TFY4240

Solution problemset 4 Autumn 2014

Problem 1.

a) In the lectures the electric dipole was placed at the center of the coordinate system and one obtained

$$
\begin{equation*}
V(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\boldsymbol{p} \cdot \hat{\boldsymbol{r}}}{r^{2}} \tag{1}
\end{equation*}
$$

for the scalar electric potential. In a coordinate system not located at the center of the dipole, \boldsymbol{r} therefore has to be replaced by the distance from the dipole to the observation point. If we denote this distance by \boldsymbol{R} one thus obtains

$$
\begin{equation*}
V(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\boldsymbol{p} \cdot \hat{\boldsymbol{R}}}{R^{2}}, \quad \boldsymbol{R}=\boldsymbol{r}-\boldsymbol{r}^{\prime} \tag{2}
\end{equation*}
$$

which is valid in any coordinate system. Formally the above expression is obtained by a change of spacial variable from the "centered" to the "non-centered" coordinate system.
b) The electric field is obtained in the standard way from

$$
\begin{equation*}
\boldsymbol{E}(\boldsymbol{r})=-\boldsymbol{\nabla} V(\boldsymbol{r}) \tag{3}
\end{equation*}
$$

Introducing Eq. (2) into the above equation gives

$$
\begin{align*}
\boldsymbol{E}(\boldsymbol{r}) & =-\frac{1}{4 \pi \varepsilon_{0}} \boldsymbol{\nabla}\left(\frac{\boldsymbol{p} \cdot \boldsymbol{R}}{R^{3}}\right) \\
& =-\frac{1}{4 \pi \varepsilon_{0}} p_{j} \boldsymbol{\nabla}\left(\frac{R_{j}}{R^{3}}\right) . \tag{4}
\end{align*}
$$

To calculate this expression we look closer at the following two expressions:

$$
\begin{equation*}
\partial_{i} R=\partial_{i} \sqrt{R_{k} R_{k}}=\frac{R_{i}}{R}, \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
p_{j} \partial_{i}\left(\frac{R_{j}}{R^{3}}\right) & =p_{j} \frac{\left(\partial_{i} R_{j}\right) R^{3}-R_{j}\left(\partial_{i} R^{3}\right)}{R^{6}} \\
& =p_{j} \frac{\delta_{i j} R^{3}-R_{j}\left(3 R^{2}\left(\partial_{i} R\right)\right.}{R^{6}} \\
& =p_{j}\left[\frac{\delta_{i j}}{R^{3}}-3 \frac{R_{j} R_{i}}{R^{5}}\right] \\
& =\frac{p_{i}}{R^{3}}-3 \frac{(\boldsymbol{p} \cdot \boldsymbol{R}) R_{i}}{R^{5}} . \tag{6}
\end{align*}
$$

Substituting this latter expression back into Eq. (4) gives after introducing unit position vectors

$$
\begin{equation*}
\boldsymbol{E}(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{3(\boldsymbol{p} \cdot \hat{\boldsymbol{R}}) \hat{\boldsymbol{R}}-\boldsymbol{p}}{R^{3}}, \quad \boldsymbol{R}=\boldsymbol{r}-\boldsymbol{r}^{\prime} . \tag{7}
\end{equation*}
$$

This is the final expression for the electric field in coordinate free form.

Problem 2.

See Griffiths!

Problem 3.
See Griffiths!

