TFY4240

Solution problemset 3 Autumn 2014

Problem 1.

a) We have a function $f(x)$ on the interval $[-1,1]$. There is possible to write it as a combination of Legendre polynomials as following

$$
f(x)=\sum_{\ell=0}^{\infty} A_{\ell} P_{\ell}(x) .
$$

Multiply by P_{m} on both sides and integrate from -1 to 1 . This gives

$$
\begin{equation*}
\int_{-1}^{1} d x f(x) P_{m}(x)=\int_{-1}^{1} d x \sum_{\ell=0}^{\infty} A_{\ell} P_{\ell}(x) P_{m}(x) . \tag{1}
\end{equation*}
$$

Using the orthogonality of the Legendre polynomials, i.e.

$$
\int_{-1}^{1} d x P_{m}(x) P_{n}(x)=\frac{2}{2 n+1} \delta_{m n},
$$

and interchanging the order of summation and integration in Eq. (1) leads to the relation

$$
\int_{-1}^{1} d x f(x) P_{m}(x)=A_{m} \frac{2}{2 m+1},
$$

which is readily solved for the coefficients A_{ℓ} to give (after renaming m to ℓ)

$$
\begin{equation*}
A_{\ell}=\frac{2 \ell+1}{2} \int_{-1}^{1} d x f(x) P_{\ell}(x) \tag{2}
\end{equation*}
$$

Equation (2) is the relation that we should show.
b)

$$
f(x)= \begin{cases}-1 & x<0 \\ +1 & x>0\end{cases}
$$

$f(x)$ is an odd function, hence only Legendre polynomials of odd order are needed, i.e.

$$
f(x)=\sum_{n=0}^{\infty} P_{2 n+1}(x)
$$

c) Do the integral in equation (2)

$$
\begin{aligned}
& A_{0}=\frac{2 \cdot 0+1}{2} \int_{-1}^{1} d x f(x) P_{0}(x) \\
& A_{0}=\frac{1}{2}\left(\int_{0}^{1} d x \cdot 1+\int_{-1}^{0} d x \cdot(-1)\right) \\
& A_{0}=\frac{1}{2}(1+(-1)) \\
& A_{0}=0
\end{aligned}
$$

We get the same result for all even n. For odd n, the integral from -1 to 0 is equal the integral from 0 to 1

$$
\begin{gathered}
A_{1}=\frac{2 \cdot 1+1}{2} \int_{-1}^{1} d x f(x) P_{1}(x) \\
A_{1}=\frac{3}{2}\left(2 \int_{0}^{1} d x \cdot x\right) \\
A_{1}=\frac{3}{2}\left(2 \frac{1}{2}\right) \\
A_{1}=\frac{3}{2} \\
A_{3}=\frac{2 \cdot 3+1}{2} \int_{-1}^{1} d x f(x) P_{3}(x) \\
A_{3}=\frac{7}{2}\left(2 \int_{0}^{1} d x \cdot \frac{1}{2}\left(5 x^{3}-3 x\right)\right) \\
A_{3}=\frac{7}{2}\left(2 \cdot \frac{1}{2}\left(\frac{5}{4}-\frac{3}{2}\right)\right) \\
A_{3}=-\frac{7}{8} \\
A_{5}=\frac{2 \cdot 5+1}{2} \int_{-1}^{1} d x f(x) P_{5}(x) \\
A_{5}=\frac{11}{2}\left(2 \int_{0}^{1} d x \cdot \frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)\right) \\
A_{5}=\frac{11}{2}\left(2 \cdot \frac{1}{2}\left(\frac{63}{6}-\frac{70}{4}+\frac{15}{2}\right)\right) \\
A_{5}=\frac{11}{16}
\end{gathered}
$$

Problem 2.

a) For the boundary condition $V(R, \theta)=V_{0} \cos ^{2} \theta$ on a sphere of radius R , the potential outside the sphere can be written in the form (since the charge distribution has a azimuthal symmetry)

$$
V(r, \theta)=\sum_{l}(R / r)^{l+1} A_{l} P_{l}(\cos \theta), \quad r \geq R
$$

with the coefficients A_{l} given by

$$
\begin{align*}
A_{l} & =\frac{2 l+1}{2} \int_{-1}^{1} d(\cos \theta) V(\theta) P_{l}(\cos \theta) \tag{3}\\
& =\frac{(2 l+1) V_{0}}{2} \int_{-1}^{1} d(x) x^{2} P_{l}(x)
\end{align*}
$$

with $x=\cos \theta$. To do this integral, we recognize that

$$
x^{2}=\frac{3 x^{2}-1}{3}+\frac{1}{3}=\frac{2}{3} P_{2}(x)+\frac{1}{3} P_{0}(x)
$$

