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This solution consists of 6 pages.

Problem 1. Potential theory

a) The formulas are given in the appendix:

E = −∇V − ∂tA and B = ∇×A.

We immediately observe that adding a constant to either potential will not change the
fields, as they depend on the potentials through derivatives. More generally, one may
perform a gauge transformation on the potentials, that is, one can change the potentials
as one wishes, as long as the fields remain unchanged. Consult Griffiths, Chapter 10.1.3,
for details.

b) Gauss’ law reads ∇ ·E = ρ/ε0. Inserting the expression for E and taking the gradient
of this equation yields

∇ · (−∇V − ∂tA) =
ρ

ε0
, or

∇2V = − ρ

ε0
− ∂t∇ ·A

Using the hint, adding a term on each side of the equation, we get

∇2V − 1
c2
∂2
t V = − ρ

ε0
− ∂t

(
∇ ·A +

1
c2
∂tV

)
,

which is exactly what we were asked to show.

c) Following the hint, we first derive the wave equation for A. Inserting the expressions
for E and B in terms of potentials into Ampère’s law, we get

∇× (∇×A) = µ0J + ε0µ0∂t(−∇V − ∂A).

Using the formula ∇× (∇×A) ≡ ∇(∇ ·A)−∇2A, we tidy up and get

∇2A− ε0µ0∂
2
tA = −µ0J +∇ (ε0µ0∂tV +∇ ·A) .
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Finally, we notice that the expression in the parenthesis are identical to 0 in the Lorentz
gauge, yielding the two following symmetrical wave equations for V and A:

∇2A− 1
c2
∂2
tA = −µ0J and

∇2V − 1
c2
∂2
t V = − ρ

ε0
.

Problem 2. The image method
a) The method of images consists of replacing the electrostatic problem we are trying

to solve with another so-called equivalent problem. The equivalent problem’s solution
should satisfy the same boundary conditions as the original electrostatic problem. Due
to the theorem of uniqueness and its corollary, this solution is thus the same solution
as the solution to our original problem.

As the metal plane is grounded, the potential has to be zero everywhere on the surface
of the metal plane:

V |z=−a = 0.

In addition, the normal derivative of the potential is discontinuous at the interface, due
to the discontinuity of D:

D⊥|z=−a = σf , or
ε0∂zV |z=−a = σf .

Here, σf is the free surface charge density.

b) This problem is solved in Griffiths, Chapter 3.2.1. After translating the coordinate
system, the solution reads:

V (r) =
q

4πε0

{[
x2 + y2 + z2

]−1/2 −
[
x2 + y2 + (z + 2a)2

]−1/2
}
.

Inserting z = −a, we easily see that the two terms cancel, and that V (z = −a) = 0.

c) This problem can seem tricky, but it is not so hard if you are systematic. We simply
need to add up the contribution from an infinite number of point charges. The “zeroth”
term stems from the original point charge at the origin. Then, the next term stems
from two “mirror charges;” one for each plane. But, each of these mirror charges need
a mirror charge for the opposite plane. . . and so on. Continuing this summation gives
us positive and negative charges at:

q at z = 4na, n = 0,±1,±2, . . .
−q at z = (4n+ 2)a, n = 0,±1,±2, . . .

The analytical expression for V is somewhat involved and it was not a requirement to
state this on the exam. It is simply found by summing up the contributions from all
the point charges.

d) This is done by taking the normal derivative of the potential at the interface and using
the discontinuity of the normal derivative of the field, ∂zV |z=−a. Griffiths does this for
the “simple” image problem in Chapter 3.2.1.
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Problem 3. TEM modes in coaxial waveguides

a) If the electric field near a perfect conductor has a component parallel to the surface,
it would immediately create an electric current in the same direction as the parallel
component of the field. This current would run until the field has been cancelled, i.e.
charges will rearrange in such a way that there are no parallel components on the electric
field. Hence, the paralallel component must be 0. The same argument goes for the inside
of the conductor.

b) Inside the conductor, there is no electric field, according to the previous problem. In-
serting E = 0 into Faraday’s law, we see that the time derivative of the magnetic field
must be 0 inside the conductor. If the magnetic field was 0 at t = −∞, it must be 0
now as well. Hence, it is reasonably to assume that the magnetic field inside a perfect
conductor is 0. (This can in fact be proven more rigorously.) As B⊥ is continuous
across an interface, and B = 0 inside the conductor, we must have that B⊥ = 0 at the
interface.

c)

d) These two problems are inexorably intertwined; hence, they will be solved together.

First, we notice that E depends on z and t only through an exponential function, and
that it does not depend on φ at all. This means that we can write ∂z → iβ, ∂t → −iω
and ∂φ = 0.

E only has a radial component. From the formula for the divergence in cylindrical
coordinates, we easily see that the divergence of E vanishes:

∇ ·E ∝ ∂r (rEr(r)) = 0.

Hence, the two Gauss’ laws are fulfilled.

Faraday’s law is a bit more involved, but easily handled using our results for the partial
derivatives. First of all, we notice that the right hand side of Faraday’s law is −∂tB =
iωB. Second, we notice that only the φ̂ component of ∇× E survives. This turns out
to be

∇×E = ∂z(E · r̂)φ̂ = iβEr(r)ei(βz−ωt).

Combining the left and the right hand side, we obtain

iβEr(r)ei(βz−ωt)φ̂ = iωB, or

B = φ̂
β

ω
Er(r)ei(βz−ωt).

