ’foodir’)

In [37]: ’junkdir’ in os.listdir(os.curdir)
Out[37]: False

In [38]: ’foodir’ in os.listdir(os.curdir)
Out[38]: True

In [41]: os.rmdir(’foodir’)

In [42]: ’foodir’ in os.listdir(os.curdir)
Out[42]: False

Delete a file:

In [44]: fp = open(’junk.txt’, ’w’)

In [45]: fp.close()

In [46]: ’junk.txt’ in os.listdir(os.curdir)
Out[46]: True

In [47]: os.remove(’junk.txt’)

In [48]: ’junk.txt’ in os.listdir(os.curdir)
Out[48]: False

os.path: path manipulations

os.path provides common operations on pathnames.
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In [70]: fp = open(’junk.txt’, ’w’)

In [71]: fp.close()

In [72]: a = os.path.abspath(’junk.txt’)

In [73]: a
Out[73]: ’/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/junk.txt’

In [74]: os.path.split(a)
Out[74]: (’/Users/cburns/src/scipy2009/scipy_2009_tutorial/source’,

’junk.txt’)

In [78]: os.path.dirname(a)
Out[78]: ’/Users/cburns/src/scipy2009/scipy_2009_tutorial/source’

In [79]: os.path.basename(a)
Out[79]: ’junk.txt’

In [80]: os.path.splitext(os.path.basename(a))
Out[80]: (’junk’, ’.txt’)

In [84]: os.path.exists(’junk.txt’)
Out[84]: True

In [86]: os.path.isfile(’junk.txt’)
Out[86]: True

In [87]: os.path.isdir(’junk.txt’)
Out[87]: False

In [88]: os.path.expanduser(’~/local’)
Out[88]: ’/Users/cburns/local’

In [92]: os.path.join(os.path.expanduser(’~’), ’local’, ’bin’)
Out[92]: ’/Users/cburns/local/bin’

Running an external command

In [8]: os.system(’ls *’)
conf.py debug_file.py demo2.py~ demo.py demo.pyc my_file.py~
conf.py~ demo2.py demo2.pyc demo.py~ my_file.py pi_wallis_image.py

Walking a directory

os.path.walk generates a list of filenames in a directory tree.

In [10]: for dirpath, dirnames, filenames in os.walk(os.curdir):
....: for fp in filenames:
....: print os.path.abspath(fp)
....:
....:

/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/.index.rst.swo
/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/.view_array.py.swp
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/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/basic_types.rst
/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/conf.py
/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/control_flow.rst
...

Environment variables:

In [9]: import os

In [11]: os.environ.keys()
Out[11]:
[’_’,
’FSLDIR’,
’TERM_PROGRAM_VERSION’,
’FSLREMOTECALL’,
’USER’,
’HOME’,
’PATH’,
’PS1’,
’SHELL’,
’EDITOR’,
’WORKON_HOME’,
’PYTHONPATH’,
...

In [12]: os.environ[’PYTHONPATH’]
Out[12]: ’.:/Users/cburns/src/utils:/Users/cburns/src/nitools:
/Users/cburns/local/lib/python2.5/site-packages/:
/usr/local/lib/python2.5/site-packages/:
/Library/Frameworks/Python.framework/Versions/2.5/lib/python2.5’

In [16]: os.getenv(’PYTHONPATH’)
Out[16]: ’.:/Users/cburns/src/utils:/Users/cburns/src/nitools:
/Users/cburns/local/lib/python2.5/site-packages/:
/usr/local/lib/python2.5/site-packages/:
/Library/Frameworks/Python.framework/Versions/2.5/lib/python2.5’

3.7.2 shutil: high-level file operations

The shutil provides useful file operations:

• shutil.rmtree: Recursively delete a directory tree.

• shutil.move: Recursively move a file or directory to another location.

• shutil.copy: Copy files or directories.

3.7.3 glob: Pattern matching on files

The glob module provides convenient file pattern matching.

Find all files ending in .txt:
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In [18]: import glob

In [19]: glob.glob(’*.txt’)
Out[19]: [’holy_grail.txt’, ’junk.txt’, ’newfile.txt’]

3.7.4 sys module: system-specific information

System-specific information related to the Python interpreter.

• Which version of python are you running and where is it installed:

In [117]: sys.platform
Out[117]: ’darwin’

In [118]: sys.version
Out[118]: ’2.5.2 (r252:60911, Feb 22 2008, 07:57:53) \n

[GCC 4.0.1 (Apple Computer, Inc. build 5363)]’

In [119]: sys.prefix
Out[119]: ’/Library/Frameworks/Python.framework/Versions/2.5’

• List of command line arguments passed to a Python script:

In [100]: sys.argv
Out[100]: [’/Users/cburns/local/bin/ipython’]

sys.path is a list of strings that specifies the search path for modules. Initialized from PYTHONPATH:

In [121]: sys.path
Out[121]:
[’’,
’/Users/cburns/local/bin’,
’/Users/cburns/local/lib/python2.5/site-packages/grin-1.1-py2.5.egg’,
’/Users/cburns/local/lib/python2.5/site-packages/argparse-0.8.0-py2.5.egg’,
’/Users/cburns/local/lib/python2.5/site-packages/urwid-0.9.7.1-py2.5.egg’,
’/Users/cburns/local/lib/python2.5/site-packages/yolk-0.4.1-py2.5.egg’,
’/Users/cburns/local/lib/python2.5/site-packages/virtualenv-1.2-py2.5.egg’,
...

3.7.5 pickle: easy persistence

Useful to store arbritrary objects to a file. Not safe or fast!

In [1]: import pickle

In [2]: l = [1, None, ’Stan’]

In [3]: pickle.dump(l, file(’test.pkl’, ’w’))

In [4]: pickle.load(file(’test.pkl’))
Out[4]: [1, None, ’Stan’]
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Exercise

Write a program to search your PYTHONPATH for the module site.py.

The PYTHONPATH Search Solution

3.8 Exceptions handling in Python

It is highly unlikely that you haven’t yet raised Exceptions if you have typed all the previous commands of the tutorial.
For example, you may have raised an exception if you entered a command with a typo.

Exceptions are raised by different kinds of errors arising when executing Python code. In you own code, you may also
catch errors, or define custom error types.

3.8.1 Exceptions

Exceptions are raised by errors in Python:

In [1]: 1/0
---------------------------------------------------------------------------
ZeroDivisionError: integer division or modulo by zero

In [2]: 1 + ’e’
---------------------------------------------------------------------------
TypeError: unsupported operand type(s) for +: ’int’ and ’str’

In [3]: d = {1:1, 2:2}

In [4]: d[3]
---------------------------------------------------------------------------
KeyError: 3

In [5]: l = [1, 2, 3]

In [6]: l[4]
---------------------------------------------------------------------------
IndexError: list index out of range

In [7]: l.foobar
---------------------------------------------------------------------------
AttributeError: ’list’ object has no attribute ’foobar’

Different types of exceptions for different errors.

3.8.2 Catching exceptions

try/except

In [8]: while True:
....: try:
....: x = int(raw_input(’Please enter a number: ’))
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....: break

....: except ValueError:

....: print(’That was no valid number. Try again...’)

....:

....:
Please enter a number: a
That was no valid number. Try again...
Please enter a number: 1

In [9]: x
Out[9]: 1

try/finally

In [10]: try:
....: x = int(raw_input(’Please enter a number: ’))
....: finally:
....: print(’Thank you for your input’)
....:
....:

Please enter a number: a
Thank you for your input
---------------------------------------------------------------------------
ValueError: invalid literal for int() with base 10: ’a’

Important for resource management (e.g. closing a file)

Easier to ask for forgiveness than for permission

In [11]: def print_sorted(collection):
....: try:
....: collection.sort()
....: except AttributeError:
....: pass
....: print(collection)
....:
....:

In [12]: print_sorted([1, 3, 2])
[1, 2, 3]

In [13]: print_sorted(set((1, 3, 2)))
set([1, 2, 3])

In [14]: print_sorted(’132’)
132

3.8.3 Raising exceptions

• Capturing and reraising an exception:
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In [15]: def filter_name(name):
....: try:
....: name = name.encode(’ascii’)
....: except UnicodeError, e:
....: if name == ’Gaël’:
....: print(’OK, Gaël’)
....: else:
....: raise e
....: return name
....:

In [16]: filter_name(’Gaël’)
OK, Gaël
Out[16]: ’Ga\xc3\xabl’

In [17]: filter_name(’Stéfan’)
---------------------------------------------------------------------------
UnicodeDecodeError: ’ascii’ codec can’t decode byte 0xc3 in position 2: ordinal not in range(128)

• Exceptions to pass messages between parts of the code:

In [17]: def achilles_arrow(x):
....: if abs(x - 1) < 1e-3:
....: raise StopIteration
....: x = 1 - (1-x)/2.
....: return x
....:

In [18]: x = 0

In [19]: while True:
....: try:
....: x = achilles_arrow(x)
....: except StopIteration:
....: break
....:
....:

In [20]: x
Out[20]: 0.9990234375

Use exceptions to notify certain conditions are met (e.g. StopIteration) or not (e.g. custom error raising)

3.9 Object-oriented programming (OOP)

Python supports object-oriented programming (OOP). The goals of OOP are:

• to organize the code, and

• to re-use code in similar contexts.

Here is a small example: we create a Student class, which is an object gathering several custom functions (methods)
and variables (attributes), we will be able to use:

>>> class Student(object):
... def __init__(self, name):
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... self.name = name

... def set_age(self, age):

... self.age = age

... def set_major(self, major):

... self.major = major

...
>>> anna = Student(’anna’)
>>> anna.set_age(21)
>>> anna.set_major(’physics’)

In the previous example, the Student class has __init__, set_age and set_major methods. Its at-
tributes are name, age and major. We can call these methods and attributes with the following notation:
classinstance.method or classinstance.attribute. The __init__ constructor is a special method
we call with: MyClass(init parameters if any).

Now, suppose we want to create a new class MasterStudent with the same methods and attributes as the previous one,
but with an additional internship attribute. We won’t copy the previous class, but inherit from it:

>>> class MasterStudent(Student):
... internship = ’mandatory, from March to June’
...
>>> james = MasterStudent(’james’)
>>> james.internship
’mandatory, from March to June’
>>> james.set_age(23)
>>> james.age
23

The MasterStudent class inherited from the Student attributes and methods.

Thanks to classes and object-oriented programming, we can organize code with different classes corresponding to
different objects we encounter (an Experiment class, an Image class, a Flow class, etc.), with their own methods and
attributes. Then we can use inheritance to consider variations around a base class and re-use code. Ex : from a Flow
base class, we can create derived StokesFlow, TurbulentFlow, PotentialFlow, etc.
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NumPy: creating and manipulating
numerical data

authors Emmanuelle Gouillart, Didrik Pinte, Gaël Varoquaux

The array: the basic tool for scientific computing

Frequent manipulation of discrete sorted datasets :
• discretized time of an experiment/simulation
• signal recorded by a measurement device
• pixels of an image, ...

The Numpy module allows to
• create such datasets in one shot
• realize batch operations on data arrays (no loops on their items)

Data arrays := numpy.ndarray

4.1 Creating NumPy data arrays

A small introductory example:

>>> import numpy as np
>>> a = np.array([0, 1, 2])
>>> a
array([0, 1, 2])
>>> print a
[0 1 2]
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>>> b = np.array([[0., 1.], [2., 3.]])
>>> b
array([[ 0., 1.],

[ 2., 3.]])

In practice, we rarely enter items one by one...

• Evenly spaced values:

>>> import numpy as np
>>> a = np.arange(10) # de 0 a n-1
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> b = np.arange(1., 9., 2) # syntax : start, end, step
>>> b
array([ 1., 3., 5., 7.])

or by specifying the number of points:

>>> c = np.linspace(0, 1, 6)
>>> c
array([ 0. , 0.2, 0.4, 0.6, 0.8, 1. ])
>>> d = np.linspace(0, 1, 5, endpoint=False)
>>> d
array([ 0. , 0.2, 0.4, 0.6, 0.8])

• Constructors for common arrays:

>>> a = np.ones((3,3))
>>> a
array([[ 1., 1., 1.],

[ 1., 1., 1.],
[ 1., 1., 1.]])

>>> a.dtype
dtype(’float64’)
>>> b = np.ones(5, dtype=np.int)
>>> b
array([1, 1, 1, 1, 1])
>>> c = np.zeros((2,2))
>>> c
array([[ 0., 0.],

[ 0., 0.]])
>>> d = np.eye(3)
>>> d
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

4.2 Graphical data representation : matplotlib and Mayavi

Now that we have our first data arrays, we are going to visualize them. Matplotlib is a 2D plotting package. We can
import its functions as below:
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>>> import pylab
>>> # or
>>> from pylab import * # imports everything in the namespace

If you launched Ipython with python(x,y), or with ipython -pylab (under Linux), all the functions/objects of
pylab are already imported, without needing from pylab import *. In the remainder of this tutorial, we as-
sume you have already run from pylab import * or ipython -pylab: as a consequence, we won’t write
pylab.function() but directly function.

1D curve plotting

In [6]: a = np.arange(20)
In [7]: plot(a, a**2) # line plot
Out[7]: [<matplotlib.lines.Line2D object at 0x95abd0c>]
In [8]: plot(a, a**2, ’o’) # dotted plot
Out[8]: [<matplotlib.lines.Line2D object at 0x95b1c8c>]
In [9]: clf() # clear figure
In [10]: loglog(a, a**2)
Out[10]: [<matplotlib.lines.Line2D object at 0x95abf6c>]
In [11]: xlabel(’x’) # a bit too small
Out[11]: <matplotlib.text.Text object at 0x98923ec>
In [12]: xlabel(’x’, fontsize=26) # bigger
Out[12]: <matplotlib.text.Text object at 0x98923ec>
In [13]: ylabel(’y’)
Out[13]: <matplotlib.text.Text object at 0x9892b8c>
In [14]: grid()
In [15]: axvline(2)
Out[15]: <matplotlib.lines.Line2D object at 0x9b633cc>

2D arrays (such as images)

In [48]: # 30x30 array with random floats btw 0 and 1
In [49]: image = np.random.rand(30,30)
In [50]: imshow(image)
Out[50]: <matplotlib.image.AxesImage object at 0x9e954ac>
In [51]: gray()
In [52]: hot()
In [53]: imshow(image, cmap=cm.gray)
Out[53]: <matplotlib.image.AxesImage object at 0xa23972c>
In [54]: axis(’off’) # we remove ticks and labels
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There are many other features in matplotlib: color choice, marker size, latex font, inclusions within figures, histograms,
etc.