Then we can use the orthogonality of the Legendre polynomials together with equation (3) to get

$$
\begin{gathered}
A_{0}=\frac{V_{0}}{2} \int_{-1}^{1} d x \frac{1}{3}\left[P_{0}(x)\right]^{2}=\frac{1}{3} V_{0} \\
A_{2}=\frac{5 V_{0}}{2} \int_{-1}^{1} d x \frac{2}{3}\left[P_{2}(x)\right]^{2}=\frac{2}{3} V_{0} \\
A_{l}=0, \quad l \neq 0,2
\end{gathered}
$$

Hence, we conclude that the scalar potential can be written as

$$
\begin{equation*}
V(r, \theta)=\frac{V_{0}}{3}\left[\frac{R}{r}+2\left(\frac{R}{r}\right)^{3} P_{2}(\cos \theta)\right], \tag{4}
\end{equation*}
$$

in the region outside the sphere, $r \geq R$.
b) The surface charge distribution on the sphere of the sphere is given by

$$
\sigma(\theta)=-\left.\epsilon_{0} \frac{\partial V}{\partial r}\right|_{r=R}
$$

which gives

$$
\sigma(\theta)=-\left.\frac{\epsilon_{0} V_{0}}{3}\left[\frac{R}{r^{2}}(-1) P_{0}(\cos \theta)+2\left(\frac{R^{3}}{r^{4}}\right)(-3) P_{2}(\cos \theta)\right]\right|_{r=R}
$$

or

$$
\sigma(\theta)=\frac{\epsilon_{0} V_{0}}{3 R}\left[P_{0}(\cos \theta)+6 P_{2}(\cos \theta)\right]
$$

c) To appear later....!

Problem 3.

a)

$$
\begin{equation*}
V(\boldsymbol{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{|\boldsymbol{r}-(R+h) \hat{\boldsymbol{z}}|}-\frac{1}{4 \pi \epsilon_{0}} \frac{q}{|\boldsymbol{r}-(R-h) \hat{\boldsymbol{z}}|} \tag{5}
\end{equation*}
$$

The method of images is a technique used to solve electrostatic problems (i.e. solving Laplace eq.). It consists of placing so-called image charges outside the domain of interest such that the boundary conditions (cont. of V and $\epsilon \partial_{n} V$) are satisfied, then the total potential in the domain of interest is the sum of the potential from the charge and image-charge since the solution of Laplace equation is unique.
b) The two terms in the potential in equation (5) corresponds to the potential from the charge q (first term) and image charge -q (second term). They are located at $(R \pm h) \hat{\boldsymbol{z}}$ so the discance from each one of them to an observation point \boldsymbol{r} (with $z>R$) is $\boldsymbol{r}-(R \pm h) \hat{\boldsymbol{z}}$. On the surface $z=R$ we have

$$
\begin{aligned}
&|\boldsymbol{r}-(R \pm h) \hat{\boldsymbol{z}}|=\left\lvert\, \begin{array}{l}
\boldsymbol{r}_{\|}+R \hat{\boldsymbol{z}}-(R \pm h) \hat{\boldsymbol{z}} \mid \\
\boldsymbol{r}_{\|} \pm h \hat{\boldsymbol{z}} \mid
\end{array}\right. \\
&
\end{aligned}
$$

($\boldsymbol{r}_{\|}$is a vector in the xy-plane) Since $\left|\boldsymbol{r}_{\|} \pm h \hat{\boldsymbol{z}}\right|$ is independent of sign it follows that $V(\boldsymbol{r}=0$ when \boldsymbol{r} is in the plane $z=R$.
c) The total potential for the system consist of two potentials of the form of equation (5) but with the chartes located at

$$
\boldsymbol{r}_{ \pm \boldsymbol{q}}=\left(R+h \pm \frac{d}{2}\right) \hat{z}
$$

Figure 1: Position of image charges
and image charges at

$$
\begin{aligned}
\boldsymbol{r}_{ \pm \boldsymbol{q}} & =\left(R-\left[h \mp \frac{d}{2}\right]\right) \hat{\boldsymbol{z}} \quad \text { note reversed sign } \\
& =\left(R-h \pm \frac{d}{2}\right) \hat{\boldsymbol{z}}
\end{aligned}
$$

Hence the total potential becomes

$$
V(\boldsymbol{r})=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{q}\right|}-\frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{-\bar{q}}\right|}+\frac{-1}{\left|\boldsymbol{r}-\boldsymbol{r}_{-q}\right|}-\frac{-1}{\left|\boldsymbol{r}-\boldsymbol{r}_{+\bar{q}}\right|}\right]
$$

