TFY4240

Solution problemset 5 Autumn 2014

Problem 1.

a) The magnetic induction is related to the vector potential by

$$
\begin{equation*}
B(r)=\nabla \times A(r) \tag{1}
\end{equation*}
$$

Hence, it is in principle straight forward to obtain $\boldsymbol{B}(\boldsymbol{r})$.
In component form we therefore get,

$$
\begin{align*}
B_{i}(\boldsymbol{r}) & =\varepsilon_{i j k} \partial_{j} A_{k}(\boldsymbol{r}) \\
& =\frac{\mu_{0}}{4 \pi} \varepsilon_{i j k} \partial_{j}\left(\varepsilon_{k l m} \frac{m_{l} r_{m}}{r^{3}}\right) \tag{2}\\
& =\frac{\mu_{0}}{4 \pi} \varepsilon_{k i j} \varepsilon_{k l m} \frac{m_{l} \delta_{j m} r^{3}-m_{l} r_{m} 3 r r_{j}}{r^{6}},
\end{align*}
$$

where we have used that $\partial_{j} r^{3}=3 r r_{j}$ and $\varepsilon_{i j k}=\varepsilon_{k i j}$. Now expanding the term $\varepsilon_{k i j} \varepsilon_{k l m}$ gives

$$
\begin{align*}
B_{i}(\boldsymbol{r}) & =\frac{\mu_{0}}{4 \pi}\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right)\left[\frac{m_{l} \delta_{j m}}{r^{3}}-3 \frac{m_{l} r_{m} r_{j}}{r^{5}}\right] \\
& =\frac{\mu_{0}}{4 \pi}\left[\frac{3 m_{i}}{r^{3}}-\frac{m_{i}}{r^{3}}-3 \frac{m_{i} r_{j} r_{j}}{r^{5}}+3 \frac{m_{j} r_{i} r_{j}}{r^{5}}\right] \tag{3}\\
& =\frac{\mu_{0}}{4 \pi}\left[3 \frac{(\boldsymbol{m} \cdot \boldsymbol{r}) r_{i}}{r^{5}}-\frac{m_{i}}{r^{3}}\right] .
\end{align*}
$$

Here in the second transition, we have used that $\delta_{j m} \delta_{j m}=3$ and $m_{j} \delta_{j i}=m_{i}$.
Hence, we finally obtain for the magnetic induction

$$
\begin{align*}
\boldsymbol{B}(\boldsymbol{r}) & =\frac{\mu_{0}}{4 \pi}\left[3 \frac{(\boldsymbol{m} \cdot \boldsymbol{r}) \boldsymbol{r}}{r^{5}}-\frac{\boldsymbol{m}}{\boldsymbol{r}^{3}}\right] \tag{4}\\
& =\frac{\mu_{0}}{4 \pi} \frac{3(\boldsymbol{m} \cdot \hat{\boldsymbol{r}}) \hat{\boldsymbol{r}}-\boldsymbol{m}}{r^{3}} .
\end{align*}
$$

b) Equation (4) is similar to the expression for the electric field around an electric dipole under the substitutions $\boldsymbol{E} \rightarrow \boldsymbol{B}$ and $\boldsymbol{p} \rightarrow \boldsymbol{m}$.

Problem 2.

a) The field from a current element $I d \boldsymbol{l}$ is given by Biot-Savart's law

$$
\begin{equation*}
d \boldsymbol{H}=\frac{1}{4 \pi} \frac{I d \boldsymbol{l} \times \hat{\boldsymbol{r}}}{r^{2}} \tag{5}
\end{equation*}
$$

At position O, there is no contribution to the magnetic field from the straight parts of the wire, since $d \boldsymbol{l} \times \hat{\boldsymbol{r}}=0$.
Hence the total magnetic field at O becomes (where the integration is over the semicircle)

$$
\begin{equation*}
\boldsymbol{H}=\int d \boldsymbol{H}=\hat{\boldsymbol{z}} \frac{I}{4 \pi R} \int_{0}^{\pi} d \theta=\frac{I}{\underline{4 R}} \hat{\boldsymbol{z}} \tag{6}
\end{equation*}
$$

where we have used that $d l=R d \theta$
b)

$$
\begin{equation*}
|\boldsymbol{H}|=\frac{I}{4 R}=0.25 \cdot 10^{2} \mathrm{~A} / \mathrm{m}=\underline{25 \mathrm{~A} / \mathrm{m}} \tag{7}
\end{equation*}
$$

The direction of the field is out of the paper-plane.

Problem 3.

See Griffiths!

