NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK

Faglig kontakt under eksamen:
Ola Hunderi, tlf. 93411 (mobil: 95143671)

Eksamen TFY 4240: Elektromagnetisk teori

Thursday December 142006
kl. 09.00-13.00

English

Allowed help: $\quad \mathrm{C}$.
Rottmann: Matematisk Formelsamling (alle språkutgaver)
Barnett \& Cronin: Mathematical Formulae
Øgrim: Størrelser og enheter i fysikken
Allowed calculator, empty memory, accordint to NTNU list See also formulae page 7-10.

Each subsection has the same wight
Problems by:

Ola Hunderi
Jon Andreas Støvneng

Problem 1

In this problem we will study the multipole expansion of the static scalar potential $\mathrm{V}(\mathrm{r})$. We assume known that at large distances the potential from a static dipole with dipole momentum \vec{p}, is given by:

$$
V(\vec{r})=\frac{\vec{p} \cdot \vec{r}}{4 \pi \varepsilon_{0} r^{3}}=\frac{\vec{p} \cdot \hat{r}}{4 \pi \varepsilon_{0} r^{2}}
$$

a) Four charges, one with charge q, one with charge $3 q$ and 2 with charge $-2 q$ are situated as shown in figure 1. All are at a distance a from the origin. Find a simple approximate expression for the potential, valid at points far from the origin. Express your answer in spherical coordinates.

Figure 1

Given: $\vec{p}=\int \vec{r}^{\prime} \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}$

Next, calculate the potential at points far from the origin for four charges (two dipoles) placed along the z - axis:
$+q$ is placed at $(0,0,-2 a)$
$-q$ is placed at $(0,0,-a)$
-q is placed at $i(0,0, a)$
$+q$ is placed at $(0,0,2 a)$
Express your answer in polar coordinates. a / r is small.
Hint: Expand the exact expression for the potential and look for terms that goes as $\frac{1}{r}, \frac{1}{r^{2}}, \frac{1}{r^{3}}$. Find in this way the monopole-, dipole- and quadrupole-contribution.

Or start with:

$$
V(\vec{r})=\frac{Q}{4 \pi \varepsilon_{0} r}+\frac{\vec{p} \cdot \vec{r}}{4 \pi \varepsilon_{0} r^{3}}+\frac{1}{4 \pi \varepsilon_{0} r^{3}} \int r^{\prime 2} \rho\left(\vec{r}^{\prime}\right)\left(\frac{3}{2} \cos ^{2} \theta^{\prime}-\frac{1}{2}\right) d \tau^{\prime}+\ldots \ldots
$$

c) Two line charges are lying in the $x y$-plane and parallel to the x-axis at a distance a from the axis. The left carries a charge $-\lambda$ per meter and has y coordinate -a , the right carries a line charge equal to $+\lambda$ per meter and has y coordinate +a . Calculate the potential far away from the linecharges. Assume that a / r is small so you can expand.

Hint: Show first that he potential at a distance r from a single line charge is given by:

$$
V(r)=-\frac{\lambda}{2 \pi \varepsilon_{0}} \ln (r)+\text { Const } .
$$

Problem 2

a) Find the integral form of Faradays law

$$
\oint \vec{E} d \vec{l}=-\frac{d}{d t} \int_{S} \vec{B} d \vec{A}
$$

and Gauss' law for the magnetic field

$$
\oint \vec{B} d \vec{A}=0
$$

starting from the corresponding differential forms. Assume that the surface S does not change with time
b) Find the general boundary conditions $\Delta E_{t}=0$ and $\Delta B_{n}=0$, ie. that the tangential component of the electric and normal component of the magnetic field are continuous everywhere at a boundary.

We will now look at standing electromagnetic waves

$$
\vec{E}(x, y, z, t)=\vec{E}(x, y, z) \cdot e^{-i \omega t} \quad ; \vec{B}(x, y, z, t)=\vec{B}(x, y, z) \cdot e^{-i \omega t}
$$

inside a rectangular cavity as seen in the figure. The walls are perfect conductors. The cavity has dimensions $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as seen in figure 2 .