Now doing an expansion around $z=(R \pm h)$

$$
\begin{aligned}
\frac{1}{\left|\boldsymbol{r}_{-} \boldsymbol{r}_{ \pm q}\right|} & =\frac{1}{|\underbrace{\boldsymbol{r}-(R+h) \hat{\boldsymbol{z}}_{\mp}}_{\boldsymbol{\rho}_{+}} \frac{\boldsymbol{d}}{2}|} \\
& =\frac{\left(\rho_{+}^{2} \mp 2 \boldsymbol{\rho}_{+} \frac{\boldsymbol{d}}{2}+\frac{d^{2}}{4}\right)^{1 / 2}}{1} \\
& =\frac{\rho_{+}\left[1 \mp \frac{\hat{\boldsymbol{\rho}}_{+} \cdot \boldsymbol{d}}{\rho_{+}}+\left(\frac{d}{2 \rho_{+}}\right)^{2}\right]^{1 / 2}}{} \\
& =\frac{1}{\rho_{+}}\left[1 \pm \frac{1}{2} \frac{\hat{\boldsymbol{\rho}}_{+} \cdot \boldsymbol{d}}{\rho_{+}}+\ldots\right] \\
& =\frac{1}{\rho_{+}} \pm \frac{1}{2} \frac{\hat{\boldsymbol{\rho}}_{+} \cdot \boldsymbol{d}}{\rho_{+}^{2}}+\ldots
\end{aligned}
$$

Similary one obtains

$$
\begin{aligned}
\frac{1}{\mid \boldsymbol{r}_{-} \boldsymbol{r}_{ \pm \bar{q} \mid}} & =\frac{1}{|\underbrace{\boldsymbol{r}-(R-h) \hat{\boldsymbol{z}}^{\prime}}_{\boldsymbol{\rho}_{-}} \pm \frac{\boldsymbol{d}}{2}|} \\
& =\frac{1}{\rho_{-}} \mp \frac{1}{2} \frac{\hat{\boldsymbol{\rho}}_{-} \cdot \boldsymbol{d}}{\rho_{-}^{2}}+\ldots
\end{aligned}
$$

Hence, to leading order

$$
\begin{aligned}
V(\boldsymbol{r}) & =\frac{q}{4 \pi \epsilon_{0}}\left[\frac{\hat{\boldsymbol{\rho}}_{+} \cdot \boldsymbol{d}}{\rho_{+}^{2}}-\frac{\hat{\boldsymbol{\rho}}_{-} \cdot \boldsymbol{d}}{\rho_{-}^{2}}\right] \\
& =\frac{1}{4 \pi \epsilon_{0}} \frac{\hat{\boldsymbol{\rho}}_{+} \cdot \boldsymbol{p}}{\rho_{+}^{2}}-\frac{1}{4 \pi \epsilon_{0}} \frac{\hat{\boldsymbol{\rho}}_{-} \cdot \boldsymbol{p}}{\rho_{-}^{2}}
\end{aligned}
$$

Hence the potential is the sum of an electric dipole and an oppositly directet image dipole.
d) Since the sphere in Figure 2 is grounded we choose the potential at the surface to be zero. We try to solve the problem by the method of images by placing an image charge q' on the z-axis at position z^{\prime}. The total potential outside the sphere becomes

$$
V(\boldsymbol{r})=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q}{|\boldsymbol{r}-(R+h) \hat{\boldsymbol{z}}|}+\frac{q^{\prime}}{\left|\boldsymbol{r}-z^{\prime} \hat{\boldsymbol{z}}\right|}\right]
$$

Now we have two unknown, q' and z'. To determine them, we choose the points $\boldsymbol{r}= \pm R \hat{\boldsymbol{z}}$ and impose the boundary condition on V
i] $V(\boldsymbol{r}=R \hat{\boldsymbol{z}})=0$

$$
\begin{gather*}
\frac{q}{|R-R-h|}+\frac{q^{\prime}}{\left|R-z^{\prime}\right|}=0,\left(z^{\prime}<R\right), h \neq 0 \\
q\left(R-z^{\prime}\right)+q^{\prime} h=0 \\
q R-q z^{\prime}+q^{\prime} h=0 \tag{6}
\end{gather*}
$$

ii] $V(\boldsymbol{r}=-R \hat{\boldsymbol{z}})=0$

Figure 2: A charge above a grounded sphere

$$
\begin{gather*}
\frac{q}{|-R-R-h|}+\frac{q^{\prime}}{\left|-R-z^{\prime}\right|}=0,\left(z^{\prime}<R\right), h \neq 0 \\
q\left(R+z^{\prime}\right)+q^{\prime}(2 R+h)=0, z^{\prime}>0 \\
q R+q z^{\prime}+(2 R+h) q^{\prime}=0 \tag{7}
\end{gather*}
$$