To go further :

• matplotlib documentation http://matplotlib.sourceforge.net/contents.html

• an example gallery with corresponding sourcecode http://matplotlib.sourceforge.net/gallery.html

3D plotting

For 3D visualization, we use another package: Mayavi. A quick example: start with relaunching iPython with these
options: ipython -pylab -wthread

In [59]: from enthought.mayavi import mlab
In [60]: mlab.figure()
get fences failed: -1
param: 6, val: 0
Out[60]: <enthought.mayavi.core.scene.Scene object at 0xcb2677c>
In [61]: mlab.surf(image)
Out[61]: <enthought.mayavi.modules.surface.Surface object at 0xd0862fc>
In [62]: mlab.axes()
Out[62]: <enthought.mayavi.modules.axes.Axes object at 0xd07892c>

The mayavi/mlab window that opens is interactive : by clicking on the left mouse button you can rotate the image,
zoom with the mouse wheel, etc.
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For more information on Mayavi : http://code.enthought.com/projects/mayavi/docs/development/html/mayavi/index.html

4.3 Indexing

The items of an array can be accessed the same way as other Python sequences (list, tuple)

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[0], a[2], a[-1]
(0, 2, 9)

Warning! Indexes begin at 0, like other Python sequences (and C/C++). In Fortran or Matlab, indexes begin with 1.

For multidimensional arrays, indexes are tuples of integers:

>>> a = np.diag(np.arange(5))
>>> a
array([[0, 0, 0, 0, 0],

[0, 1, 0, 0, 0],
[0, 0, 2, 0, 0],
[0, 0, 0, 3, 0],
[0, 0, 0, 0, 4]])

>>> a[1,1]
1
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>>> a[2,1] = 10 # third line, second column
>>> a
array([[ 0, 0, 0, 0, 0],

[ 0, 1, 0, 0, 0],
[ 0, 10, 2, 0, 0],
[ 0, 0, 0, 3, 0],
[ 0, 0, 0, 0, 4]])

>>> a[1]
array([0, 1, 0, 0, 0])

Note that:

• In 2D, the first dimension corresponds to lines, the second to columns.

• for an array a with more than one dimension,‘a[0]‘ is interpreted by taking all elements in the unspecified
dimensions.

4.4 Slicing

Like indexing, it’s similar to Python sequences slicing:

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[2:9:3] # [start:end:step]
array([2, 5, 8])

Note that the last index is not included!:

>>> a[:4]
array([0, 1, 2, 3])

start:end:step is a slice object which represents the set of indexes range(start, end, step). A
slice can be explicitly created:

>>> sl = slice(1, 9, 2)
>>> a = np.arange(10)
>>> b = 2*a + 1
>>> a, b
(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), array([ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19]))
>>> a[sl], b[sl]
(array([1, 3, 5, 7]), array([ 3, 7, 11, 15]))

All three slice components are not required: by default, start is 0, end is the last and step is 1:

>>> a[1:3]
array([1, 2])
>>> a[::2]
array([0, 2, 4, 6, 8])
>>> a[3:]
array([3, 4, 5, 6, 7, 8, 9])

Of course, it works with multidimensional arrays:
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>>> a = np.eye(5)
>>> a
array([[ 1., 0., 0., 0., 0.],

[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 1., 0.],
[ 0., 0., 0., 0., 1.]])

>>> a[2:4,:3] #3rd and 4th lines, 3 first columns
array([[ 0., 0., 1.],

[ 0., 0., 0.]])

All elements specified by a slice can be easily modified:

>>> a[:3,:3] = 4
>>> a
array([[ 4., 4., 4., 0., 0.],

[ 4., 4., 4., 0., 0.],
[ 4., 4., 4., 0., 0.],
[ 0., 0., 0., 1., 0.],
[ 0., 0., 0., 0., 1.]])

A small illustrated summary of Numpy indexing and slicing...

A slicing operation creates a view on the original array, which is just a way of accessing array data. Thus the original
array is not copied in memory. When modifying the view, the original array is modified as well*:

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> b = a[::2]; b
array([0, 2, 4, 6, 8])
>>> b[0] = 12
>>> b
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array([12, 2, 4, 6, 8])
>>> a # a a été modifié aussi !
array([12, 1, 2, 3, 4, 5, 6, 7, 8, 9])

This behaviour can be surprising at first sight... but it allows to save a lot of memory.

4.5 Manipulating the shape of arrays

The shape of an array can be retrieved with the ndarray.shape method which returns a tuple with the dimensions
of the array:

>>> a = np.arange(10)
>>> a.shape
(10,)
>>> b = np.ones((3,4))
>>> b.shape
(3, 4)
>>> b.shape[0] # the shape tuple elements can be accessed
3
>>> # an other way of doing the same
>>> np.shape(b)
(3, 4)

Moreover, the length of the first dimension can be queried with np.alen (by analogy with len for a list) and the
total number of elements with ndarray.size:

>>> np.alen(b)
3
>>> b.size
12

Several NumPy functions allow to create an array with a different shape, from another array:

>>> a = np.arange(36)
>>> b = a.reshape((6, 6))
>>> b
array([[ 0, 1, 2, 3, 4, 5],

[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])

ndarray.reshape returns a view, not a copy:

>>> b[0,0] = 10
>>> a
array([10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35])

An array with a different number of elements can also be created with ndarray.resize:
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>>> a = np.arange(36)
>>> a.resize((4,2))
>>> a
array([[0, 1],

[2, 3],
[4, 5],
[6, 7]])

>>> b = np.arange(4)
>>> b.resize(3, 2)
>>> b
array([[0, 1],

[2, 3],
[0, 0]])

A large array can be tiled with a smaller one:

>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],

[2, 3]])
>>> np.tile(a, (2,3))
array([[0, 1, 0, 1, 0, 1],

[2, 3, 2, 3, 2, 3],
[0, 1, 0, 1, 0, 1],
[2, 3, 2, 3, 2, 3]])

4.6 Exercises : some simple array creations

By using miscellaneous constructors, indexing, slicing, and simple operations (+/-/x/:), large arrays with various pat-
terns can be created.

Example : create this array:

[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 0]
[15 16 17 18 19]
[20 21 22 23 24]]

Solution

>>> a = np.arange(25).reshape((5,5))
>>> a[2, 4] = 0

Exercises : Create the following array with the simplest solution:

[[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 2.]
[ 1. 6. 1. 1.]]

[[0 0 0 0 0]
[2 0 0 0 0]
[0 3 0 0 0]
[0 0 4 0 0]
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[0 0 0 5 0]
[0 0 0 0 6]]

4.7 Real data: read/write arrays from/to files

Often, our experiments or simulations write some results in files. These results must then be loaded in Python as
NumPy arrays to be able to manipulate them. We also need to save some arrays into files.

Going to the right folder

To move in a folder hierarchy:

• use the iPython commands: cd, pwd, tab-completion.

In [1]: mkdir python_scripts

In [2]: cd python_scripts/
/home/gouillar/python_scripts

In [3]: pwd
Out[3]: ’/home/gouillar/python_scripts’

In [4]: ls

In [5]: np.savetxt(’integers.txt’, np.arange(10))

In [6]: ls
integers.txt

• os (system routines) and os.path (path management) modules:

>>> import os, os.path
>>> current_dir = os.getcwd()
>>> current_dir
’/home/gouillar/sandbox’
>>> data_dir = os.path.join(current_dir, ’data’)
>>> data_dir
’/home/gouillar/sandbox/data’
>>> if not(os.path.exists(data_dir)):

... os.mkdir(’data’)

... print "created ’data’ folder"

...
>>> os.chdir(data_dir) # or in Ipython : cd data

IPython can actually be used like a shell, thanks to its integrated features and the os module.

Writing a data array in a file

>>> a = np.arange(100)
>>> a = a.reshape((10, 10))

• Writing a text file (in ASCII):

>>> np.savetxt(’data_a.txt’, a)

• Writing a binary file (.npy extension, recommended format)

50 Chapter 4. NumPy: creating and manipulating numerical data



Python Scientific lecture notes, Release 2010

>>> np.save(’data_a.npy’, a)

Loading a data array from a file

• Reading from a text file:

>>> b = np.loadtxt(’data_a.txt’)

• Reading from a binary file:

>>> c = np.load(’data_a.npy’)

To read matlab data files

scipy.io.loadmat : the matlab structure of a .mat file is stored as a dictionary.

Opening and saving images: imsave and imread

>>> import scipy
>>> from pylab import imread, imsave, savefig
>>> lena = scipy.lena()
>>> imsave(’lena.png’, lena, cmap=cm.gray)
>>> lena_reloaded = imread(’lena.png’)
>>> imshow(lena_reloaded, cmap=gray)
<matplotlib.image.AxesImage object at 0x989e14c>
>>> savefig(’lena_figure.png’)
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Selecting a file from a list

Each line of a will be saved in a different file:

>>> for i, l in enumerate(a):
... print i, l
... np.savetxt(’line_’+str(i), l)
...
0 [0 1 2 3 4 5 6 7 8 9]
1 [10 11 12 13 14 15 16 17 18 19]
2 [20 21 22 23 24 25 26 27 28 29]
3 [30 31 32 33 34 35 36 37 38 39]
4 [40 41 42 43 44 45 46 47 48 49]
5 [50 51 52 53 54 55 56 57 58 59]
6 [60 61 62 63 64 65 66 67 68 69]
7 [70 71 72 73 74 75 76 77 78 79]
8 [80 81 82 83 84 85 86 87 88 89]
9 [90 91 92 93 94 95 96 97 98 99]

To get a list of all files beginning with line, we use the glob module which matches all paths corresponding to a
pattern. Example:

>>> import glob
>>> filelist = glob.glob(’line*’)
>>> filelist
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[’line_0’, ’line_1’, ’line_2’, ’line_3’, ’line_4’, ’line_5’, ’line_6’, ’line_7’, ’line_8’, ’line_9’]
>>> # Note that the line is not always sorted
>>> filelist.sort()
>>> l2 = np.loadtxt(filelist[2])

Note: arrays can also be created from Excel/Calc files, HDF5 files, etc. (but with additional modules not described
here: xlrd, pytables, etc.).

4.8 Simple mathematical and statistical operations on arrays

Some operations on arrays are natively available in NumPy (and are generally very efficient):

>>> a = np.arange(10)
>>> a.min() # or np.min(a)
0
>>> a.max() # or np.max(a)
9
>>> a.sum() # or np.sum(a)
45

Operations can also be run along an axis, instead of on all elements:

>>> a = np.array([[1, 3], [9, 6]])
>>> a
array([[1, 3],

[9, 6]])
>>> a.mean(axis=0) # the array contains the mean of each column
array([ 5. , 4.5])
>>> a.mean(axis=1) # the array contains the mean of each line
array([ 2. , 7.5])

Many other operations are available. We will discover some of them in this course.

Note: Arithmetic operations on arrays correspond to operations on each individual element. In particular, the multi-
plication is not a matrix multiplication (unlike Matlab)! The matrix multiplication is provided by np.dot:

>>> a = np.ones((2,2))
>>> a*a
array([[ 1., 1.],

[ 1., 1.]])
>>> np.dot(a,a)
array([[ 2., 2.],

[ 2., 2.]])

Example : diffusion simulation using a random walk algorithm

What is the typical distance from the origin of a random walker after t left or right jumps?
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>>> nreal = 1000 # number of walks
>>> tmax = 200 # time during which we follow the walker
>>> # We randomly choose all the steps 1 or -1 of the walk
>>> walk = 2 * ( np.random.random_integers(0, 1, (nreal,tmax)) - 0.5 )
>>> np.unique(walk) # Verification : all steps are 1 or -1
array([-1., 1.])
>>> # We build the walks by summing steps along the time
>>> cumwalk = np.cumsum(walk, axis=1) # axis = 1 : dimension of time
>>> sq_distance = cumwalk**2
>>> # We get the mean in the axis of the steps
>>> mean_sq_distance = np.mean(sq_distance, axis=0)

In [39]: figure()
In [40]: plot(mean_sq_distance)
In [41]: figure()
In [42]: plot(np.sqrt(mean_sq_distance))

We find again that the distance grows like the square root of the time!

Exercise : statistics on the number of women in french research (INSEE data)

1. Get the following files organisms.txt and women_percentage.txt in the data directory.

2. Create a data array by opening the women_percentage.txt file with np.loadtxt. What is the shape
of this array?

3. Columns correspond to year 2006 to 2001. Create a years array with integers corresponding to these years.
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4. The different lines correspond to the research organisms whose names are stored in the organisms.txt
file. Create a organisms array by opening this file. Beware that np.loadtxt creates float arrays by de-
fault, and it must be specified to use strings instead: organisms = np.loadtxt(’organisms.txt’,
dtype=str)

5. Check that the number of lines of data equals the number of lines of the organisms.

6. What is the maximal percentage of women in all organisms, for all years taken together?

7. Create an array with the temporal mean of the percentage of women for each organism? (i.e. the mean of data
along axis 1).

8. Which organism had the highest percentage of women in 2004? (hint: np.argmax)

9. Create a histogram of the percentage of women the different organisms in 2006 (hint: np.histogram, then mat-
plotlib bar or plot for visulalization)

10. Create an array that contains the organism where the highest women’s percentage is found for the different
years.

Answers stat_recherche

4.9 Fancy indexing

Numpy arrays can be indexed with slices, but also with boolean or integer arrays (masks). This method is called fancy
indexing.

Masks

>>> np.random.seed(3)
>>> a = np.random.random_integers(0, 20, 15)
>>> a
array([10, 3, 8, 0, 19, 10, 11, 9, 10, 6, 0, 20, 12, 7, 14])
>>> (a%3 == 0)
array([False, True, False, True, False, False, False, True, False,

True, True, False, True, False, False], dtype=bool)
>>> mask = (a%3 == 0)
>>> extract_from_a = a[mask] #one could directly write a[a%3==0]
>>> extract_from_a # extract a sub-array with the mask
array([ 3, 0, 9, 6, 0, 12])

Extracting a sub-array using a mask produces a copy of this sub-array, not a view:

>>> extract_from_a = -1
>>> a
array([10, 3, 8, 0, 19, 10, 11, 9, 10, 6, 0, 20, 12, 7, 14])

Indexing with a mask can be very useful to assign a new value to a sub-array:

>>> a[mask] = 0
>>> a
array([10, 0, 8, 0, 19, 10, 11, 0, 10, 0, 0, 20, 0, 7, 14])

Indexing with an array of integers
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>>> a = np.arange(10)
>>> a[::2] +=3 #to avoid having always the same np.arange(10)...
>>> a
array([ 3, 1, 5, 3, 7, 5, 9, 7, 11, 9])
>>> a[[2, 5, 1, 8]] # or a[np.array([2, 5, 1, 8])]
array([ 5, 5, 1, 11])

Indexing can be done with an array of integers, where the same index is repeated several time:

>>> a[[2, 3, 2, 4, 2]]
array([5, 3, 5, 7, 5])

New values can be assigned with this kind of indexing:

>>> a[[9, 7]] = -10
>>> a
array([ 3, 1, 5, 3, 7, 5, 9, -10, 11, -10])
>>> a[[2, 3, 2, 4, 2]] +=1
>>> a
array([ 3, 1, 6, 4, 8, 5, 9, -10, 11, -10])

When a new array is created by indexing with an array of integers, the new array has the same shape than the array of
integers:

>>> a = np.arange(10)
>>> idx = np.array([[3, 4], [9, 7]])
>>> a[idx]
array([[3, 4],

[9, 7]])
>>> b = np.arange(10)

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> i = np.array( [ [0,1],
... [1,2] ] )
>>> j = np.array( [ [2,1],
... [3,3] ] )
>>> a[i,j]
array([[ 2, 5],

[ 7, 11]])
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Exercise

Let’s take the same statistics about the percentage of women in the research (data and organisms arrays)

1. Create a sup30 array of the same size than data with a value of 1 if the value of data is greater than 30%, 0
otherwise.