Figure 2
c) The spatial part of $\vec{E}(x, y, z, t)$ is given by

$$
\begin{aligned}
\vec{E}(x, y, z)= & A_{x} \cos k_{x} x \cdot \sin k_{y} y \cdot \sin k_{z} z \cdot \hat{x}+ \\
& A_{y} \sin k_{x} x \cdot \cos k_{y} y \cdot \sin k_{z} z \cdot \hat{y}+ \\
& A_{z} \sin k_{x} x \cdot \sin k_{y} y \cdot \cos k_{z} z \cdot \hat{z}
\end{aligned}
$$

where A_{x}, A_{y} and A_{z} are unknown coefficients. Use the wave equation $\nabla^{2} \vec{E}=\mu_{0} \varepsilon_{0} \partial^{2} \vec{E} / \partial t^{2}$, and the boundary conditions to determine allowed values of the angular frequency ω.
d) Determine the frequencies $(\mathrm{f}=\omega / 2 \pi)$ of the three lowest modes in a microwave oven with metallic walls and dimensions $\mathrm{a}=25 \mathrm{~cm}, \mathrm{~b}=40 \mathrm{~cm}$ and $\mathrm{d}=30 \mathrm{~cm}$. What is $\vec{B}(x, y, z)$ for the mode with lowest frequency?

Problem 3

We shall study dipole radiation from an oscillating charge and current distribution with time variation given by $e^{i \omega t}$. The vector potential in the general case is given by

$$
\vec{A}(\vec{r}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}\right)}{r_{i P}} e^{i\left(\omega t-k r_{i p}\right)} d \tau^{\prime}
$$

See the figure3. In the equation is furthermore $r_{i P}=\left|r-r^{\prime}\right|=r$

Figure 3
a) Explain why we get terms of the form $e^{i\left(\omega t-k r_{i p}\right)}$ in the integrand. Explain further which condition we assume when we in the radiation zone to lowest order write the vector potential in the form:

$$
\vec{A}(\vec{r}, t)=\frac{\mu_{0}}{4 \pi} \frac{e^{i(\omega t-k r)}}{r} \int \vec{J}\left(\vec{r}^{\prime}\right) d \tau^{\prime}
$$

b) The vector potential in a) can be written as

$$
\vec{A}(\vec{r}, t)=i \omega \frac{\mu_{0}}{4 \pi} \vec{p}_{0} \frac{e^{i(\omega t-k r)}}{r}
$$

Show that this vector potential leads to a B-field given by:

$$
\vec{B}(\vec{r}, t)=-\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi c} \sin \theta \frac{e^{i(\omega t-k r)}}{r} \hat{\phi}=\frac{\mu_{0} \omega^{2}}{4 \pi c}\left(\hat{r} \times \vec{p}_{0}\right) \frac{e^{i(\omega t-k r)}}{r}
$$

c) We shall next look at Poyntings vector. Show first that Poyntings vector in the radiation zone can be written in the form:

$$
\vec{S}=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} E^{2} \hat{r}
$$

Explain that the factor $\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}$ has the dimension Ω^{-1} and calculate its value.
One can show that the E-and B-field in the radiation zone are related by

$$
\vec{E}=-c(\hat{r} \times \vec{B}) ; \vec{B}=\frac{1}{c}(\hat{r} \times \vec{E})
$$

You are not asked to show this. Given the information you now have, show that Poyntings vector in the radiation zone can be written in the form:

$$
\vec{S}=Y \cdot(\hat{r} \times \vec{A})^{2} \hat{r}
$$

Find Y.
Given: $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$
d) Assume now that we have a dipole of finite length, a dipolar antenna. See figure. Explain which of the assumptions in a) which are not fulfilled in this case. The vector potential for such an antenna is in general given by

$$
\vec{A}(\vec{r}, t)=\frac{\mu_{0}}{4 \pi} \frac{e^{i(\omega t-k r)}}{r} \int \vec{J}\left(\vec{r}^{\prime}\right) e^{i \vec{r}^{\prime} \cdot \hat{r}} d \tau^{\prime}
$$

Figure 4
Assume that the dipole is a long thin antenna (see figure 4) oriented along the zaxis and where the current is given by

$$
I(z)=I_{o} \cos k z \text { for } \frac{-\lambda}{4} \leq z \leq \frac{\lambda}{4} \text { and } 0 \text { otherwise. } \lambda=\frac{2 \pi}{k}
$$

Show that the vector potential of the antenna in the radiation zone is given by
$\vec{A}(\vec{r}, t)=\frac{\mu_{0}}{2 k \pi} I_{0} \frac{e^{i(\omega t-k r)}}{r} \frac{\cos \left[\frac{\pi}{2} \cos (\theta)\right]}{\sin ^{2} \theta} \hat{z}$
and calculate the angular variation of the radiated intensity $\frac{d P}{d \Omega}$.
Given: $\cos \alpha=\frac{e^{i \alpha}+e^{-i \alpha}}{2} ; \sin \alpha=\frac{e^{i \alpha}-e^{-i \alpha}}{2 i}$

