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Problem 1.

a) We have a function f(x) on the interval [−1, 1]. There is possible to write it as a
combination of Legendre polynomials as following

f(x) =
∞∑
`=0

A`P`(x).

Multiply by Pm on both sides and integrate from -1 to 1. This gives∫ 1

−1
dxf(x)Pm(x) =

∫ 1

−1
dx

∞∑
`=0

A`P`(x)Pm(x). (1)

Using the orthogonality of the Legendre polynomials, i.e.∫ 1

−1
dxPm(x)Pn(x) =

2

2n+ 1
δmn,

and interchanging the order of summation and integration in Eq. (1) leads to the relation∫ 1

−1
dx f(x)Pm(x) = Am

2

2m+ 1
,

which is readily solved for the coefficients A` to give (after renaming m to `)

A` =
2`+ 1

2

∫ 1

−1
dx f(x)P`(x). (2)

Equation (2) is the relation that we should show.

b)

f(x) =

{
−1 x < 0
+1 x > 0

f(x) is an odd function, hence only Legendre polynomials of odd order are needed, i.e.

f(x) =
∞∑
n=0

P2n+1(x)

c) Do the integral in equation (2)

A0 = 2·0+1
2

∫ 1
−1 dxf(x)P0(x)

A0 = 1
2

(∫ 1
0 dx · 1 +

∫ 0
−1 dx · (−1)

)
A0 = 1

2 (1 + (−1))
A0 = 0
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We get the same result for all even n. For odd n, the integral from -1 to 0 is equal the
integral from 0 to 1

A1 = 2·1+1
2

∫ 1
−1 dxf(x)P1(x)

A1 = 3
2

(
2
∫ 1

0 dx · x
)

A1 = 3
2

(
21

2

)
A1 = 3

2

A3 = 2·3+1
2

∫ 1
−1 dxf(x)P3(x)

A3 = 7
2

(
2
∫ 1

0 dx ·
1
2(5x3 − 3x)

)
A3 = 7

2

(
2 · 1

2

(
5
4 −

3
2

))
A3 = −7

8

A5 = 2·5+1
2

∫ 1
−1 dxf(x)P5(x)

A5 = 11
2

(
2
∫ 1

0 dx ·
1
8(63x5 − 70x3 + 15x)

)
A5 = 11

2

(
2 · 1

2

(
63
6 −

70
4 + 15

2

))
A5 = 11

16

Problem 2.

a) For the boundary condition V (R, θ) = V0 cos2 θ on a sphere of radius R, the potential
outside the sphere can be written in the form (since the charge distribution has a
azimuthal symmetry)

V (r, θ) =
∑
l

(R/r)l+1AlPl(cos θ), r ≥ R

with the coefficients Al given by

Al = 2l+1
2

∫ 1
−1 d(cosθ)V (θ)Pl(cos θ)

= (2l+1)V0

2

∫ 1
−1 d(x)x2Pl(x)

(3)

with x = cos θ. To do this integral, we recognize that

x2 =
3x2 − 1

3
+

1

3
=

2

3
P2(x) +

1

3
P0(x).

Then we can use the orthogonality of the Legendre polynomials together with equation
(3) to get

A0 =
V0

2

∫ 1

−1
dx

1

3
[P0(x)]2 =

1

3
V0

A2 =
5V0

2

∫ 1

−1
dx

2

3
[P2(x)]2 =

2

3
V0

Al = 0, l 6= 0, 2
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Hence, we conclude that the scalar potential can be written as

V (r, θ) =
V0

3

[
R

r
+ 2

(
R

r

)3

P2(cos θ)

]
, (4)

in the region outside the sphere, r ≥ R.

b) The surface charge distribution on the sphere of the sphere is given by

σ(θ) = −ε0
∂V

∂r

∣∣∣∣
r=R

,

which gives

σ(θ) = − ε0V0

3

[
R

r2
(−1)P0(cos θ) + 2

(
R3

r4

)
(−3)P2(cos θ)

]∣∣∣∣
r=R

or

σ(θ) =
ε0V0

3R
[P0(cos θ) + 6P2(cos θ)]

c) To appear later....!

Problem 3.

a)

V (r) =
1

4πε0

q

|r − (R+ h)ẑ|
− 1

4πε0

q

|r − (R− h)ẑ|
(5)

The method of images is a technique used to solve electrostatic problems (i.e. solving
Laplace eq.). It consists of placing so-called image charges outside the domain of interest
such that the boundary conditions (cont. of V and ε∂nV ) are satisfied, then the total
potential in the domain of interest is the sum of the potential from the charge and
image-charge since the solution of Laplace equation is unique.

b) The two terms in the potential in equation (5) corresponds to the potential from the
charge q (first term) and image charge -q (second term). They are located at (R± h)ẑ
so the discance from each one of them to an observation point r (with z > R) is
r − (R± h)ẑ. On the surface z = R we have

|r − (R± h)ẑ| =
∣∣r‖ +Rẑ − (R± h)ẑ

∣∣
=

∣∣r‖ ± hẑ∣∣
(r‖ is a vector in the xy-plane) Since

∣∣r‖ ± hẑ∣∣ is independent of sign it follows that
V (r = 0 when r is in the plane z = R.