2. Create an array containing the organisme having the greatest percentage of women of each year.

Answers stat_recherche

4.10 Broadcasting

Basic operations on numpy arrays (addition, etc.) are done element by element, thus work on arrays of the same size.
Nevertheless, it’s possible to do operations on arrays of different sizes if numpy can transform these arrays so that
they all have the same size: this conversion is called broadcasting.

The image below gives an example of broadcasting:
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which gives the following in Ipython:

>>> a = np.arange(0, 40, 10)
>>> b = np.arange(0, 3)
>>> a = a.reshape((4,1)) # a must be changed into a vertical array
>>> a + b
array([[ 0, 1, 2],

[10, 11, 12],
[20, 21, 22],
[30, 31, 32]])

We actually already used broadcasting without knowing it!:

>>> a = np.arange(20).reshape((4,5))
>>> a
array([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])

>>> a[0] = 1 # we assign an array of dimension 0 to an array of dimension 1
>>> a[:3] = np.arange(1,6)
>>> a
array([[ 1, 2, 3, 4, 5],

[ 1, 2, 3, 4, 5],
[ 1, 2, 3, 4, 5],
[15, 16, 17, 18, 19]])
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We can even use fancy indexing and broadcasting at the same time. Take again the same example as above::

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> i = np.array( [ [0,1],
... [1,2] ] )
>>> a[i, 2] # same as a[i, 2*np.ones((2,2), dtype=int)]
array([[ 2, 6],

[ 6, 10]])

Broadcasting seems a bit magical, but it is actually quite natural to use it when we want to solve a problem whose
output data is an array with more dimensions than input data.

Example: let’s construct an array of distances (in miles) between cities of Route 66: Chicago, Springfield, Saint-Louis,
Tulsa, Oklahoma City, Amarillo, Santa Fe, Albucquerque, Flagstaff and Los Angeles.

>>> mileposts = np.array([0, 198, 303, 736, 871, 1175, 1475, 1544,
... 1913, 2448])
>>> ditance_array = np.abs(mileposts - mileposts[:,np.newaxis])
>>> ditance_array
array([[ 0, 198, 303, 736, 871, 1175, 1475, 1544, 1913, 2448],

[ 198, 0, 105, 538, 673, 977, 1277, 1346, 1715, 2250],
[ 303, 105, 0, 433, 568, 872, 1172, 1241, 1610, 2145],
[ 736, 538, 433, 0, 135, 439, 739, 808, 1177, 1712],
[ 871, 673, 568, 135, 0, 304, 604, 673, 1042, 1577],
[1175, 977, 872, 439, 304, 0, 300, 369, 738, 1273],
[1475, 1277, 1172, 739, 604, 300, 0, 69, 438, 973],
[1544, 1346, 1241, 808, 673, 369, 69, 0, 369, 904],
[1913, 1715, 1610, 1177, 1042, 738, 438, 369, 0, 535],
[2448, 2250, 2145, 1712, 1577, 1273, 973, 904, 535, 0]])

Warning: Good practices
In the previous example, we can note some good (and bad) practices:

• Give explicit variable names (no need of a comment to explain what is in the variable)
• Put spaces after commas, around =, etc. A certain number of rules for writing “beautiful” code (and more

importantly using the same conventions as anybody else!) are given in the Style Guide for Python Code and
the Docstring Conventions page (to manage help strings).

• Except some rare cases, write variable names and comments in english.
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A lot of grid-based or network-based problems can also use broadcasting. For instance, if we want to compute the
distance from the origin of points on a 10x10 grid, we can do:

>>> x, y = np.arange(5), np.arange(5)
>>> distance = np.sqrt(x**2 + y[:, np.newaxis]**2)
>>> distance
array([[ 0. , 1. , 2. , 3. , 4. ],

[ 1. , 1.41421356, 2.23606798, 3.16227766, 4.12310563],
[ 2. , 2.23606798, 2.82842712, 3.60555128, 4.47213595],
[ 3. , 3.16227766, 3.60555128, 4.24264069, 5. ],
[ 4. , 4.12310563, 4.47213595, 5. , 5.65685425]])

The values of the distance array can be represented in colour, thanks to the pylab.imshow function (syntax:
pylab.imshow(distance). See help for other options).

Remark : the numpy.ogrid function allows to directly create vectors x and y of the previous example, with two
“significant dimensions”:

>>> x, y = np.ogrid[0:5, 0:5]
>>> x, y
(array([[0],

[1],
[2],
[3],
[4]]), array([[0, 1, 2, 3, 4]]))

>>> x.shape, y.shape
((5, 1), (1, 5))
>>> distance = np.sqrt(x**2 + y**2)

So, np.ogrid is very useful as soon as we have to handle computations on a network. On the other hand, np.mgrid
directly provides matrices full of indices for cases where we can’t (or don’t want to) benefit from broadcasting:

>>> x, y = np.mgrid[0:4, 0:4]
>>> x
array([[0, 0, 0, 0],

[1, 1, 1, 1],
[2, 2, 2, 2],
[3, 3, 3, 3]])

>>> y
array([[0, 1, 2, 3],

[0, 1, 2, 3],
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[0, 1, 2, 3],
[0, 1, 2, 3]])

4.11 Synthesis exercises: framing Lena

Let’s do some manipulations on numpy arrays by starting with the famous image of Lena
(http://www.cs.cmu.edu/~chuck/lennapg/). scipy provides a 2D array of this image with the scipy.lena
function:

>>> import scipy
>>> lena = scipy.lena()

Here are a few images we will be able to obtain with our manipulations: use different colormaps, crop the image,
change some parts of the image.

• Let’s use the imshow function of pylab to display the image.

In [3]: import pylab
In [4]: lena = scipy.lena()
In [5]: pylab.imshow(lena)

• Lena is then displayed in false colors. A colormap must be specified for her to be displayed in grey.

In [6]: pylab.imshow(lena, pl.cm.gray)
In [7]: # ou
In [8]: gray()

• Create an array of the image with a narrower centring : for example, remove 30 pixels from all the borders of
the image. To check the result, display this new array with imshow.

In [9]: crop_lena = lena[30:-30,30:-30]

• We will now frame Lena’s face with a black locket. For this, we need to

– create a mask corresponding to the pixels we want to be black. The mask is defined by this condition
(y-256)**2 + (x-256)**2

In [15]: y, x = np.ogrid[0:512,0:512] # x and y indices of pixels
In [16]: y.shape, x.shape
Out[16]: ((512, 1), (1, 512))
In [17]: centerx, centery = (256, 256) # center of the image
In [18]: mask = ((y - centery)**2 + (x - centerx)**2)> 230**2
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then

• assign the value 0 to the pixels of the image corresponding to the mask. The syntax is extremely simple and
intuitive:

In [19]: lena[mask]=0
In [20]: imshow(lena)
Out[20]: <matplotlib.image.AxesImage object at 0xa36534c>

• Subsidiary question : copy all instructions of this exercise in a script called lena_locket.py then execute
this script in iPython with %run lena_locket.py.

Conclusion : what do you need to know about numpy arrays to start?

• Know how to create arrays : array, arange, ones, zeros.
• Know the shape of the array with array.shape, then use slicing to obtain different views of the array:
array[::2], etc. Change the shape of the array using reshape.

• Obtain a subset of the elements of an array and/or modify their values with masks:

>>> a[a<0] = 0

• Know miscellaneous operations on arrays, like finding the mean or max (array.max(),
array.mean()). No need to retain everything, but have the reflex to search in the documentation
(see Getting help and finding documentation) !!

• For advanced use: master the indexing with arrays of integers, as well as broadcasting. Know more
functions of numpy allowing to handle array operations.
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Getting help and finding documentation

author Emmanuelle Gouillart

Rather than knowing all functions in Numpy and Scipy, it is important to find rapidly information throughout the
documentation and the available help. Here are some ways to get information:

• In Ipython, help function opens the docstring of the function. Only type the beginning of the function’s
name and use tab completion to display the matching functions.

In [204]: help np.v
np.vander np.vdot np.version np.void0 np.vstack
np.var np.vectorize np.void np.vsplit

In [204]: help np.vander

In Ipython it is not possible to open a separated window for help and documentation; however one can always open a
second Ipython shell just to display help and docstrings...

• Numpy’s and Scipy’s documentations can be browsed online on http://docs.scipy.org/doc.
The search button is quite useful inside the reference documentation of the two packages
(http://docs.scipy.org/doc/numpy/reference/ and http://docs.scipy.org/doc/scipy/reference/).

Tutorials on various topics as well as the complete API with all docstrings are found on this website.
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• Numpy’s and Scipy’s documentation is enriched and updated on a regular basis by users on a wiki
http://docs.scipy.org/numpy/. As a result, some docstrings are clearer or more detailed on the wiki, and you
may want to read directly the documentation on the wiki instead of the official documentation website. Note
that anyone can create an account on the wiki and write better documentation; this is an easy way to contribute
to an open-source project and improve the tools you are using!

• Scipy’s cookbook http://www.scipy.org/Cookbook gives recipes on many common problems frequently encoun-
tered, such as fitting data points, solving ODE, etc.

• Matplotlib’s website http://matplotlib.sourceforge.net/ features a very nice gallery with a large number of plots,
each of them shows both the source code and the resulting plot. This is very useful for learning by example.
More standard documentation is also available.
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• Mayavi’s website http://code.enthought.com/projects/mayavi/docs/development/html/mayavi/ also has a very
nice gallery of examples http://code.enthought.com/projects/mayavi/docs/development/html/mayavi/auto/examples.html
in which one can browse for different visualization solutions.

Finally, two more “technical” possibilities are useful as well:

• In Ipython, the magical function %psearch search for objects matching patterns. This is useful if, for example,
one does not know the exact name of a function.

In [3]: import numpy as np
In [4]: %psearch np.diag*
np.diag
np.diagflat
np.diagonal
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• numpy.lookfor looks for keywords inside the docstrings of specified modules.

In [45]: numpy.lookfor(’convolution’)
Search results for ’convolution’
--------------------------------
numpy.convolve

Returns the discrete, linear convolution of two one-dimensional
sequences.
numpy.bartlett

Return the Bartlett window.
numpy.correlate

Discrete, linear correlation of two 1-dimensional sequences.
In [46]: numpy.lookfor(’remove’, module=’os’)
Search results for ’remove’
---------------------------
os.remove

remove(path)
os.removedirs

removedirs(path)
os.rmdir

rmdir(path)
os.unlink

unlink(path)
os.walk

Directory tree generator.

• If everything listed above fails (and Google doesn’t have the answer)... don’t despair! Write to the mailing-list
suited to your problem: you should have a quick answer if you describe your problem well. Experts on scientific
python often give very enlightening explanations on the mailing-list.

– Numpy discussion (numpy-discussion@scipy.org): all about numpy arrays, manipulating them, indexa-
tion questions, etc.

– SciPy Users List (scipy-user@scipy.org): scientific computing with Python, high-level data processing,
in particular with the scipy package.

– matplotlib-users@lists.sourceforge.net for plotting with matplotlib.
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CHAPTER 6

Matplotlib

author Mike Müller

6.1 Introduction

matplotlib is probably the single most used Python package for 2D-graphics. It provides both a very quick way
to visualize data from Python and publication-quality figures in many formats. We are going to explore matplotlib in
interactive mode covering most common cases. We also look at the class library which is provided with an object-
oriented interface.

6.2 IPython

IPython is an enhanced interactive Python shell that has lots of interesting features including named inputs and outputs,
access to shell commands, improved debugging and many more. When we start it with the command line argument
-pylab, it allows interactive matplotlib sessions that has Matlab/Mathematica-like functionality.

6.3 pylab

pylab provides a procedural interface to the matplotlib object-oriented plotting library. It is modeled closely
after Matlab(TM). Therefore, the majority of plotting commands in pylab has Matlab(TM) analogs with similar
arguments. Important commands are explained with interactive examples.

6.4 Simple Plots

Let’s start an interactive session:

$python ipython.py -pylab

This brings us to the IPython prompt:
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IPython 0.8.1 -- An enhanced Interactive Python.
? -> Introduction to IPython’s features.
%magic -> Information about IPython’s ’magic’ % functions.
help -> Python’s own help system.
object? -> Details about ’object’. ?object also works, ?? prints more.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type ’help(pylab)’.

In [1]:

Now we can make our first, really simple plot:

In [1]: plot(range(10))
Out[1]: [<matplotlib.lines.Line2D instance at 0x01AA26E8>]

In [2]:

The numbers form 0 through 9 are plotted:

Now we can interactively add features to or plot:

In [2]: xlabel(’measured’)
Out[2]: <matplotlib.text.Text instance at 0x01A9D210>

In [3]: ylabel(’calculated’)
Out[3]: <matplotlib.text.Text instance at 0x01A9D918>

In [4]: title(’Measured vs. calculated’)
Out[4]: <matplotlib.text.Text instance at 0x01A9DF80>

In [5]: grid(True)

In [6]:

We get a reference to our plot:
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In [6]: my_plot = gca()

and to our line we plotted, which is the first in the plot:

In [7]: line = my_plot.lines[0]

Now we can set properties using set_something methods:

In [8]: line.set_marker(’o’)

or the setp function:

In [9]: setp(line, color=’g’)
Out[9]: [None]

To apply the new properties we need to redraw the screen:

In [10]: draw()

We can also add several lines to one plot:

In [1]: x = arange(100)

In [2]: linear = arange(100)

In [3]: square = [v * v for v in arange(0, 10, 0.1)]

In [4]: lines = plot(x, linear, x, square)

Let’s add a legend:

In [5]: legend((’linear’, ’square’))
Out[5]: <matplotlib.legend.Legend instance at 0x01BBC170>

This does not look particularly nice. We would rather like to have it at the left. So we clean the old graph:

In [6]: clf()

and print it anew providing new line styles (a green dotted line with crosses for the linear and a red dashed line with
circles for the square graph):

In [7]: lines = plot(x, linear, ’g:+’, x, square, ’r--o’)

Now we add the legend at the upper left corner:

In [8]: l = legend((’linear’, ’square’), loc=’upper left’)

The result looks like this:
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6.4.1 Exercises

1. Plot a simple graph of a sinus function in the range 0 to 3 with a step size of 0.01.

2. Make the line red. Add diamond-shaped markers with size of 5.

3. Add a legend and a grid to the plot.

6.5 Properties

So far we have used properties for the lines. There are three possibilities to set them:

1) as keyword arguments at creation time: plot(x, linear, ’g:+’, x, square, ’r--o’).

