TFY4240

Page 1 of 3 NTNU

Problemset 10 and 11 Autumn 2014

This exercise is kind of long so it will constitute both exercise 10 and 11. Hence, it will also be next weeks exercise.

Problem 1.

We consider a thin, straight, conducing wire of length ℓ that is oriented along the z-axis as shown in the figure above. The wire carries the time-varying current

$$I(t) = I_0 \exp\left(-i\omega t\right),\tag{1}$$

everywhere along its length ℓ . Here I_0 and ω are both positive constants. The system is a simple model for an antenna.

- a) Charge will only build up at the endpoints of the wire. Explain why this is so. Find an expression for the time-dependent charge, Q(t), building up at one endpoint.
- **b)** Use your expression for Q(t) to determine the dipole moment $\mathbf{p}(t)$ of the simple antenna.
- c) Argue why the current density can be written as

$$\mathbf{J}(\mathbf{r},t) = \hat{\mathbf{z}} I(t)\delta(x)\delta(y)\theta(\ell/2) - |z|),$$
(2)

where $\delta(\cdot)$ is the Dirac delta-function, $\theta(\cdot)$ is the (Heaviside) step-function, and $\hat{\mathbf{z}}$ is a unit vector in the positive z-direction.

TFY4240 Problemset 10 and 11 Autumn 2014

Page 2 of 3

We will now study the electromagnetic field radiated from the antenna. To this end, we will start by calculate the potentials. In the Lorentz-gauge the vector potential satisfies the equation

$$\nabla^2 \mathbf{A}(\mathbf{r},t) - \frac{1}{c^2} \partial_t^2 \mathbf{A}(\mathbf{r},t) = -\mu_0 \mathbf{J}(\mathbf{r},t), \qquad (3)$$

where $c = 1/\sqrt{\varepsilon_0 \mu_0}$ is the speed of light in vacuum. Here ε_0 and μ_0 are the electric permitivity and magnetic permeability of free space, respectively.

d) By using the Green's function for the wave-equation

$$g(\mathbf{r},t|\mathbf{r}',t') = -\frac{\delta\left(t-t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{4\pi|\mathbf{r}-\mathbf{r}'|},\tag{4}$$

show that a solution to Eq. (3) is

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int d^3 r' \, \frac{\mathbf{J}(\mathbf{r}',t_r)}{|\mathbf{r}-\mathbf{r}'|}.$$
(5)

What is the meaning of \mathbf{r} and $\mathbf{r'}$? Moreover, what is the expression for t_r , and what is the physical interpretation of this quantity?

e) Calculate the vector potential $\mathbf{A}(\mathbf{r},t)$ under the assumption that $r \gg \ell$ and show that it can be written as $(k = \omega/c)$

$$\mathbf{A}(\mathbf{r},t) \approx \hat{\mathbf{z}} \,\frac{\mu_0}{4\pi} \frac{2I_0}{\cos\theta} \sin\left(\frac{k\ell}{2}\cos\theta\right) \frac{\exp\left(ikr - i\omega t\right)}{kr}.$$
(6)

It will now be assumed that the wavelength $(\lambda = 2\pi/k)$ and distance to the observation point (r) are so that $kr \gg 1$.

- **f)** Derive an expression for the magnetic field $\mathbf{H}(\mathbf{r}, t)$ (under the condition $kr \gg 1$). [Answer: $\mathbf{H} \approx \frac{1}{\mu_0} i \mathbf{k} \times \mathbf{A}$.]
- g) Calculate the corresponding electric field $\mathbf{E}(\mathbf{r},t)$ (under the same assumption as in the previous sub-problem). [*Hint* : Use Amperes law].
- h) Obtain an expression for the time-averaged Poyntings vector, $\langle \mathbf{S} \rangle_t$ (= $\frac{1}{2}\mathbf{E} \times \mathbf{H}^*$), in terms of the known quantities of the problem.

The radiation pattern of the antenna is defined as

$$\frac{dP}{d\Omega} = \left| \left\langle \mathbf{S} \right\rangle_t \right| r^2, \tag{7}$$

where $P = \int d\Omega dP/d\Omega = \int \langle \mathbf{S} \rangle_t \cdot d\mathbf{A}$ is the total power radiated by the antenna.

TFY4240 Problemset 10 and 11 Autumn 2014

Page 3 of 3

i) Calculate $dP/d\Omega$ and show that

$$\frac{dP}{d\Omega} \propto \sin^2 \left(\frac{k\ell}{2}\cos\theta\right) \tan^2\theta.$$
(8)

- j) Assume that the antenna is small compared to the wavelength, *i.e.* $k\ell \ll 1$, and obtain the expression for $dP/d\Omega$ in this limit.
- **k)** Argue why your expression for $dP/d\Omega$ in the limit $k\ell \ll 1$ is reasonable. Make a sketch of the radiation pattern in this case. What is this pattern called?