c) The total potential for the system consist of two potentials of the form of equation (5)
but with the chartes located at

r±q =

(
R+ h± d

2

)
ẑ
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Figure 1: Position of image charges

and image charges at

r±q =
(
R−

[
h∓ d

2

])
ẑ note reversed sign

=
(
R− h± d

2

)
ẑ

Hence the total potential becomes

V (r) =
q

4πε0

[
1

|r − rq|
− 1

|r − r−q̄|
+

−1

|r − r−q|
− −1

|r − r+q̄|

]
Now doing an expansion around z = (R± h)
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1
|r−r±q | = 1

|r − (R+ h)ẑ︸ ︷︷ ︸
ρ+

∓d
2
|

= 1(
ρ2

+∓2ρ+
d
2

+ d2

4

)1/2

= 1

ρ+

[
1∓
ρ̂+·d
ρ+

+
(

d
2ρ+

)2
]1/2

= 1
ρ+

[
1± 1

2

ρ̂+·d
ρ+

+ . . .

]
= 1

ρ+
± 1

2

ρ̂+·d
ρ2

+
+ . . .

Similary one obtains

1
|r−r±q̄ | = 1

|r − (R− h)ẑ︸ ︷︷ ︸
ρ−

±d
2
|

= 1
ρ−
∓ 1

2

ρ̂−·d
ρ2
−

+ . . .

Hence, to leading order

V (r) = q
4πε0

[
ρ̂+·d
ρ2

+
− ρ̂−·d

ρ2
−

]
= 1

4πε0

ρ̂+·p
ρ2

+
− 1

4πε0

ρ̂−·p
ρ2
−

Hence the potential is the sum of an electric dipole and an oppositly directet image
dipole.

d) Since the sphere in Figure 2 is grounded we choose the potential at the surface to be
zero. We try to solve the problem by the method of images by placing an image charge
q’ on the z-axis at position z’. The total potential outside the sphere becomes

V (r) =
1

4πε0

[
q

|r − (R+ h)ẑ|
+

q′

|r − z′ẑ|

]
Now we have two unknown, q’ and z’. To determine them, we choose the points r = ±Rẑ
and impose the boundary condition on V

i] V (r = Rẑ) = 0

q

|R−R− h|
+

q′

|R− z′|
= 0, (z′ < R), h 6= 0

q(R− z′) + q′h = 0

qR− qz′ + q′h = 0 (6)

ii] V (r = −Rẑ) = 0
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Figure 2: A charge above a grounded sphere

q

| −R−R− h|
+

q′

| −R− z′|
= 0, (z′ < R), h 6= 0

q(R+ z′) + q′(2R+ h) = 0, z′ > 0

qR+ qz′ + (2R+ h)q′ = 0 (7)

Adding equation (6) and equation (7) gives

2Rq + (h+ 2R+ h)q′ = 0

q′ = − R

R+ h
q

From equation (6) it follows that

z′ = R+
q′

q
h
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z′ =
R(R+ h)−Rh

R+ h
=

R2

R+ h

e) Hence the total scalar potential becomes

V (r) =
1

4πε0

 q

|r − (R+ h)ẑ|
+

R
R+hq∣∣∣r − R2

R+h ẑ
∣∣∣


When R� h one has

R

R+ h
=

R

R(1 + h/R
' 1− h

R
+ · · ·

R2

R+ h
=

R2

R(1 + h/R
' R

(
1− h

R
+ · · ·

)
= R− h

Hence, in the limit R� h one gets to lowest order

V (r) ' 1

4πε0

[
q

|r − (R+ h)ẑ|
− q

|r − (R− h)ẑ|

]
This is the potential for a charge q above a flat grounded plate. This is a reasonable
result!

f) Let the image charges corresponding to ±q be denoted q±. These image charges are
given by

q′± = ∓ R

R+ h± d
2

q

Since the image charge is depending on the distance from the center of the sphere it
follows that

q′+ + q′− 6= 0

Hence, there will be a monopole contribution to the potential coming from the image
charges. Since this term will be dominating it is not possible to find an image dipole so
that the potential on r=R vanishes.

However, if d is chosen to be parallel with the xy-plane, i.e.

d = dr̂‖

then the distances from the center of the sphere to q′± are the same so q′+ + q′− = 0.
Therefore, the mono-pole term coming from the image charges vanishes, and the leading
order term is an image dipole. The diploe moment of the image charges is

p′ = |p′| = |q′|d′

where d’ is the distance given in Figure 3.
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Figure 3: Dipole image

Let R+H be the distance to, say, q. From geometry it follows

d

R+H
=

d′

R2

R+H

d′ =
R2

(R+H)2
d

Now

q′ = − R

R+H
q

so that (direction follows from Figure 3)

p′ =
R3

(R+H)3
p

However, we have assumed that d/h� 1 so that one my write
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p′ = R3[
(R+h)2+( d2 )

2
]3/2p

= R3

(R+h)3

[
1 +

(
d

2(R+h)

)2
]−3/2

p

= R3

(R+h)3p+O(d3/(R/h)5)

Thus, one my safly conclude that

p′ ' R3

(R+ h)3
p

Alt: We could have made the approximation R +H ' R + h from the very beginning.
(To simplify the calcluation)