1. with the function setp: setp(line, color=’g’).

2. using the set_something methods: line.set_marker(’o’)

Lines have several properties as shown in the following table:

Property Value
alpha alpha transparency on 0-1 scale
antialiased True or False - use antialised rendering
color matplotlib color arg
data_clipping whether to use numeric to clip data
label string optionally used for legend
linestyle one of - : -. -
linewidth float, the line width in points
marker one of + , o . s v x > <, etc
markeredgewidth line width around the marker symbol
markeredgecolor edge color if a marker is used
markerfacecolor face color if a marker is used
markersize size of the marker in points

There are many line styles that can be specified with symbols:
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Symbol Description
- solid line
– dashed line
-. dash-dot line
: dotted line
. points
, pixels
o circle symbols
^ triangle up symbols
v triangle down symbols
< triangle left symbols
> triangle right symbols
s square symbols
+ plus symbols
x cross symbols
D diamond symbols
d thin diamond symbols
1 tripod down symbols
2 tripod up symbols
3 tripod left symbols
4 tripod right symbols
h hexagon symbols
H rotated hexagon symbols
p pentagon symbols
| vertical line symbols
_ horizontal line symbols
steps use gnuplot style ‘steps’ # kwarg only

Colors can be given in many ways: one-letter abbreviations, gray scale intensity from 0 to 1, RGB in hex and tuple
format as well as any legal html color name.

The one-letter abbreviations are very handy for quick work. With following you can get quite a few things done:

Abbreviation Color
b blue
g green
r red
c cyan
m magenta
y yellow
k black
w white

Other objects also have properties. The following table list the text properties:
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Property Value
alpha alpha transparency on 0-1 scale
color matplotlib color arg
family set the font family, eg sans-serif, cursive, fantasy
fontangle the font slant, one of normal, italic, oblique
horizontalalignment left, right or center
multialignment left, right or center only for multiline strings
name font name, eg, Sans, Courier, Helvetica
position x,y location
variant font variant, eg normal, small-caps
rotation angle in degrees for rotated text
size fontsize in points, eg, 8, 10, 12
style font style, one of normal, italic, oblique
text set the text string itself
verticalalignment top, bottom or center
weight font weight, e.g. normal, bold, heavy, light

6.5.1 Exercise

1. Apply different line styles to a plot. Change line color and thickness as well as the size and the kind of the
marker. Experiment with different styles.

6.6 Text

We’ve already used some commands to add text to our figure: xlabel ylabel, and title.

There are two functions to put text at a defined position. text adds the text with data coordinates:

In [2]: plot(arange(10))
In [3]: t1 = text(5, 5, ’Text in the middle’)

figtext uses figure coordinates form 0 to 1:

In [4]: t2 = figtext(0.8, 0.8, ’Upper right text’)
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matplotlib supports TeX mathematical expression. So r’$\pi$’ will show up as:

π

If you want to get more control over where the text goes, you use annotations:

In [4]: ax.annotate(’Here is something special’, xy = (1, 1))

We will write the text at the position (1, 1) in terms of data. There are many optional arguments that help to customize
the position of the text. The arguments textcoords and xycoords specifies what x and y mean:

argument coordinate system
figure points points from the lower left corner of the figure
figure pixels pixels from the lower left corner of the figure
figure fraction 0,0 is lower left of figure and 1,1 is upper, right
axes points points from lower left corner of axes
axes pixels pixels from lower left corner of axes
axes fraction 0,1 is lower left of axes and 1,1 is upper right
data use the axes data coordinate system

If we do not supply xycoords, the text will be written at xy.

Furthermore, we can use an arrow whose appearance can also be described in detail:

In [14]: plot(arange(10))
Out[14]: [<matplotlib.lines.Line2D instance at 0x01BB15D0>]

In [15]: ax = gca()

In [16]: ax.annotate(’Here is something special’, xy = (2, 1), xytext=(1,5))
Out[16]: <matplotlib.text.Annotation instance at 0x01BB1648>

In [17]: ax.annotate(’Here is something special’, xy = (2, 1), xytext=(1,5),
....: arrowprops={’facecolor’: ’r’})

6.6.1 Exercise

1. Annotate a line at two places with text. Use green and red arrows and align it according to figure points
and data.

6.7 Ticks

6.7.1 Where and What

Well formated ticks are an important part of publishing-ready figures. matplotlib provides a totally configurable
system for ticks. There are tick locators to specify where ticks should appear and tick formatters to make ticks look
like the way you want. Major and minor ticks can be located and formated independently from each other. Per default
minor ticks are not shown, i.e. there is only an empty list for them because it is as NullLocator (see below).

6.7.2 Tick Locators

There are several locators for different kind of requirements:
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Class Description
NullLocator no ticks
IndexLocator locator for index plots (e.g. where x = range(len(y))
LinearLocator evenly spaced ticks from min to max
LogLocator logarithmically ticks from min to max
MultipleLocator ticks and range are a multiple of base; either integer or float
AutoLocator choose a MultipleLocator and dynamically reassign

All of these locators derive from the base class matplotlib.ticker.Locator. You can make your own locator
deriving from it.

Handling dates as ticks can be especially tricky. Therefore, matplotlib provides special locators in
‘‘matplotlib.dates:

Class Description
MinuteLocator locate minutes
HourLocator locate hours
DayLocator locate specified days of the month
WeekdayLocator locate days of the week, e.g. MO, TU
MonthLocator locate months, e.g. 10 for October
YearLocator locate years that are multiples of base
RRuleLocator locate using a matplotlib.dates.rrule

6.7.3 Tick Formatters

Similarly to locators, there are formatters:

Class Description
NullFormatter no labels on the ticks
FixedFormatter set the strings manually for the labels
FuncFormatter user defined function sets the labels
FormatStrFormatter use a sprintf format string
IndexFormatter cycle through fixed strings by tick position
ScalarFormatter default formatter for scalars; autopick the fmt string
LogFormatter formatter for log axes
DateFormatter use an strftime string to format the date

All of these formatters derive from the base class matplotlib.ticker.Formatter. You can make your own
formatter deriving from it.

Now we set our major locator to 2 and the minor locator to 1. We also format the numbers as decimals using the
FormatStrFormatter:

In [5]: major_locator = MultipleLocator(2)

In [6]: major_formatter = FormatStrFormatter(’%5.2f’)

In [7]: minor_locator = MultipleLocator(1)

In [8]: ax.xaxis.set_major_locator(major_locator)

In [9]: ax.xaxis.set_minor_locator(minor_locator)

In [10]: ax.xaxis.set_major_formatter(major_formatter)

In [10]: draw()
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After we redraw the figure our x axis should look like this:

6.7.4 Exercises

1. Plot a graph with dates for one year with daily values at the x axis using the built-in module datetime.

2. Format the dates in such a way that only the first day of the month is shown.

3. Display the dates with and without the year. Show the month as number and as first three letters of the month
name.

6.8 Figures, Subplots, and Axes

6.8.1 The Hierarchy

So far we have used implicit figure and axes creation. This is handy for fast plots. We can have more control over the
display using figure, subplot, and axes explicitly. A figure in matplotlib means the whole window in
the user interface. Within this figure there can be subplots. While subplot positions the plots in a regular grid,
axes allows free placement within the figure. Both can be useful depending on your intention. We’ve already
work with figures and subplots without explicitly calling them. When we call plot matplotlib calls gca() to
get the current axes and gca in turn calls gcf() to get the current figure. If there is none it calls figure() to make
one, strictly speaking, to make a subplot(111). Let’s look at the details.

6.8.2 Figures

A figure is the windows in the GUI that has “Figure #” as title. Figures are numbered starting from 1 as opposed to
the normal Python way starting from 0. This is clearly MATLAB-style. There are several parameters that determine
how the figure looks like:

Argument Default Description
num 1 number of figure
figsize figure.figsize figure size in in inches (width, height)
dpi figure.dpi resolution in dots per inch
facecolor figure.facecolor color of the drawing background
edgecolor figure.edgecolor color of edge around the drawing background
frameon True draw figure frame or not

The defaults can be specified in the resource file and will be used most of the time. Only the number of the figure is
frequently changed.

When you work with the GUI you can close a figure by clicking on the x in the upper right corner. But you can close a
figure programmatically by calling close. Depending on the argument it closes (1) the current figure (no argument),
(2) a specific figure (figure number or figure instance as argument), or (3) all figures (all as argument).

As with other objects, you can set figure properties also setp or with the set_something methods.
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6.8.3 Subplots

With subplot you can arrange plots in regular grid. You need to specify the number of rows and columns and the
number of the plot.

A plot with two rows and one column is created with subplot(211) and subplot(212). The result looks like
this:

If you want two plots side by side, you create one row and two columns with subplot(121) and subplot(112).
The result looks like this:

You can arrange as many figures as you want. A two-by-two arrangement can be created with subplot(221),
subplot(222), subplot(223), and subplot(224). The result looks like this:

Frequently, you don’t want all subplots to have ticks or labels. You can set the xticklabels or the yticklabels
to an empty list ([]). Every subplot defines the methods ’is_first_row, is_first_col, is_last_row,
is_last_col. These can help to set ticks and labels only for the outer pots.

6.8.4 Axes

Axes are very similar to subplots but allow placement of plots at any location in the figure. So if we want to put a
smaller plot inside a bigger one we do so with axes:

In [22]: plot(x)
Out[22]: [<matplotlib.lines.Line2D instance at 0x02C9CE90>]

In [23]: a = axes([0.2, 0.5, 0.25, 0.25])

In [24]: plot(x)
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The result looks like this:

6.8.5 Exercises

1. Draw two figures, one 5 by 5, one 10 by 10 inches.

2. Add four subplots to one figure. Add labels and ticks only to the outermost axes.

3. Place a small plot in one bigger plot.

6.9 Other Types of Plots

6.9.1 Many More

So far we have used only line plots. matplotlib offers many more types of plots. We will have a brief look at some
of them. All functions have many optional arguments that are not shown here.

6.9.2 Bar Charts

The function bar creates a new bar chart:

bar([1, 2, 3], [4, 3, 7])

Now we have three bars starting at 1, 2, and 3 with height of 4, 3, 7 respectively:

The default column width is 0.8. It can be changed with common methods by setting width. As it can be color
and bottom, we can also set an error bar with yerr or xerr.

6.9.3 Horizontal Bar Charts

The function barh creates an vertical bar chart. Using the same data:

6.9. Other Types of Plots 77

Python Scientific lecture notes, Release 2010

barh([1, 2, 3], [4, 3, 7])

We get:

6.9.4 Broken Horizontal Bar Charts

We can also have discontinuous vertical bars with broken_barh. We specify start and width of the range in y-
direction and all start-width pairs in x-direction:

yrange = (2, 1)
xranges = ([0, 0.5], [1, 1], [4, 1])
broken_barh(xranges, yrange)

We changes the extension of the y-axis to make plot look nicer:

ax = gca()
ax.set_ylim(0, 5)
(0, 5)
draw()

and get this:

6.9.5 Box and Whisker Plots

We can draw box and whisker plots:

boxplot((arange(2, 10), arange(1, 5)))

We want to have the whiskers well within the plot and therefore increase the y axis:

ax = gca()
ax.set_ylim(0, 12)
draw()
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Our plot looks like this:

The range of the whiskers can be determined with the argument whis, which defaults to 1.5. The range of the whiskers
is between the most extreme data point within whis*(75%-25%) of the data.

6.9.6 Contour Plots

We can also do contour plots. We define arrays for the x and y coordinates:

x = y = arange(10)

and also a 2D array for z:

z = ones((10, 10))
z[5,5] = 7
z[2,1] = 3
z[8,7] = 4
z
array([[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],

[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 3., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 7., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 4., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])

Now we can make a simple contour plot:

contour(x, x, z)

Our plot looks like this:

We can also fill the area. We just use numbers form 0 to 9 for the values v:
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v = x
contourf(x, x, z, v)

Now our plot area is filled:

6.9.7 Histograms

We can make histograms. Let’s get some normally distributed random numbers from numpy:

import numpy as N
r_numbers = N.random.normal(size= 1000)

Now we make a simple histogram:

hist(r_numbers)

With 100 numbers our figure looks pretty good:

6.9.8 Loglog Plots

Plots with logarithmic scales are easy:

loglog(arange(1000))

We set the mayor and minor grid:

grid(True)
grid(True, which=’minor’)

Now we have loglog plot:
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If we want only one axis with a logarithmic scale we can use semilogx or semilogy.

