TFY4240

Problemset 5 Autumn 2014

Problem 1.

Consider an infinitesimal static magnetic dipole of magnetic dipole moment \boldsymbol{m}. In a coordinate system centered at the dipole, the vector potential associated with can in the Coulomb gauge be written

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r})=\frac{\mu_{0}}{4 \pi} \frac{\boldsymbol{m} \times \hat{\boldsymbol{r}}}{r^{2}} \tag{1}
\end{equation*}
$$

a) Use expression (1) to obtain an expression for the magnetic induction, $\boldsymbol{B}(\boldsymbol{r})$. Express your answer in coordinate free form.
b) Compare your answer from the previous subproblem with the expression for the electric field from a static electric dipole.

Problem 2.

An infinitely long wire carries a (time-independent) current I. The wire is bent so as to have a semi-circular detour, of radius R, around the origin O (see figure).
a) Derive an expression for the magnetic field (vector), \mathbf{H}, at the origin O of the coordinate system.
b) Determine the numeric value of this magnetic field given the current $I=1 \mathrm{~A}$ and radius $R=1 \mathrm{~cm}$.

Problem 3.

Examples 6.1 and 6.3 from Griffiths.

