TFY4240

Problemset 9 Autumn 2014

Problem 1.

Let the scalar potential, $V(\mathbf{r}, t)$, and vector potential, $\mathbf{A}(\mathbf{r}, t)$, be given in some arbitrary gauge. Make a gauge transformation

$$V(\mathbf{r},t) \to V'(\mathbf{r},t) = V(\mathbf{r},t) - \partial_t \Lambda(\mathbf{r},t),$$
 (1a)

$$\mathbf{A}'(\mathbf{r},t) \rightarrow \mathbf{A}'(\mathbf{r},t) = \mathbf{A}(\mathbf{r},t) + \nabla \Lambda(\mathbf{r},t),$$
 (1b)

defined via the gauge function $\Lambda(\mathbf{r}, t)$, so that the resulting potentials $V'(\mathbf{r}, t)$ and $\mathbf{A}'(\mathbf{r}, t)$ are in the Lorentz gauge. Obtain the equation satisfied by $\Lambda(\mathbf{r}, t)$, and identify in particular the source terms for this equation?

Problem 2.

In the lectures, it was shown that the vector potential A(r, t) is given by the relation

$$\boldsymbol{A}(\boldsymbol{r},t) = \frac{\mu_0}{4\pi} \int d^3 r' \; \frac{\boldsymbol{J}(\boldsymbol{r}',t_r)}{R},\tag{2a}$$

where

$$t_r = t - \frac{R}{c},\tag{2b}$$

$$R = |\boldsymbol{r} - \boldsymbol{r}'|.$$
(2c)

Use this relation to obtain the expression for the magnetic induction $B = \nabla \times A$ and show that it can be written as:

$$\boldsymbol{B}(\boldsymbol{r},t) = \frac{\mu_0}{4\pi} \int d^3 r' \left[\frac{\boldsymbol{J}(\boldsymbol{r}',t_r)}{R^2} + \frac{\boldsymbol{\dot{J}}(\boldsymbol{r}',t_r)}{cR} \right] \times \hat{\boldsymbol{R}}.$$
(3)