6.9.9 Pie Charts

Pie charts can also be created with a few lines:

data = [500, 700, 300]
labels = [’cats’, ’dogs’, ’other’]
pie(data, labels=labels)

The result looks as expected:

6.9.10 Polar Plots

Polar plots are also possible. Let’s define our r from 0 to 360 and our theta from 0 to 360 degrees. We need to
convert them to radians:

r = arange(360)
theta = r / (180/pi)

Now plot in polar coordinates:

polar(theta, r)

We get a nice spiral:
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6.9.11 Arrow Plots

Plotting arrows in 2D plane can be achieved with quiver. We define the x and y coordinates of the arrow shafts:

x = y = arange(10)

The x and y components of the arrows are specified as 2D arrays:

u = ones((10, 10))
v = ones((10, 10))
u[4, 4] = 3
v[1, 1] = -1

Now we can plot the arrows:

quiver(x, y, u, v)

All arrows point to the upper right, except two. The one at the location (4, 4) has 3 units in x-direction and the other
at location (1, 1) has -1 unit in y direction:

6.9.12 Scatter Plots

Scatter plots print x vs. y diagrams. We define x and y and make some point in y random:

x = arange(10)
y = arange(10)
y[1] = 7
y[4] = 2
y[8] = 3

Now make a scatter plot:

scatter(x, y)

The three different values for y break out of the line:
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6.9.13 Sparsity Pattern Plots

Working with sparse matrices, it is often of interest as how the matrix looks like in terms of sparsity. We take an
identity matrix as an example:

i = identity(10)
i
array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

Now we look at it more visually:

spy(i)

6.9.14 Stem Plots

Stem plots vertical lines at the given x location up to the specified y location. Let’s reuse x and y from our scatter (see
above):

stem(x, y)

6.9.15 Date Plots

There is a function for creating date plots. Let’s define 10 dates starting at January 1st 2000 at 15.day intervals:
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import datetime
d1 = datetime.datetime(2000, 1, 1)
delta = datetime.timedelta(15)
dates = [d1 + x * delta for x in range(1
dates
[datetime.datetime(2000, 1, 1, 0, 0),
datetime.datetime(2000, 1, 16, 0, 0),
datetime.datetime(2000, 1, 31, 0, 0),
datetime.datetime(2000, 2, 15, 0, 0),
datetime.datetime(2000, 3, 1, 0, 0),
datetime.datetime(2000, 3, 16, 0, 0),
datetime.datetime(2000, 3, 31, 0, 0),
datetime.datetime(2000, 4, 15, 0, 0),
datetime.datetime(2000, 4, 30, 0, 0),
datetime.datetime(2000, 5, 15, 0, 0)]

We reuse our data from the scatter plot (see above):

y
array([0, 7, 2, 3, 2, 5, 6, 7, 3, 9])

Now we can plot the dates at the x axis:

plot_date(dates, y)

6.10 The Class Library

So far we have used the pylab interface only. As the name suggests it is just wrapper around the class library. All
pylabb commands can be invoked via the class library using an object-oriented approach.

6.10.1 The Figure Class

The class Figure lives in the module matplotlib.figure. Its constructor takes these arguments:

figsize=None, dpi=None, facecolor=None, edgecolor=None,
linewidth=1.0, frameon=True, subplotpars=None

Comparing this with the arguments of figure in pylab shows significant overlap:

num=None, figsize=None, dpi=None, facecolor=None
edgecolor=None, frameon=True
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Figure provides lots of methods, many of them have equivalents in pylab. The methods add_axes and
add_subplot are called if new axes or subplot are created with axes or subplot in pylab. Also the method
gca maps directly to pylab as do legend, text and many others.

There are also several set_something method such as set_facecolor or set_edgecolor that will be
called through pylab to set properties of the figure. Figure also implements get_something methods such as
get_axes or get_facecolor to get properties of the figure.

6.10.2 The Classes Axes and Subplot

In the class Axes we find most of the figure elements such as Axis, Tick, Line2D, or Text. It also sets the
coordinate system. The class Subplot inherits from Axes and adds some more functionality to arrange the plots in
a grid.

Analogous to Figure, it has methods to get and set properties and methods already encountered as functions in
pylab such as annotate. In addition, Axes has methods for all types of plots shown in the previous section.

6.10.3 Other Classes

Other classes such as text, Legend or Ticker are setup very similarly. They can be understood mostly by
comparing to the pylab interface.

6.10.4 Example

Let’s look at an example for using the object-oriented API:

#file matplotlib/oo.py

from matplotlib.figure import Figure #1

figsize = (8, 5) #2
fig = Figure(figsize=figsize) #3
ax = fig.add_subplot(111) #4
line = ax.plot(range(10))[0] #5
ax.set_title(’Plotted with OO interface’) #6
ax.set_xlabel(’measured’)
ax.set_ylabel(’calculated’)
ax.grid(True) #7
line.set_marker(’o’) #8

from matplotlib.backends.backend_agg import FigureCanvasAgg #9
canvas = FigureCanvasAgg(fig) #10
canvas.print_figure("oo.png", dpi=80) #11

import Tkinter as Tk #12
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg #13

root = Tk.Tk() #13
canvas2 = FigureCanvasTkAgg(fig, master=root) #14
canvas2.show() #15
canvas2.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) #16
Tk.mainloop() #17
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from matplotlib import _pylab_helpers #18
import pylab #19

pylab_fig = pylab.figure(1, figsize=figsize) #20
figManager = _pylab_helpers.Gcf.get_active() #21
figManager.canvas.figure = fig #22
pylab.show() #23

Since we are not in the interactive pylab-mode, we need to import the class Figure explicitly (#1).

We set the size of our figure to be 8 by 5 inches (#2). Now we initialize a new figure (#3) and add a subplot to the
figure (#4). The 111 says one plot at position 1, 1 just as in MATLAB. We create a new plot with the numbers from
0 to 9 and at the same time get a reference to our line (#5). We can add several things to our plot. So we set a title and
labels for the x and y axis (#6).

We also want to see the grid (#7) and would like to have little filled circles as markers (#8).

There are many different backends for rendering our figure. We use the Anti-Grain Geometry toolkit
(http://www.antigrain.com) to render our figure. First, we import the backend (#9), then we create a new canvas
that renders our figure (#10). We save our figure in a png-file with a resolution of 80 dpi (#11).

We can use several GUI toolkits directly. So we import Tkinter (#12) as well as the corresponding backend (#13).
Now we have to do some basic GUI programming work. We make a root object for our GUI (#13) and feed it together
with our figure to the backend to get our canvas (14). We call the show method (#15), pack our widget (#16), and
call the Tkinter mainloop to start the application (#17). You should see GUI window with the figure on your screen.
After closing the screen, the next part, the script, will be executed.

We would like to create a screen display just as we would use pylab. Therefore we import a helper (#18) and pylab
itself (#19). We create a normal figure with pylab‘ (‘‘20) and get the corresponding figure manager (#21). Now
let’s set our figure we created above to be the current figure (#22) and let pylab show the result (#23). The lower
part of the figure might be cover by the toolbar. If so, please adjust the figsize for pylab accordingly.

6.10.5 Exercises

1. Use the object-oriented API of matplotlib to create a png-file with a plot of two lines, one linear and square with
a legend in it.
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Scipy : high-level scientific computing

authors Adrien Chauve, Andre Espaze, Emmanuelle Gouillart, Gaël Varoquaux

Scipy

The scipy package contains various toolboxes dedicated to common issues in scientific computing. Its dif-
ferent submodules correspond to different applications, such as interpolation, integration, optimization, image
processing, statistics, special functions, etc.
scipy can be compared to other standard scientific-computing libraries, such as the GSL (GNU Scientific
Library for C and C++), or Matlab’s toolboxes. scipy is the core package for scientific routines in Python; it
is meant to operate efficiently on numpy arrays, so that numpy and scipy work hand in hand.
Before implementing a routine, if is worth checking if the desired data processing is not already implemented
in Scipy. As non-professional programmers, scientists often tend to re-invent the wheel, which leads to buggy,
non-optimal, difficult-to-share and unmaintainable code. By contrast, Scipy‘s routines are optimized and
tested, and should therefore be used when possible.

Warning: This tutorial is far from an introduction to numerical computing. As enumerating the different sub-
modules and functions in scipy would be very boring, we concentrate instead on a few examples to give a general
idea of how to use scipy for scientific computing.

To begin with

>>> import numpy as np
>>> import scipy

scipy is mainly composed of task-specific sub-modules:
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cluster Vector quantization / Kmeans
fftpack Fourier transform
integrate Integration routines
interpolate Interpolation
io Data input and output
linalg Linear algebra routines
maxentropy Routines for fitting maximum entropy models
ndimage n-dimensional image package
odr Orthogonal distance regression
optimize Optimization
signal Signal processing
sparse Sparse matrices
spatial Spatial data structures and algorithms
special Any special mathematical functions
stats Statistics

7.1 Scipy builds upon Numpy

Numpy is required for running Scipy but also for using it. The most important type introduced to Python is the N
dimensional array, and it can be seen that Scipy uses the same:

>>> scipy.ndarray is np.ndarray
True

Moreover most of the Scipy usual functions are provided by Numpy:

>>> scipy.cos is np.cos
True

If you would like to know the objects used from Numpy, have a look at the scipy.__file__[:-1] file. On
version ‘0.6.0’, the whole Numpy namespace is imported by the line from numpy import *.

7.2 File input/output: scipy.io

• Loading and saving matlab files:

>>> from scipy import io
>>> struct = io.loadmat(’file.mat’, struct_as_record=True)
>>> io.savemat(’file.mat’, struct)

See also:

• Load text files:

np.loadtxt/np.savetxt

• Clever loading of text/csv files:

np.genfromtxt/np.recfromcsv

• Fast an efficient, but numpy-specific, binary format:
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np.save/np.load

7.3 Signal processing: scipy.signal

>>> from scipy import signal

• Detrend: remove linear trend from signal:

t = np.linspace(0, 5, 100)
x = t + np.random.normal(size=100)

pl.plot(t, x, linewidth=3)
pl.plot(t, signal.detrend(x), linewidth=3)
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• Resample: resample a signal to n points using FFT.

t = np.linspace(0, 5, 100)
x = np.sin(t)

pl.plot(t, x, linewidth=3)
pl.plot(t[::2], signal.resample(x, 50), ’ko’)
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Notice how on the side of the window the resampling is less accurate and has a rippling effect.

• Signal has many window function: hamming, bartlett, blackman...

• Signal has filtering (Gaussian, median filter, Wiener), but we will discuss this in the image paragraph.

7.4 Special functions: scipy.special

Special functions are transcendal functions. The docstring of the module is well-written and we will not list them.
Frequently used ones are:

• Bessel function, such as special.jn (nth integer order Bessel function)

• Elliptic function (special.ellipj for the Jacobian elliptic function, ...)

• Gamma function: special.gamma, alos note special.gammaln which will give the log of Gamma to a higher
numerical precision.

• Erf, the area under a Gaussian curve: special.erf

7.5 Statistics and random numbers: scipy.stats

The module scipy.stats contains statistical tools and probabilistic description of random processes. Random number
generators for various random process can be found in numpy.random.

7.5.1 Histogram and probability density function

Given observations of a random process, their histogram is an estimator of the random process’s PDF (probability
density function):

>>> a = np.random.normal(size=1000)
>>> bins = np.arange(-4, 5)
>>> bins
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> histogram = np.histogram(a, bins=bins)
>>> bins = 0.5*(bins[1:] + bins[:-1])
>>> bins
array([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5])
>>> from scipy import stats
>>> b = stats.norm.pdf(bins)

In [1]: pl.plot(bins, histogram)
In [2]: pl.plot(bins, b)
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If we know that the random process belongs to a given family of random processes, such as normal processes, we can
do a maximum-likelihood fit of the observations to estimate the parameters of the underlying distribution. Here we fit
a normal process to the observed data:

>>> loc, std = stats.norm.fit(a)
>>> loc
0.003738964114102075
>>> std
0.97450996668871193

7.5.2 Percentiles

The median is the value with half of the observations below, and half above:

>>> np.median(a)
0.0071645570292782519

It is also called the percentile 50, because 50% of the observation are below it:

>>> stats.scoreatpercentile(a, 50)
0.0071645570292782519

Similarly, we can calculate the percentile 90:

>>> stats.scoreatpercentile(a, 90)
1.2729556087871292

The percentile is an estimator of the CDF: cumulative distribution function.

7.5.3 Statistical tests

A statistical test is a decision indicator. For instance, if we have 2 sets of observations, that we assume are generated
from Gaussian processes, we can use a T-test to decide whether the two sets of observations are significantly different:

>>> a = np.random.normal(0, 1, size=100)
>>> b = np.random.normal(1, 1, size=10)
>>> stats.ttest_ind(a, b)
(-2.389876434401887, 0.018586471712806949)
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The resulting output is composed of:

• The T statistic value: it is a number the sign of which is proportional to the difference between the two random
processes and the magnitude is related to the significance of this difference.

• the p value: the probability of both process being identical. If it is close to 1, the two process are almost certainly
identical. The closer it is to zero, the more likely it is that the processes have different mean.

7.6 Linear algebra operations: scipy.linalg

First, the linalg module provides standard linear algebra operations. The det function computes the determinant of a
square matrix:

>>> from scipy import linalg
>>> arr = np.array([[1, 2],
... [3, 4]])
>>> linalg.det(arr)
-2.0
>>> arr = np.array([[3, 2],
... [6, 4]])
>>> linalg.det(arr)
0.0
>>> linalg.det(np.ones((3, 4)))
Traceback (most recent call last):
...
ValueError: expected square matrix

The inv function computes the inverse of a square matrix:

>>> arr = np.array([[1, 2],
... [3, 4]])
>>> iarr = linalg.inv(arr)
>>> iarr
array([[-2. , 1. ],

[ 1.5, -0.5]])
>>> np.allclose(np.dot(arr, iarr), np.eye(2))
True

Note that in case you use the matrix type, the inverse is computed when requesting the I attribute:

>>> ma = np.matrix(arr, copy=False)
>>> np.allclose(ma.I, iarr)
True

Finally computing the inverse of a singular matrix (its determinant is zero) will raise LinAlgError:

>>> arr = np.array([[3, 2],
... [6, 4]])
>>> linalg.inv(arr)
Traceback (most recent call last):
...
LinAlgError: singular matrix

More advanced operations are available like singular-value decomposition (SVD):
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>>> arr = np.arange(12).reshape((3, 4)) + 1
>>> uarr, spec, vharr = linalg.svd(arr)

The resulting array spectrum is:

>>> spec
array([ 2.54368356e+01, 1.72261225e+00, 5.14037515e-16])

For the recomposition, an alias for manipulating matrix will first be defined:

>>> asmat = np.asmatrix

then the steps are:

>>> sarr = np.zeros((3, 4))
>>> sarr.put((0, 5, 10), spec)
>>> svd_mat = asmat(uarr) * asmat(sarr) * asmat(vharr)
>>> np.allclose(svd_mat, arr)
True

SVD is commonly used in statistics or signal processing. Many other standard decompositions (QR, LU, Cholesky,
Schur), as well as solvers for linear systems, are available in scipy.linalg.

