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Problem 1.

a) Direct calculation results in

〈cos(ωt)〉t = lim
T→∞

1

T

∫ T/2

−T/2
dt cos(ωt)

= lim
T→∞

1

T

[
sin(ωt)

ω

]T/2
−T/2

= lim
T→∞

sin
(
ωT
2

)
ωT
2

= 0.

(1)

In the same way one can show that 〈sin(ωt)〉t = 0.

b) To show that
〈
cos2(ωt)

〉
t

=
〈
sin2(ωt)

〉
t

= 1/2 we start by using the identities

cos2(ωt) =
1

2
+

1

2
cos(2ωt) (2a)

sin2(ωt) =
1

2
− 1

2
cos(2ωt), (2b)

and that the average of the last terms of the above equations are zero as shown in the
previous sub-problem.

The final result follows trivially by noting that

lim
T→∞

1

T

∫ T/2

−T/2
dt

1

2
=

1

2
. (3)

Problem 2.

a) See the lecture notes....

b) At the first interface, between media 0 and 1, the incident wave Ei is partly reflec-
ted and partly transmitted. The transmitted part is then partly reflected and partly
transmitted at the interface between media 1 and 2, and so on. The total reflected and
total transmitted waves thus becomes sums of partial waves. By adding together the
amplitudes, we get for the reflection coefficient
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r = r01 + t01r12t10e
2iδ1 + t01r12r10r12t10e

4iδ1

+ ...+ t01r12t10(r12r10)
ne2(n+1)iδ1

= r01 + t01r12t10e
2iδ1

∞∑
k=0

(r12r10e
2iδ1)k

= r01 +
t01r12t10e

2iδ1

1− r12r10e2iδ1
= r01 +

t01r12t10e
2iδ1

1 + r12r01e2iδ1

=
r01 + r12r

2
01e

2iδ1 + t01r12t10e
2iδ1

1 + r12r01e2iδ1
=
r01 + r12e

2iδ1(r201 + t01t10)

1 + r12r01e2iδ1

=
r01 + r12e

2iδ1

1 + r12r01e2iδ1

where in the last line it is used that r201 + t01t10 = 1. Similarily, we get for the trans-
mission coefficient

t = t01t12e
iδ1 + t01r12r10t12e

3iδ1 + ...

= t01t12e
iδ1

∞∑
k=0

(r12r10e
2iδ1)k

=
t01t12e

iδ1

1 + r12r01e2iδ1

c) The phase difference between the the component reflected at the interface between
media 0 and 1 and the component reflected at the interface between media 1 and 2 , is
2δ1. The difference in optical pathlength s can be found from Figure 1:

s = 2n1
d

cosφ1
− 2d tanφ1 n0 sinφ0

= 2d

(
n1

cosφ1
− sinφ1

cosφ1
n1 sinφ1

)
= 2dn1 cosφ1

This gives

δ1 =
2π

λ
n1d cosφ1. (4)

d) Assuming normal incidence, we have the reflection coefficients

r01 =
n0 − n1
n0 + n1

r12 =
n1 − n2
n1 + n2

(5)

Insert this into



TFY4240 Solution Problemset 8 Autumn 2014 Page 3 of 3

r01 + r12
1 + r01r12

=

(
n0−n1
n0+n1

)
+

(
n1−n2
n1+n2

)
1 +

(
n0−n1
n0+n1

)(
n1−n2
n1+n2

)
=

2n1(n0 − n2)
2n1(n0 + n2)

=
n0 − n2
n0 + n2

= r02

This must also be so from the equation for a thin film on a surface:

r =
r01 + r12e

2iδ1

1 + r12r01e2iδ1

If the thin film thickness is zero, we have δ1 = 0 and

r =
r01 + r12
1 + r01r12

.

This corresponds to the reflection at the 0-2 interface.

e) If 2δ1 = 2π the wall becomes ”invisible” for the radiation (that follows by comparing
Eqs.(1) and (3) from the problem set)

δ1 =
2π

λ
n1d cosφ1 φ1 = 0

2π = 2
2π

λ
n1d

d =
λ

2n1
=

c

2νn1
=

3 · 108

2 · 1010 · 2.5
= 0.6 · 10−2m = 6mm