Ampère’s law gives essentially the same result, except now, some additional constants
appear on the scene. Assuming that both Faraday’s and Ampères laws hold, the con-
stants must be equal, or more precisely,

β2

ω2
= εrε0µ0.
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This is the dispersion relation. The phase and group velocities are equal, as the wave
number is simply a constant times the frequency:

β =
√
εrε0µ0ω

The phase and group velocities are proportional to ε−1/2
r . This is a very simple dispersion

relation, very advantageous for signal propagation, and the group velocity is as high as
we could reasonably expect (same as a plane wave in the dielectric in question).

e) We solve this problem by first determining the time-averaged Poynting’s vector, and
then integrating it over the cross-section of the cable where we have fields present.
Recalling the complex-notation formula for the time-averaged Poynting’s vector, we
find that:

〈S〉 =
1

2µ0
E×B∗ = ẑ

√
εrε0
4µ0

(
aE0

r

)2

.

Now, we integrate the Poynting’s vector over the cable cross-section to obtain the total
transmitted power:∫ b

r=a
〈S〉 ·dA =

∫ b

r=a
2πr〈S〉 · ẑ dr = π

εrε0
µ0

a2E2
0

∫ b

r=a
r−1 dr.

The integral can now easily be found:∫ b

r=a
r−1 dr = ln r|br=a = ln

b

a
.

Finally, the total transmitted power through a cable cross-section is equal to

P = π
εrε0
µ0

a2E2
0 ln

b

a
.

The units can be checked using the information found in the formula appendix, where
the units of various constants are given.

[√
ε0/µ0a

2E2
0

]
=

√
C2/Nm2

N/A2
m2

(
J

Cm

)2

= J/s = W.

(Recall that A = C/s and J = Nm in the above calculation.) This is the unit of power,
which is correct.

Problem 4. EM waves in a plasma
a) Working in Fourier space (think of a plane wave ei(kr−ωt)), we know that ∇2 = −k2 and

∂2
t = −ω2. Inserting this and the expression for εr into the wave equation, we get

−k2 +
ω2 − ω2

p

c2
= 0

which can easily be manipulated to be on the same form as the expression given in the
exam problem.
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b) We find k using the dispersion relation found above:

k2 =
ω2 − ω2

p

c2
.

We see that ω < ωp ⇒ k2 < 0. A complex wave number gives an exponentially decaying
wave, that is, the wave does not propagate if ω < ωp ⇒ k2 < 0.

c) Using implicit derivation with respect to k, we see that

2ω
dω
dk

= 2c2k.

Using the fact that vg = dω
dk , we find that

vg(k) =
c2k

ω
=

c2k√
ω2
p + c2k2

.

Note that the group velocity must be 0 if ω < ωp, as waves no longer propagate in this
case. As k = 0 when ω = ωp, we see that the expression for vg(k) is consistent with the
dispersion relation.

d) This problem can be solved by matching boundary conditions at the interface between
the vacuum and the plasma. We consider a plane wave traveling along the x axis,
normally incident on a plasma filling the half-space x > 0. Because we have normal
incidence, E and B are both parallel to the interface, that is, they both lie in the yz
plane. Relevant boundary conditions (which should be derived if there is any doubt!)
are that E‖ and B‖ are both continuous, because we have no surface currents in the
plasma (this can be seen from the wave equation, which contains no J term).

First, we find the wave number in the plasma. This is given from the result in the first
part of the problem:

k =

√
ω2 − ω2

p

c
= ω

√
1− ω2

p/ω
2

c
=
√
εr
ω

c
.

Assume that we have an incident and a reflected plane wave in the half-space x < 0.
The field there is thus

E = x̂EIei(kx−ωt) + x̂ERei(−kx−ωt).

In the plasma, the field consists only of the transmitted wave:

E = x̂ET ei(kpx−ωt).

In these expressions, EI is the amplitude of the incident field at x = 0, and ER and ET
are the amplitudes of the reflected and transmitted fields at x = 0, respectively.

With BI , BR, and BT being the amplitudes of incident, reflected and transmitted
magnetic fields at x = 0, the boundary conditions read

EI + ER = ET and
BI −BR = BT .
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The sign “flip” in the second boundary condition comes from the reflection of the elec-
tromagnetic wave, which reflects the right hand system formed by k,E, and B.

By virtue of Faraday’s law, the electric and magnetic field components are coupled:

∂xEy = −∂tBz ⇒ ikEy = iωBz ⇒ Ey =
ω

k
Bz.

(Ey and Bz are the only components of the electric and magnetic fields in our chosen
coordinate system.) This and the dispersion relation combines into

EI − ER =
√
εrET ,

where we recall that εr = 1 in vacuum.

Dividing both of the boundary condition equations by EI and recalling that r = ER/EI
and t = ET /EI , we obtain two equations for the reflection and transmission amplitudes:

1 + r = t,

1− r =
√
εrt.

A linear system with 2 unknowns can be solved by hand. In this case, we get the
solution:

r =
1−√εr
1 +
√
εr
,

t =
2

1 +
√
εr
.

As
√
εr =

√
1− ω2

p/ω
2, we see that

√
εr is purely imaginary when ω < ωp. Because the

reflection coefficient is R = |r|2 = rr∗, we see that when this is the case,

R = rr∗ =
1−√εr
1 +
√
εr

1 +
√
εr

1−√εr
= 1.

This means that when the waves do not propagate inside the plasma, the reflection
coefficient is 1, i.e. all the energy is reflected at the plasma interface. We have a
consistent result!