7.7 Numerical integration: scipy.integrate

The most generic integration routine is scipy.integrate.quad:

>>> from scipy.integrate import quad
>>> res, err = quad(np.sin, 0, np.pi/2)
>>> np.allclose(res, 1)
True
>>> np.allclose(err, 1 - res)
True

Others integration schemes are available with fixed_quad, quadrature, romberg.

scipy.integrate also features routines for Ordinary differential equations (ODE) integration. In particular,
scipy.integrate.odeint is a general-purpose integrator using LSODA (Livermore solver for ordinary differ-
ential equations with automatic method switching for stiff and nonstiff problems), see the ODEPACK Fortran library
for more details.

odeint solves first-order ODE systems of the form:

‘‘dy/dt = rhs(y1, y2, .., t0,...)‘‘

As an introduction, let us solve the ODE dy/dt = -2y between t = 0..4, with the initial condition y(t=0) =
1. First the function computing the derivative of the position needs to be defined:

>>> def calc_derivative(ypos, time, counter_arr):
... counter_arr += 1
... return -2*ypos
...
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An extra argument counter_arr has been added to illustrate that the function may be called several times for a
single time step, until solver convergence. The counter array is defined as:

>>> counter = np.zeros((1,), np.uint16)

The trajectory will now be computed:

>>> from scipy.integrate import odeint
>>> time_vec = np.linspace(0, 4, 40)
>>> yvec, info = odeint(calc_derivative, 1, time_vec,
... args=(counter,), full_output=True)

Thus the derivative function has been called more than 40 times:

>>> counter
array([129], dtype=uint16)

and the cumulative iterations number for the 10 first convergences can be obtained by:

>>> info[’nfe’][:10]
array([31, 35, 43, 49, 53, 57, 59, 63, 65, 69], dtype=int32)

The solver requires more iterations at start. The final trajectory is seen on the Matplotlib figure computed with odeint-
introduction.py.
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Another example with odeint will be a damped spring-mass oscillator (2nd order oscillator). The position of a mass
attached to a spring obeys the 2nd order ODE y” + 2 eps wo y’ + wo^2 y = 0 with wo^2 = k/m being
k the spring constant, m the mass and eps=c/(2 m wo) with c the damping coefficient. For a computing example,
the parameters will be:

>>> mass = 0.5 # kg
>>> kspring = 4 # N/m
>>> cviscous = 0.4 # N s/m

so the system will be underdamped because:

>>> eps = cviscous / (2 * mass * np.sqrt(kspring/mass))
>>> eps < 1
True

For the odeint solver the 2nd order equation needs to be transformed in a system of two first-order equations for the
vector Y=(y, y’). It will be convenient to define nu = 2 eps wo = c / m and om = wo^2 = k/m:

>>> nu_coef = cviscous/mass
>>> om_coef = kspring/mass

Thus the function will calculate the velocity and acceleration by:

>>> def calc_deri(yvec, time, nuc, omc):
... return (yvec[1], -nuc * yvec[1] - omc * yvec[0])
...
>>> time_vec = np.linspace(0, 10, 100)
>>> yarr = odeint(calc_deri, (1, 0), time_vec, args=(nu_coef, om_coef))

The final position and velocity are shown on a Matplotlib figure built with the odeint-damped-spring-mass.py script.

7.7. Numerical integration: scipy.integrate 95

Python Scientific lecture notes, Release 2010

There is no Partial Differential Equations (PDE) solver in scipy. Some PDE packages are written in Python, such as
fipy or SfePy.

7.8 Fast Fourier transforms: scipy.fftpack

The fftpack module allows to compute fast Fourier transforms. As an illustration, an input signal may look like:

>>> time_step = 0.1
>>> period = 5.
>>> time_vec = np.arange(0, 20, time_step)
>>> sig = np.sin(2 * np.pi / period * time_vec) + \
... np.cos(10 * np.pi * time_vec)

However the observer does not know the signal frequency, only the sampling time step of the signal sig. But the
signal is supposed to come from a real function so the Fourier transform will be symmetric. The fftfreq function
will generate the sampling frequencies and fft will compute the fast fourier transform:

>>> from scipy import fftpack
>>> sample_freq = fftpack.fftfreq(sig.size, d=time_step)
>>> sig_fft = fftpack.fft(sig)

Nevertheless only the positive part will be used for finding the frequency because the resulting power is symmetric:
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>>> pidxs = np.where(sample_freq > 0)
>>> freqs = sample_freq[pidxs]
>>> power = np.abs(sig_fft)[pidxs]

Thus the signal frequency can be found by:

>>> freq = freqs[power.argmax()]
>>> np.allclose(freq, 1./period)
True

Now only the main signal component will be extracted from the Fourier transform:

>>> sig_fft[np.abs(sample_freq) > freq] = 0

The resulting signal can be computed by the ifft function:

>>> main_sig = fftpack.ifft(sig_fft)

The result is shown on the Matplotlib figure generated by the fftpack-illustration.py script.
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7.9 Interpolation: scipy.interpolate

The scipy.interpolate is useful for fitting a function from experimental data and thus evaluating points where
no measure exists. The module is based on the FITPACK Fortran subroutines from the netlib project.

By imagining experimental data close to a sinus function:

>>> measured_time = np.linspace(0, 1, 10)
>>> noise = (np.random.random(10)*2 - 1) * 1e-1
>>> measures = np.sin(2 * np.pi * measured_time) + noise

The interp1d class can built a linear interpolation function:

>>> from scipy.interpolate import interp1d
>>> linear_interp = interp1d(measured_time, measures)

Then the linear_interp instance needs to be evaluated on time of interest:

>>> computed_time = np.linspace(0, 1, 50)
>>> linear_results = linear_interp(computed_time)

A cubic interpolation can also be selected by providing the kind optional keyword argument:
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>>> cubic_interp = interp1d(measured_time, measures, kind=’cubic’)
>>> cubic_results = cubic_interp(computed_time)

The results are now gathered on a Matplotlib figure generated by the script scipy-interpolation.py.

scipy.interpolate.interp2d is similar to interp1d, but for 2-D arrays. Note that for the interp family,
the computed time must stay within the measured time range. See the summary exercice on ‘Maximum wind speed
prediction at the Sprogø station‘_ for a more advance spline interpolation example.

7.10 Optimization and fit: scipy.optimize

Optimization is the problem of finding a numerical solution to a minimization or equality.

The scipy.optimize module provides useful algorithms for function minimization (scalar or multi-dimensional),
curve fitting and root finding.

Example: Minimizing a scalar function using different algorithms

Let’s define the following function:

>>> def f(x):
... return x**2 + 10*np.sin(x)
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and plot it:

>>> x = np.arange(-10,10,0.1)
>>> plt.plot(x, f(x))
>>> plt.show()

This function has a global minimum around -1.3 and a local minimum around 3.8.

7.10.1 Local (convex) optimization

The general and efficient way to find a minimum for this function is to conduct a gradient descent starting from a given
initial point. The BFGS algorithm is a good way of doing this:

>>> optimize.fmin_bfgs(f, 0)
Optimization terminated successfully.

Current function value: -7.945823
Iterations: 5
Function evaluations: 24
Gradient evaluations: 8

array([-1.30644003])

This resolution takes 4.11ms on our computer.

100 Chapter 7. Scipy : high-level scientific computing



Python Scientific lecture notes, Release 2010

The problem with this approach is that, if the function has local minima (is not convex), the algorithm may find these
local minima instead of the global minimum depending on the initial point. If we don’t know the neighborhood of the
global minima to choose the initial point, we need to resort to costlier global opimtization.

7.10.2 Global optimization

To find the global minimum, the simplest algorithm is the brute force algorithm, in which the function is evaluated on
each point of a given grid:

>>> from scipy import optimize
>>> grid = (-10, 10, 0.1)
>>> optimize.brute(f, (grid,))
array([-1.30641113])

This approach take 20 ms on our computer.

This simple alorithm becomes very slow as the size of the grid grows, so you should use optimize.brent instead
for scalar functions:

>>> optimize.brent(f)
-1.3064400120612139

To find the local minimum, let’s add some constraints on the variable using optimize.fminbound:

>>> # search the minimum only between 0 and 10
>>> optimize.fminbound(f, 0, 10)
array([ 3.83746712])

You can find algorithms with the same functionalities for multi-dimensional problems in scipy.optimize.

See the summary exercise on Non linear least squares curve fitting: application to point extraction in topographical
lidar data for a more advanced example.

7.11 Image processing: scipy.ndimage

The submodule dedicated to image processing in scipy is scipy.ndimage.

>>> from scipy import ndimage

Image processing routines may be sorted according to the category of processing they perform.

7.11.1 Geometrical transformations on images

Changing orientation, resolution, ..

>>> import scipy
>>> lena = scipy.lena()
>>> shifted_lena = ndimage.shift(lena, (50, 50))
>>> shifted_lena2 = ndimage.shift(lena, (50, 50), mode=’nearest’)
>>> rotated_lena = ndimage.rotate(lena, 30)
>>> cropped_lena = lena[50:-50, 50:-50]
>>> zoomed_lena = ndimage.zoom(lena, 2)
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>>> zoomed_lena.shape
(1024, 1024)

In [35]: subplot(151)
Out[35]: <matplotlib.axes.AxesSubplot object at 0x925f46c>

In [36]: imshow(shifted_lena, cmap=cm.gray)
Out[36]: <matplotlib.image.AxesImage object at 0x9593f6c>

In [37]: axis(’off’)
Out[37]: (-0.5, 511.5, 511.5, -0.5)

In [39]: # etc.

7.11.2 Image filtering

>>> lena = scipy.lena()
>>> import numpy as np
>>> noisy_lena = np.copy(lena)
>>> noisy_lena += lena.std()*0.5*np.random.standard_normal(lena.shape)
>>> blurred_lena = ndimage.gaussian_filter(noisy_lena, sigma=3)
>>> median_lena = ndimage.median_filter(blurred_lena, size=5)
>>> import scipy.signal
>>> wiener_lena = scipy.signal.wiener(blurred_lena, (5,5))

And many other filters in scipy.ndimage.filters and scipy.signal can be applied to images

Exercise

Compare histograms for the different filtered images.
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7.11.3 Mathematical morphology

Mathematical morphology is a mathematical theory that stems from set theory. It characterizes and transforms geo-
metrical structures. Binary (black and white) images, in particular, can be transformed using this theory: the sets to be
transformed are the sets of neighboring non-zero-valued pixels. The theory was also extended to gray-valued images.

Elementary mathematical-morphology operations use a structuring element in order to modify other geometrical struc-
tures.

Let us first generate a structuring element

>>> el = ndimage.generate_binary_structure(2, 1)
>>> el
array([[False, True, False],

[ True, True, True],
[False, True, False]], dtype=bool)

>>> el.astype(np.int)
array([[0, 1, 0],

[1, 1, 1],
[0, 1, 0]])

• Erosion

>>> a = np.zeros((7,7), dtype=np.int)
>>> a[1:6, 2:5] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.binary_erosion(a).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> #Erosion removes objects smaller than the structure
>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
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[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

• Dilation

>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> a
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])

>>> ndimage.binary_dilation(a).astype(a.dtype)
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 1., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])

• Opening

>>> a = np.zeros((5,5), dtype=np.int)
>>> a[1:4, 1:4] = 1; a[4, 4] = 1
>>> a
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 1]])

>>> # Opening removes small objects
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(np.int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> # Opening can also smooth corners
>>> ndimage.binary_opening(a).astype(np.int)
array([[0, 0, 0, 0, 0],

[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0]])

• Closing: ndimage.binary_closing

Exercise

Check that opening amounts to eroding, then dilating.
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An opening operation removes small structures, while a closing operation fills small holes. Such operation can there-
fore be used to “clean” an image.

>>> a = np.zeros((50, 50))
>>> a[10:-10, 10:-10] = 1
>>> a += 0.25*np.random.standard_normal(a.shape)
>>> mask = a>=0.5
>>> opened_mask = ndimage.binary_opening(mask)
>>> closed_mask = ndimage.binary_closing(opened_mask)

Exercise

Check that the area of the reconstructed square is smaller than the area of the initial square. (The opposite would
occur if the closing step was performed before the opening).

For gray-valued images, eroding (resp. dilating) amounts to replacing a pixel by the minimal (resp. maximal) value
among pixels covered by the structuring element centered on the pixel of interest.

>>> a = np.zeros((7,7), dtype=np.int)
>>> a[1:6, 1:6] = 3
>>> a[4,4] = 2; a[2,3] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 3, 3, 3, 3, 3, 0],
[0, 3, 3, 1, 3, 3, 0],
[0, 3, 3, 3, 3, 3, 0],
[0, 3, 3, 3, 2, 3, 0],
[0, 3, 3, 3, 3, 3, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 3, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

7.11.4 Measurements on images

Let us first generate a nice synthetic binary image.
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>>> x, y = np.indices((100, 100))
>>> sig = np.sin(2*np.pi*x/50.)*np.sin(2*np.pi*y/50.)*(1+x*y/50.**2)**2
>>> mask = sig > 1

Now we look for various information about the objects in the image:

>>> labels, nb = ndimage.label(mask)
>>> nb
8
>>> areas = ndimage.sum(mask, labels, xrange(1, labels.max()+1))
>>> areas
[190.0, 45.0, 424.0, 278.0, 459.0, 190.0, 549.0, 424.0]
>>> maxima = ndimage.maximum(sig, labels, xrange(1, labels.max()+1))
>>> maxima
[1.8023823799830032, 1.1352760475048373, 5.5195407887291426,
2.4961181804217221, 6.7167361922608864, 1.8023823799830032,
16.765472169131161, 5.5195407887291426]
>>> ndimage.find_objects(labels==4)
[(slice(30, 48, None), slice(30, 48, None))]
>>> sl = ndimage.find_objects(labels==4)
>>> imshow(sig[sl[0]])

See the summary exercise on Image processing application: counting bubbles and unmolten grains for a more ad-
vanced example.

7.12 Summary exercices on scientific computing

The summary exercices use mainly Numpy, Scipy and Matplotlib. They first aim at providing real life examples
on scientific computing with Python. Once the groundwork is introduced, the interested user is invited to try some
exercices.

7.12.1 Maximum wind speed prediction at the Sprogø station

The exercice goal is to predict the maximum wind speed occuring every 50 years even if no measure exists for such a
period. The available data are only measured over 21 years at the Sprogø meteorological station located in Denmark.
First, the statistical steps will be given and then illustrated with functions from the scipy.interpolate module. At the
end the interested readers are invited to compute results from raw data and in a slightly different approach.
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Statistical approach

The annual maxima are supposed to fit a normal probability density function. However such function is not going to be
estimated because it gives a probability from a wind speed maxima. Finding the maximum wind speed occuring every
50 years requires the opposite approach, the result needs to be found from a defined probabilty. That is the quantile
function role and the exercice goal will be to find it. In the current model, it is supposed that the maximum wind speed
occuring every 50 years is defined as the upper 2% quantile.

By definition, the quantile function is the inverse of the cumulative distribution function. The latter describes the
probability distribution of an annual maxima. In the exercice, the cumulative probabilty p_i for a given year i is
defined as p_i = i/(N+1) with N = 21, the number of measured years. Thus it will be possible to calculate the
cumulative probability of every measured wind speed maxima. From those experimental points, the scipy.interpolate
module will be very useful for fitting the quantile function. Finally the 50 years maxima is going to be evaluated from
the cumulative probability of the 2% quantile.

