TFY4240
Problemset 6 Autumn 2014

Institutt for fysikk

Problem 1.

Example 7.2, 7.4, 7.7, 7.9 and 7.13 from Griffiths.

Problem 2.

A closed square loop of wire of sides a lies on a table. Its lower section is initially placed a distance $s_{0} \ll a$ from an infinitely long straight wire, which carries a current I.
A coordinate system is defined so that the $\hat{\boldsymbol{z}}$-axis coincides with the infinite wire and the look is located in the $y z$-plane.

Figure 1: Schematics of the geometry
a) Write down an expression for the current density $\boldsymbol{J}(\boldsymbol{r})$ associated with the infinitely long wire. This expression should be valid for all spatial positions \boldsymbol{r}.
b) Use the expression for $\boldsymbol{J}(\boldsymbol{r})$ to obtain the magnetic induction $\boldsymbol{B}(\boldsymbol{r})$ around the long wire.
c) Assume now that someone pulls the square loop directly away from the wire with a (constant) speed $\boldsymbol{v}_{1}=v \hat{\boldsymbol{y}}$. What emf is generated? In what direction (clockwise or counterclockwise) does the induced current flow?
d) Make a plot of the induced emf vs. time t. Discuss in particular the small and large time limits.
e) What if the loop instead is pulled with the velocity $\boldsymbol{v}_{2}=v \hat{\boldsymbol{z}}$. What is then the emf?

