TFY4240

Solution problemset 7 Autumn 2014

NTNU
0
Institutt for fysikk

Problem 1.

a) The flux is given by

$$
\begin{gather*}
\phi=\int_{0}^{x} B_{n} d A=\int_{0}^{x} B \frac{1}{2} \sqrt{2} l d s=\frac{1}{2} \sqrt{2} l \int_{0}^{x} B d s, \tag{1}\\
\phi(x)=\frac{1}{2} \sqrt{2} l B x . \tag{2}
\end{gather*}
$$

The induced emf is given by

$$
\begin{equation*}
\varepsilon=-\frac{d \phi}{d t}=-\frac{d \phi}{d x} \frac{d x}{d t}=-\frac{1}{2} \sqrt{2} l B \frac{d x}{d t}=-\frac{1}{2} \sqrt{2} l B v \tag{3}
\end{equation*}
$$

The current is flowing clockwise, and the current is given by

$$
\begin{equation*}
I=\frac{|\varepsilon|}{R}=\frac{\frac{1}{2} \sqrt{2} l B v}{R} \tag{4}
\end{equation*}
$$

b) The force is given by

$$
\begin{gather*}
\boldsymbol{F}=I \boldsymbol{l} \times \boldsymbol{B} \tag{5}\\
|\boldsymbol{F}|=I l B=\frac{\frac{1}{2} \sqrt{2} l^{2} B^{2} v}{R} \tag{6}
\end{gather*}
$$

and has the components

$$
\begin{equation*}
F_{y}=-F_{x}=\frac{\frac{1}{2} l^{2} B^{2} v}{R} \tag{7}
\end{equation*}
$$

The mechanical effect is given by

$$
\begin{equation*}
P=\left|F_{x}\right| v=\frac{\frac{1}{2} l^{2} B^{2} v^{2}}{R} \tag{8}
\end{equation*}
$$

and the electrical effect

$$
\begin{equation*}
P_{E}=R I^{2}=R\left(\frac{\frac{1}{2} l B v}{R}\right)^{2}=\frac{\frac{1}{2} l^{2} B^{2} v^{2}}{R} . \tag{9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
P=P_{E} \tag{10}
\end{equation*}
$$

c) The vertical component of the force is given by

$$
\begin{equation*}
F_{y}=\frac{\frac{1}{2} l^{2} B^{2} v}{R} \tag{11}
\end{equation*}
$$

The rod levitates when this force is larger than the gravity force. This happens when

$$
\begin{equation*}
\frac{\frac{1}{2} l^{2} B^{2} v}{R} \geq m g \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
B^{2} \geq \frac{2 m g R}{l^{2} v} \tag{13}
\end{equation*}
$$

d) Assume $\boldsymbol{B} \perp \boldsymbol{J}$ and that the orientation is such that the force acts vertical

$$
\begin{gather*}
|F|=B I l \geq m g \tag{14}\\
I \geq \frac{m g}{B l}=4905 A \tag{15}
\end{gather*}
$$

The current must flow in the opposite direction of the current density in the plane,

$$
\begin{equation*}
\boldsymbol{F}=q \boldsymbol{v} \times \boldsymbol{B} \tag{16}
\end{equation*}
$$

where $q v=I$.

Problem 2.

a) The components are

$$
\begin{align*}
\boldsymbol{v} & =v_{i} \hat{\boldsymbol{x}}_{i} \\
\overline{\boldsymbol{t}} & =t_{i j} \hat{\boldsymbol{x}}_{i} \otimes \hat{\boldsymbol{x}}_{j} \tag{17}\\
\overline{\boldsymbol{T}} & =T_{i j} \hat{\boldsymbol{x}}_{i} \otimes \hat{\boldsymbol{x}}_{j}
\end{align*}
$$

b) Using the relations from Eq. (17), one obtains

$$
\begin{align*}
& \overline{\boldsymbol{T}}=\left[v_{i} \hat{\boldsymbol{x}}_{i}\right] \times\left[t_{m n} \hat{\boldsymbol{x}}_{m} \otimes \hat{\boldsymbol{x}}_{n}\right] \\
&=v_{i} t_{m n} \underbrace{\hat{\boldsymbol{x}}_{i} \times\left(\hat{\boldsymbol{x}}_{m} \otimes \hat{\boldsymbol{x}}_{n}\right)}_{\varepsilon_{k i m} \hat{\boldsymbol{x}}_{k}} \\
&\left.\hat{\boldsymbol{x}}_{i} \times \hat{\boldsymbol{x}}_{m}\right) \otimes \hat{\boldsymbol{x}}_{n} \tag{18}\\
&=\varepsilon_{k i m} v_{i} t_{m n} \hat{\boldsymbol{x}}_{k} \otimes \hat{\boldsymbol{x}}_{n} .
\end{align*}
$$

Combining this with the results from subproblem a) one finds

$$
\begin{equation*}
T_{k n}=\varepsilon_{k i m} v_{i} t_{m n} \tag{19}
\end{equation*}
$$

or after renaming dummy indices

$$
\begin{equation*}
T_{i j}=\varepsilon_{i k l} v_{k} t_{l j} \tag{20}
\end{equation*}
$$

c) To calculate $\boldsymbol{\nabla} \cdot \bar{F}(\boldsymbol{r})$ one has to keep in mind that $\boldsymbol{\nabla}=\hat{\boldsymbol{x}}_{i} \partial_{i}$ is a vector values operator that operate on what appears on its right. With this in mind one gets

$$
\begin{align*}
\nabla \cdot \bar{F}(\boldsymbol{r}) & =\left[\hat{\boldsymbol{x}}_{i} \partial_{i}\right] \cdot\left[F_{m n}(\boldsymbol{r}) \hat{\boldsymbol{x}}_{m} \otimes \hat{\boldsymbol{x}}_{n}\right] \\
& =\left[\partial_{i} F_{m n}(\boldsymbol{r})\right] \hat{\boldsymbol{x}}_{i} \cdot\left(\hat{\boldsymbol{x}}_{m} \otimes \hat{\boldsymbol{x}}_{n}\right) \\
& =\left[\partial_{i} F_{m n}(\boldsymbol{r})\right] \underbrace{\left(\hat{\boldsymbol{x}}_{i} \cdot \hat{\boldsymbol{x}}_{m}\right)}_{\delta_{i m}} \hat{\boldsymbol{x}}_{n} \tag{21}\\
& =\left[\partial_{i} F_{i n}(\boldsymbol{r})\right] \hat{\boldsymbol{x}}_{n} .
\end{align*}
$$

Hence, component i of the vector $\nabla \cdot \bar{F}(\boldsymbol{r})$ becomes

$$
\begin{equation*}
[\boldsymbol{\nabla} \cdot \bar{F}(\boldsymbol{r})]_{i}=\partial_{j} F_{j i}(\boldsymbol{r}) \tag{22}
\end{equation*}
$$