Computing the cumulative probabilites

The annual wind speeds maxima have already been computed and saved in the numpy format in the file max-
speeds.npy, thus they will be loaded by using numpy:

>>> import numpy as np
>>> max_speeds = np.load(’data/max-speeds.npy’)
>>> years_nb = max_speeds.shape[0]

Following the cumulative probability definition p_i from the previous section, the corresponding values will be:

>>> cprob = (np.arange(years_nb, dtype=np.float32) + 1)/(years_nb + 1)

and they are assumed to fit the given wind speeds:

>>> sorted_max_speeds = np.sort(max_speeds)

Prediction with UnivariateSpline

In this section the quantile function will be estimated by using the UnivariateSpline class which can represent a
spline from points. The default behavior is to build a spline of degree 3 and points can have different weights according
to their reliability. Variantes are InterpolatedUnivariateSpline and LSQUnivariateSpline on which
errors checking is going to change. In case a 2D spline is wanted, the BivariateSpline class family is provided.
All thoses classes for 1D and 2D splines use the FITPACK Fortran subroutines, that’s why a lower library access is
available through the splrep and splev functions for respectively representing and evaluating a spline. Moreover
interpolation functions without the use of FITPACK parameters are also provided for simpler use (see interp1d,
interp2d, barycentric_interpolate and so on).

For the Sprogø maxima wind speeds, the UnivariateSpline will be used because a spline of degree 3 seems to
correctly fit the data:

>>> from scipy.interpolate import UnivariateSpline
>>> quantile_func = UnivariateSpline(cprob, sorted_max_speeds)

The quantile function is now going to be evaluated from the full range of probabilties:

>>> nprob = np.linspace(0, 1, 1e2)
>>> fitted_max_speeds = quantile_func(nprob)
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In the current model, the maximum wind speed occuring every 50 years V50is defined as the upper 2% quantile. As a
result, the cumulative probability value will be:

>>> fifty_prob = 1. - 0.02

So the storm wind speed occuring every 50 years can be guessed by:

>>> fifty_wind = quantile_func(fifty_prob)
>>> fifty_wind
array([ 32.97989825])

The results are now gathered on a Matplotlib figure.

All those steps have been gathered in the script cumulative-wind-speed-prediction.py.

Exercice with the Gumbell distribution

The interested readers are now invited to make an exercice by using the wind speeds measured over 21 years. The
measurement period is around 90 minutes (the original period was around 10 minutes but the file size has been reduced
for making the exercice setup easier). The data are stored in numpy format inside the file sprog-windspeeds.npy.

• The first step will be to find the annual maxima by using numpy and plot them as a matplotlib bar figure.
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• The second step will be to use the Gumbell distribution on cumulative probabilities p_i defined as -log(
-log(p_i) ) for fitting a linear quantile function (remember that you can define the degree of the
UnivariateSpline). Plotting the annual maxima versus the Gumbell distribution should give you the
following figure.
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• The last step will be to find 34.23 m/s for the maximum wind speed occuring every 50 years.

Once done, you may compare your code with a solution example available in the script gumbell-wind-speed-
prediction.py.

7.12.2 Non linear least squares curve fitting: application to point extraction in to-
pographical lidar data

The goal of this exercise is to fit a model to some data. The data used in this tutorial are lidar data and are described
in details in the following introductory paragraph. If you’re impatient and want to practise now, please skip it ang go
directly to Loading and visualization.

Introduction

Lidars systems are optical rangefinders that analyze property of scattered light to measure distances. Most of them
emit a short light impulsion towards a target and record the reflected signal. This signal is then processed to extract
the distance between the lidar sytem and the target.

Topographical lidar systems are such systems embedded in airborne platforms. They measure distances between the
platform and the Earth, so as to deliver information on the Earth’s topography (see [Mallet09] for more details).

In this tutorial, the goal is to analyze the waveform recorded by the lidar system 1. Such a signal contains peaks whose

1 The data used for this tutorial are part of the demonstration data available for the FullAnalyze software and were kindly provided by the GIS
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center and amplitude permit to compute the position and some characteristics of the hit target. When the footprint of
the laser beam is around 1m on the Earth surface, the beam can hit multiple targets during the two-way propagation
(for example the ground and the top of a tree or building). The sum of the contributions of each target hit by the laser
beam then produces a complex signal with multiple peaks, each one containing information about one target.

One state of the art method to extract information from these data is to decompose them in a sum of Gaussian functions
where each function represents the contribution of a target hit by the laser beam.

Therefore, we use the scipy.optimize module to fit a waveform to one or a sum of Gaussian functions.

Loading and visualization

Load the first waveform using:

>>> import numpy as np
>>> waveform_1 = np.load(’data/waveform_1.npy’)

and visualize it:

>>> import matplotlib.pyplot as plt
>>> t = np.arange(len(waveform_1))
>>> plt.plot(t, waveform_1)
>>> plt.show()

DRAIX.
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As you can notice, this waveform is a 80-bin-length signal with a single peak.

Fitting a waveform with a simple Gaussian model

The signal is very simple and can be modelled as a single Gaussian function and an offset corresponding to the
background noise. To fit the signal with the function, we must:

• define the model

• propose an initial solution

• call scipy.optimize.leastsq

Model

A gaussian function defined by

B +A exp

{
−
(
t− µ
σ

)2
}

can be defined in python by:

>>> def model(t, coeffs):
... return coeffs[0] + coeffs[1] * np.exp( - ((t-coeffs[2])/coeffs[3])**2 )

where

• coeffs[0] is B (noise)

• coeffs[1] is A (amplitude)

• coeffs[2] is µ (center)

• coeffs[3] is σ (width)

Initial solution

An approximative initial solution that we can find from looking at the graph is for instance:

>>> x0 = np.array([3, 30, 15, 1], dtype=float)

Fit

scipy.optimize.leastsq minimizes the sum of squares of the function given as an argument. Basically, the
function to minimize is the residuals (the difference between the data and the model):

>>> def residuals(coeffs, y, t):
... return y - model(t, coeffs)

So let’s get our solution by calling scipy.optimize.leastsq with the following arguments:

• the function to minimize
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• an initial solution

• the additional arguments to pass to the function

>>> from scipy.optimize import leastsq
>>> x, flag = leastsq(residuals, x0, args=(waveform_1, t))
>>> print x
[ 2.70363341 27.82020742 15.47924562 3.05636228]

And visualize the solution:

>>> plt.plot(t, waveform_1, t, model(t, x))
>>> plt.legend([’waveform’, ’model’])
>>> plt.show()

Remark: from scipy v0.8 and above, you should rather use scipy.optimize.curve_fit which takes the model
and the data as arguments, so you don’t need to define the residuals any more.

Going further

• Try with a more complex waveform (for instance data/waveform_2.npy) that contains three significant
peaks. You must adapt the model which is now a sum of Gaussian functions instead of only one Gaussian peak.

• In some cases, writing an explicit function to compute the Jacobian is faster than letting leastsq estimate it
numerically. Create a function to compute the Jacobian of the residuals and use it as an input for leastsq.
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• When we want to detect very small peaks in the signal, or when the initial guess is too far from a good solution,
the result given by the algorithm is often not satisfying. Adding constraints to the parameters of the model
enables to overcome such limitations. An example of a priori knowledge we can add is the sign of our variables
(which are all positive).

With the following initial solution:

>>> x0 = np.array([3, 50, 20, 1], dtype=float)

compare the result of scipy.optimize.leastsq and what you can get with
scipy.optimize.fmin_slsqp when adding boundary constraints.

7.12.3 Image processing application: counting bubbles and unmolten grains

Statement of the problem

1. Open the image file MV_HFV_012.jpg and display it. Browse through the keyword arguments in the docstring
of imshow to display the image with the “right” orientation (origin in the bottom left corner, and not the upper left
corner as for standard arrays).

This Scanning Element Microscopy image shows a glass sample (light gray matrix) with some bubbles (on black) and
unmolten sand grains (dark gray). We wish to determine the fraction of the sample covered by these three phases, and
to estimate the typical size of sand grains and bubbles, their sizes, etc.

1. Crop the image to remove the lower panel with measure information.

3. Slightly filter the image with a median filter in order to refine its histogram. Check how the histogram changes.
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4. Using the histogram of the filtered image, determine thresholds that allow to define masks for sand pixels, glass
pixels and bubble pixels. Other option (homework): write a function that determines automatically the thresholds from
the minima of the histogram.

5. Display an image in which the three phases are colored with three different colors.

1. Use mathematical morphology to clean the different phases.

7. Attribute labels to all bubbles and sand grains, and remove from the sand mask grains that are smaller than 10
pixels. To do so, use ndimage.sum or np.bincount to compute the grain sizes.

1. Compute the mean size of bubbles.

Proposed solution

1. Open the image file MV_HFV_012.jpg and display it. Browse through the keyword arguments in the docstring
of imshow to display the image with the “right” orientation (origin in the bottom left corner, and not the upper
left corner as for standard arrays).

>>> dat = imread(’MV_HFV_012.jpg’)

2. Crop the image to remove the lower panel with measure information.

>>> dat = dat[60:]

3. Slightly filter the image with a median filter in order to refine its histogram. Check how the histogram changes.

>>> filtdat = ndimage.median_filter(dat, size=(7,7))
>>> hi_dat = np.histogram(dat, bins=np.arange(256))
>>> hi_filtdat = np.histogram(filtdat, bins=np.arange(256))
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1. Using the histogram of the filtered image, determine thresholds that allow to define masks for sand pixels,
glass pixels and bubble pixels. Other option (homework): write a function that determines automatically the
thresholds from the minima of the histogram.

>>> void = filtdat <= 50
>>> sand = np.logical_and(filtdat>50, filtdat<=114)
>>> glass = filtdat > 114

2. Display an image in which the three phases are colored with three different colors.

>>> phases = void.astype(np.int) + 2*glass.astype(np.int) +\
3*sand.astype(np.int)
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1. Use mathematical morphology to clean the different phases.

>>> sand_op = ndimage.binary_opening(sand, iterations=2)

2. Attribute labels to all bubbles and sand grains, and remove from the sand mask grains that are smaller than 10
pixels. To do so, use ndimage.sum or np.bincount to compute the grain sizes.

>>> sand_labels, sand_nb = ndimage.label(sand_op)
>>> sand_areas = np.array(ndimage.sum(sand_op, sand_labels,\
... np.arange(sand_labels.max()+1)))
>>> mask = sand_areas>100
>>> remove_small_sand = mask[sand_labels.ravel()].reshape(sand_labels.shape)
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1. Compute the mean size of bubbles.

>>> bubbles_labels, bubbles_nb = ndimage.label(void)
>>> bubbles_areas = np.bincount(bubbles_labels.ravel())[1:]
>>> mean_bubble_size = bubbles_areas.mean()
>>> median_bubble_size = np.median(bubbles_areas)
>>> mean_bubble_size, median_bubble_size
(1699.875, 65.0)
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Sympy : Symbolic Mathematics in
Python

author Fabian Pedregosa

8.1 Introduction

SymPy is a Python library for symbolic mathematics. It aims become a full featured computer algebra system thatn can
compete directly with commercial alternatives (Mathematica, Maple) while keeping the code as simple as possible in
order to be comprehensible and easily extensible. SymPy is written entirely in Python and does not require any external
libraries.

8.2 First Steps with SymPy

8.2.1 Using SymPy as a calculator

Sympy has three built-in numeric types: Real, Rational and Integer.

The Rational class represents a rational number as a pair of two Integers: the numerator and the denominator, so
Rational(1,2) represents 1/2, Rational(5,2) 5/2 and so on.

>>> from sympy import *
>>> a = Rational(1,2)

>>> a
1/2

>>> a*2
1

>>> Rational(2)**50/Rational(10)**50
1/88817841970012523233890533447265625
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SymPy uses mpmath in the background, which makes it possible to perform computations using arbitrary - precission
arithmetic. That way, some special constants, like e, pi, oo (Infinity), that are treated as symbols and have arbitrary
precission:

>>> pi**2
pi**2

>>> pi.evalf()
3.14159265358979

>>> (pi+exp(1)).evalf()
5.85987448204884

as you see, evalf evaluates the expression to a floating-point number

There is also a class representing mathematical infinity, called oo:

>>> oo > 99999
True
>>> oo + 1
oo

8.2.2 Symbols

In contrast to other Computer Algebra Systems, in SymPy you have to declare symbolic variables explicitly:

>>> from sympy import *
>>> x = Symbol(’x’)
>>> y = Symbol(’y’)

Then you can play with them:

>>> x+y+x-y
2*x

>>> (x+y)**2
(x + y)**2

>>> ((x+y)**2).expand()
2*x*y + x**2 + y**2

And substitute them for other symbols or numbers using subs(old, new):

>>> ((x+y)**2).subs(x, 1)
(1 + y)**2

>>> ((x+y)**2).subs(x, y)
4*y**2

8.2.3 Exercises

1. Calculate
√
2 with 100 decimals.

2. Calculate π + 1 with 100 decimals.
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3. Calculate 1/2 + 1/3 in rational arithmetic (without

converting to floating point numbers).