Adding equation (6) and equation (7) gives

$$
\begin{gathered}
2 R q+(h+2 R+h) q^{\prime}=0 \\
q^{\prime}=-\frac{R}{R+h} q
\end{gathered}
$$

From equation (6) it follows that

$$
z^{\prime}=R+\frac{q^{\prime}}{q} h
$$

$$
z^{\prime}=\frac{R(R+h)-R h}{R+h}=\frac{R^{2}}{R+h}
$$

e) Hence the total scalar potential becomes

$$
V(\boldsymbol{r})=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q}{|\boldsymbol{r}-(R+h) \hat{\boldsymbol{z}}|}+\frac{\frac{R}{R+h} q}{\left|\boldsymbol{r}-\frac{R^{2}}{R+h} \hat{\boldsymbol{z}}\right|}\right]
$$

When $R \gg h$ one has

$$
\begin{gathered}
\frac{R}{R+h}=\frac{R}{R(1+h / R} \simeq 1-\frac{h}{R}+\cdots \\
\frac{R^{2}}{R+h}=\frac{R^{2}}{R(1+h / R} \simeq R\left(1-\frac{h}{R}+\cdots\right)=R-h
\end{gathered}
$$

Hence, in the limit $R \gg h$ one gets to lowest order

$$
V(\boldsymbol{r}) \simeq \frac{1}{4 \pi \epsilon_{0}}\left[\frac{q}{|\boldsymbol{r}-(R+h) \hat{\boldsymbol{z}}|}-\frac{q}{|\boldsymbol{r}-(R-h) \hat{\boldsymbol{z}}|}\right]
$$

This is the potential for a charge q above a flat grounded plate. This is a reasonable result!
f) Let the image charges corresponding to $\pm q$ be denoted $q_{ \pm}$. These image charges are given by

$$
q_{ \pm}^{\prime}=\mp \frac{R}{R+h \pm \frac{d}{2}} q
$$

Since the image charge is depending on the distance from the center of the sphere it follows that

$$
q_{+}^{\prime}+q_{-}^{\prime} \neq 0
$$

Hence, there will be a monopole contribution to the potential coming from the image charges. Since this term will be dominating it is not possible to find an image dipole so that the potential on $r=R$ vanishes.

However, if \boldsymbol{d} is chosen to be parallel with the xy-plane, i.e.

$$
\boldsymbol{d}=d \hat{\boldsymbol{r}}_{\|}
$$

then the distances from the center of the sphere to $q_{ \pm}^{\prime}$ are the same so $q_{+}^{\prime}+q_{-}^{\prime}=0$. Therefore, the mono-pole term coming from the image charges vanishes, and the leading order term is an image dipole. The diploe moment of the image charges is

$$
p^{\prime}=\left|\boldsymbol{p}^{\prime}\right|=\left|q^{\prime}\right| d^{\prime}
$$

where d' is the distance given in Figure 3.

Figure 3: Dipole image

Let $\mathrm{R}+\mathrm{H}$ be the distance to, say, q. From geometry it follows

$$
\begin{aligned}
& \frac{d}{R+H}=\frac{d^{\prime}}{\frac{R^{2}}{R+H}} \\
& d^{\prime}=\frac{R^{2}}{(R+H)^{2}} d
\end{aligned}
$$

Now

$$
q^{\prime}=-\frac{R}{R+H} q
$$

so that (direction follows from Figure 3)

$$
\boldsymbol{p}^{\prime}=\frac{R^{3}}{(R+H)^{3}} \boldsymbol{p}
$$

However, we have assumed that $d / h \ll 1$ so that one my write

$$
\begin{aligned}
\boldsymbol{p}^{\prime} & =\frac{R^{3}}{\left[(R+h)^{2}+\left(\frac{d}{2}\right)^{2}\right]^{3 / 2}} \boldsymbol{p} \\
& =\frac{R^{3}}{(R+h)^{3}}\left[1+\left(\frac{d}{2(R+h)}\right)^{2}\right]^{-3 / 2} \boldsymbol{p} \\
& =\frac{R^{3}}{(R+h)^{3}} \boldsymbol{p}+O\left(d^{3} /(R / h)^{5}\right)
\end{aligned}
$$

Thus, one my safly conclude that

$$
\boldsymbol{p}^{\prime} \simeq \frac{R^{3}}{(R+h)^{3}} \boldsymbol{p}
$$

Alt: We could have made the approximation $R+H \simeq R+h$ from the very beginning. (To simplify the calcluation)