8.3 Algebra

One of the most cumbersome algebraic operations are partial fraction decomposition. For partial fraction decomposi-
tion, use apart(expr, x):

In [1]: 1/( (x+2)*(x+1) )
Out[1]:

1
---------------
(2 + x)*(1 + x)

In [2]: apart(1/( (x+2)*(x+1) ), x)
Out[2]:

1 1
----- - -----
1 + x 2 + x

In [3]: (x+1)/(x-1)
Out[3]:
-(1 + x)
--------
1 - x

In [4]: apart((x+1)/(x-1), x)
Out[4]:

2
1 - -----

1 - x

To combine things back together, use together(expr, x):

In [7]: together(1/x + 1/y + 1/z)
Out[7]:
x*y + x*z + y*z
---------------

x*y*z

In [8]: together(apart((x+1)/(x-1), x), x)
Out[8]:
-1 - x
------
1 - x

In [9]: together(apart(1/( (x+2)*(x+1) ), x), x)
Out[9]:

1
---------------
(2 + x)*(1 + x)
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8.4 Calculus

8.4.1 Limits

Limits are easy to use in sympy, they follow the syntax limit(function, variable, point), so to compute the limit of f(x)
as x -> 0, you would issue limit(f, x, 0):

>>> from sympy import *
>>> x=Symbol("x")
>>> limit(sin(x)/x, x, 0)
1

you can also calculate the limit at infinity:

>>> limit(x, x, oo)
oo

>>> limit(1/x, x, oo)
0

>>> limit(x**x, x, 0)
1

for some non-trivial examples on limits, you can read the test file test_demidovich.py

8.4.2 Differentiation

You can differentiate any SymPy expression using diff(func, var). Examples:

>>> from sympy import *
>>> x = Symbol(’x’)
>>> diff(sin(x), x)
cos(x)
>>> diff(sin(2*x), x)
2*cos(2*x)

>>> diff(tan(x), x)
1 + tan(x)**2

You can check, that it is correct by:

>>> limit((tan(x+y)-tan(x))/y, y, 0)
1 + tan(x)**2

Higher derivatives can be calculated using the diff(func, var, n) method:

>>> diff(sin(2*x), x, 1)
2*cos(2*x)

>>> diff(sin(2*x), x, 2)
-4*sin(2*x)

>>> diff(sin(2*x), x, 3)
-8*cos(2*x)
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8.4.3 Exercises

1. Derivate log(x) for x. 2.

8.4.4 Series expansion

Use .series(var, point, order):

>>> from sympy import *
>>> x = Symbol(’x’)
>>> cos(x).series(x, 0, 10)
1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**10)
>>> (1/cos(x)).series(x, 0, 10)
1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + 277*x**8/8064 + O(x**10)

Another simple example:

from sympy import Integral, Symbol, pprint

x = Symbol("x")
y = Symbol("y")

e = 1/(x + y)
s = e.series(x, 0, 5)

print(s)
pprint(s)

That should print the following after the execution:

1/y + x**2*y**(-3) + x**4*y**(-5) - x*y**(-2) - x**3*y**(-4) + O(x**5)
2 4 3

1 x x x x
- + -- + -- - -- - -- + O(x**5)
y 3 5 2 4

y y y y

8.4.5 Integration

SymPy has support for indefinite and definite integration of transcendental elementary and special functions via inte-
grate() facility, which uses powerful extended Risch-Norman algorithm and some heuristics and pattern matching:

>>> from sympy import *
>>> x, y = symbols(’xy’)

You can integrate elementary functions:

>>> integrate(6*x**5, x)
x**6
>>> integrate(sin(x), x)
-cos(x)
>>> integrate(log(x), x)
-x + x*log(x)
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>>> integrate(2*x + sinh(x), x)
cosh(x) + x**2

Also special functions are handled easily:

>>> integrate(exp(-x**2)*erf(x), x)
pi**(1/2)*erf(x)**2/4

It is possible to compute definite integral:

>>> integrate(x**3, (x, -1, 1))
0
>>> integrate(sin(x), (x, 0, pi/2))
1
>>> integrate(cos(x), (x, -pi/2, pi/2))
2

Also improper integrals are supported as well:

>>> integrate(exp(-x), (x, 0, oo))
1
>>> integrate(log(x), (x, 0, 1))
-1

8.4.6 Algebraic equations

SymPy is able to solve algebraic equations, in one and several variables.

In isympy:

In [7]: solve(x**4 - 1, x)
Out[7]: [i, 1, -1, -i]

In [8]: solve([x + 5*y - 2, -3*x + 6*y - 15], [x, y])
Out[8]: {y: 1, x: -3}

8.5 Linear Algebra

8.5.1 Matrices

Matrices are created as instances from the Matrix class:

>>> from sympy import Matrix
>>> Matrix([[1,0], [0,1]])
[1, 0]
[0, 1]

unline a numpy array, you can also put Symbols in it:
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>>> x = Symbol(’x’)
>>> y = Symbol(’y’)
>>> A = Matrix([[1,x], [y,1]])
>>> A
[1, x]
[y, 1]

>>> A**2
[1 + x*y, 2*x]
[ 2*y, 1 + x*y]

8.5.2 Differential Equations

SymPy is capable of solving (some) Ordinary Differential Equations. sympy.ode.dsolve works like this

In [4]: f(x).diff(x, x) + f(x)
Out[4]:

2
d

-----(f(x)) + f(x)
dx dx

In [5]: dsolve(f(x).diff(x, x) + f(x), f(x))
Out[5]: C1*sin(x) + C2*cos(x)

TODO: more on this, current status of the ODE solver, PDES ??

8.6 Printing

There are many ways how expressions can be printed.

Standard

This is what str(expression) returns and it looks like this:

>>> from sympy import Integral
>>> from sympy.abc import x
>>> print x**2
x**2
>>> print 1/x
1/x
>>> print Integral(x**2, x)
Integral(x**2, x)
>>>

Pretty printing

This is a nice ascii-art printing produced by a pprint function:

>>> from sympy import Integral, pprint
>>> from sympy.abc import x
>>> pprint(x**2) #doctest: +NORMALIZE_WHITESPACE
2

x
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>>> pprint(1/x)
1
-
x
>>> pprint(Integral(x**2, x))

/
|
| 2
| x dx
|

/

See also the wiki Pretty Printing for more examples of a nice unicode printing.

Tip: To make the pretty printing default in the python interpreter, use:

$ python
Python 2.5.2 (r252:60911, Jun 25 2008, 17:58:32)
[GCC 4.3.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from sympy import *
>>> import sys
>>> sys.displayhook = pprint
>>> var("x")
x
>>> x**3/3
3

x
--
3
>>> Integral(x**2, x) #doctest: +NORMALIZE_WHITESPACE

/
|
| 2
| x dx
|

/

Python printing

>>> from sympy.printing.python import python
>>> from sympy import Integral
>>> from sympy.abc import x
>>> print python(x**2)
x = Symbol(’x’)
e = x**2
>>> print python(1/x)
x = Symbol(’x’)
e = 1/x
>>> print python(Integral(x**2, x))
x = Symbol(’x’)
e = Integral(x**2, x)

LaTeX printing

>>> from sympy import Integral, latex
>>> from sympy.abc import x
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>>> latex(x**2)
x^{2}
>>> latex(x**2, mode=’inline’)
$x^{2}$
>>> latex(x**2, mode=’equation’)
\begin{equation}x^{2}\end{equation}
>>> latex(x**2, mode=’equation*’)
\begin{equation*}x^{2}\end{equation*}
>>> latex(1/x)
\frac{1}{x}
>>> latex(Integral(x**2, x))
\int x^{2}\,dx
>>>

MathML

>>> from sympy.printing.mathml import mathml
>>> from sympy import Integral, latex
>>> from sympy.abc import x
>>> print mathml(x**2)
<apply><power/><ci>x</ci><cn>2</cn></apply>
>>> print mathml(1/x)
<apply><power/><ci>x</ci><cn>-1</cn></apply>

Pyglet

>>> from sympy import Integral, preview
>>> from sympy.abc import x
>>> preview(Integral(x**2, x)) #doctest:+SKIP

And a pyglet window with the LaTeX rendered expression will popup:

pics/pngview1.png

8.6.1 Notes

isympy calls pprint automatically, so that’s why you see pretty printing by default.

Note that there is also a printing module available, sympy.printing. Other printing methods available trough this
module are:
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CHAPTER 9

3D plotting with Mayavi

author Gaël Varoquaux

9.1 A simple example

Warning: Start ipython -wthread

import numpy as np

x, y = np.mgrid[-10:10:100j, -10:10:100j]
r = np.sqrt(x**2 + y**2)
z = np.sin(r)/r

from enthought.mayavi import mlab
mlab.surf(z, warp_scale=’auto’)

mlab.outline()
mlab.axes()

np.mgrid[-10:10:100j, -10:10:100j] creates an x,y grid, going from -10 to 10, with 100 steps in each directions.
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9.2 3D plotting functions

9.2.1 Points

In [1]: import numpy as np

In [2]: from enthought.mayavi import mlab

In [3]: x, y, z, value = np.random.random((4, 40))

In [4]: mlab.points3d(x, y, z, value)
Out[4]: <enthought.mayavi.modules.glyph.Glyph object at 0xc3c795c>

9.2.2 Lines

In [5]: mlab.clf()

In [6]: t = np.linspace(0, 20, 200)

In [7]: mlab.plot3d(np.sin(t), np.cos(t), 0.1*t, t)
Out[7]: <enthought.mayavi.modules.surface.Surface object at 0xcc3e1dc>
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9.2.3 Elevation surface

In [8]: mlab.clf()

In [9]: x, y = np.mgrid[-10:10:100j, -10:10:100j]

In [10]: r = np.sqrt(x**2 + y**2)

In [11]: z = np.sin(r)/r

In [12]: mlab.surf(z, warp_scale=’auto’)
Out[12]: <enthought.mayavi.modules.surface.Surface object at 0xcdb98fc>
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9.2.4 Arbitrary regular mesh

In [13]: mlab.clf()

In [14]: phi, theta = np.mgrid[0:pi:11j, 0:2*pi:11j]

In [15]: x = sin(phi)*cos(theta)

In [16]: y = sin(phi)*sin(theta)

In [17]: z = cos(phi)

In [18]: mlab.mesh(x, y, z)

In [19]: mlab.mesh(x, y, z, representation=’wireframe’, color=(0, 0, 0))
Out[19]: <enthought.mayavi.modules.surface.Surface object at 0xce1017c>

Note: A surface is defined by points connected to form triangles or polygones. In mlab.func and mlab.mesh, the
connectivity is implicity given by the layout of the arrays. See also mlab.triangular_mesh.

Our data is often more than points and values: it needs some connectivity information

9.2.5 Volumetric data

In [20]: mlab.clf()

In [21]: x, y, z = np.mgrid[-5:5:64j, -5:5:64j, -5:5:64j]

In [22]: values = x*x*0.5 + y*y + z*z*2.0

In [23]: mlab.contour3d(values)
Out[24]: <enthought.mayavi.modules.iso_surface.IsoSurface object at 0xcfe392c>
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This function works with a regular orthogonal grid:

9.3 Figures and decorations

9.3.1 Figure management

Here is a list of functions useful to control the current figure

Get the current figure: mlab.gcf()
Clear the current figure: mlab.clf()
Set the current figure: mlab.figure(1, bgcolor=(1, 1, 1), fgcolor=(0.5, 0.5, 0.5)
Save figure to image file: mlab.savefig(‘foo.png’, size=(300, 300))
Change the view: mlab.view(azimuth=45, elevation=54, distance=1.)
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9.3.2 Changing plot properties

In general, many properties of the various objects on the figure can be changed. If these visualization are created via
mlab functions, the easiest way to change them is to use the keyword arguments of these functions, as described in the
docstrings.

Example docstring: mlab.mesh

Plots a surface using grid-spaced data supplied as 2D arrays.
Function signatures:

mesh(x, y, z, ...)

x, y, z are 2D arrays, all of the same shape, giving the positions of the vertices of the surface. The connectivity
between these points is implied by the connectivity on the arrays.
For simple structures (such as orthogonal grids) prefer the surf function, as it will create more efficient data
structures.
Keyword arguments:

color the color of the vtk object. Overides the colormap, if any, when specified. This is
specified as a triplet of float ranging from 0 to 1, eg (1, 1, 1) for white.

colormap type of colormap to use.
extent [xmin, xmax, ymin, ymax, zmin, zmax] Default is the x, y, z arrays extents. Use

this to change the extent of the object created.
figure Figure to populate.
line_width The with of the lines, if any used. Must be a float. Default: 2.0
mask boolean mask array to suppress some data points.
mask_points If supplied, only one out of ‘mask_points’ data point is displayed. This

option is usefull to reduce the number of points displayed on large datasets Must be
an integer or None.

mode the mode of the glyphs. Must be ‘2darrow’ or ‘2dcircle’ or ‘2dcross’ or
‘2ddash’ or ‘2ddiamond’ or ‘2dhooked_arrow’ or ‘2dsquare’ or ‘2dthick_arrow’
or ‘2dthick_cross’ or ‘2dtriangle’ or ‘2dvertex’ or ‘arrow’ or ‘cone’ or ‘cube’ or
‘cylinder’ or ‘point’ or ‘sphere’. Default: sphere

name the name of the vtk object created.
representation the representation type used for the surface. Must be ‘surface’ or ‘wire-

frame’ or ‘points’ or ‘mesh’ or ‘fancymesh’. Default: surface
resolution The resolution of the glyph created. For spheres, for instance, this is the

number of divisions along theta and phi. Must be an integer. Default: 8
scalars optional scalar data.
scale_factor scale factor of the glyphs used to represent the vertices, in fancy_mesh

mode. Must be a float. Default: 0.05
scale_mode the scaling mode for the glyphs (‘vector’, ‘scalar’, or ‘none’).
transparent make the opacity of the actor depend on the scalar.
tube_radius radius of the tubes used to represent the lines, in mesh mode. If None,

simple lines are used.
tube_sides number of sides of the tubes used to represent the lines. Must be an integer.

Default: 6
vmax vmax is used to scale the colormap If None, the max of the data will be used
vmin vmin is used to scale the colormap If None, the min of the data will be used

Example:

In [1]: import numpy as np
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In [2]: r, theta = np.mgrid[0:10, -np.pi:np.pi:10j]

In [3]: x = r*np.cos(theta)

In [4]: y = r*np.sin(theta)

In [5]: z = np.sin(r)/r

In [6]: from enthought.mayavi import mlab

In [7]: mlab.mesh(x, y, z, colormap=’gist_earth’, extent=[0, 1, 0, 1, 0, 1])
Out[7]: <enthought.mayavi.modules.surface.Surface object at 0xde6f08c>

In [8]: mlab.mesh(x, y, z, extent=[0, 1, 0, 1, 0, 1],
...: representation=’wireframe’, line_width=1, color=(0.5, 0.5, 0.5))

Out[8]: <enthought.mayavi.modules.surface.Surface object at 0xdd6a71c>

9.3.3 Decorations

Different items can be added to the figure to carry extra information, such as a colorbar or a title.

In [9]: mlab.colorbar(Out[7], orientation=’vertical’)
Out[9]: <tvtk_classes.scalar_bar_actor.ScalarBarActor object at 0xd897f8c>

In [10]: mlab.title(’polar mesh’)
Out[10]: <enthought.mayavi.modules.text.Text object at 0xd8ed38c>

In [11]: mlab.outline(Out[7])
Out[11]: <enthought.mayavi.modules.outline.Outline object at 0xdd21b6c>

In [12]: mlab.axes(Out[7])
Out[12]: <enthought.mayavi.modules.axes.Axes object at 0xd2e4bcc>
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Warning: extent: If we specified extents for a plotting object, mlab.outline’ and ‘mlab.axes don’t get them by
default.

9.4 Interaction

The quicket way to create beautiful visualization with Mayavi is probably to interactivly tweak the various settings.

Click on the ‘Mayavi’ button in the scene, and you can control properties of objects with dialogs.
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To find out what code can be used to program these changes, click on the red button as you modify those properties,
and it will generate the corresponding lines of code.
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