## TFY4240

## Solution problemset 8 Autumn 2014

## Problem 1.

a) Direct calculation results in

$$
\begin{align*}
\langle\cos (\omega t)\rangle_{t} & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} d t \cos (\omega t) \\
& =\lim _{T \rightarrow \infty} \frac{1}{T}\left[\frac{\sin (\omega t)}{\omega}\right]_{-T / 2}^{T / 2}  \tag{1}\\
& =\lim _{T \rightarrow \infty} \frac{\sin \left(\frac{\omega T}{2}\right)}{\frac{\omega T}{2}} \\
& =0 .
\end{align*}
$$

In the same way one can show that $\langle\sin (\omega t)\rangle_{t}=0$.
b) To show that $\left\langle\cos ^{2}(\omega t)\right\rangle_{t}=\left\langle\sin ^{2}(\omega t)\right\rangle_{t}=1 / 2$ we start by using the identities

$$
\begin{align*}
\cos ^{2}(\omega t) & =\frac{1}{2}+\frac{1}{2} \cos (2 \omega t)  \tag{2a}\\
\sin ^{2}(\omega t) & =\frac{1}{2}-\frac{1}{2} \cos (2 \omega t) \tag{2b}
\end{align*}
$$

and that the average of the last terms of the above equations are zero as shown in the previous sub-problem.
The final result follows trivially by noting that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} d t \frac{1}{2}=\frac{1}{2} \tag{3}
\end{equation*}
$$

## Problem 2.

a) See the lecture notes....
b) At the first interface, between media 0 and 1 , the incident wave $E_{i}$ is partly reflected and partly transmitted. The transmitted part is then partly reflected and partly transmitted at the interface between media 1 and 2 , and so on. The total reflected and total transmitted waves thus becomes sums of partial waves. By adding together the amplitudes, we get for the reflection coefficient

$$
\begin{aligned}
r & =r_{01}+t_{01} r_{12} t_{10} e^{2 i \delta_{1}}+t_{01} r_{12} r_{10} r_{12} t_{10} e^{4 i \delta_{1}} \\
& +\ldots+t_{01} r_{12} t_{10}\left(r_{12} r_{10}\right)^{n} e^{2(n+1) i \delta_{1}} \\
& =r_{01}+t_{01} r_{12} t_{10} e^{2 i \delta_{1}} \sum_{k=0}^{\infty}\left(r_{12} r_{10} e^{2 i \delta_{1}}\right)^{k} \\
& =r_{01}+\frac{t_{01} r_{12} t_{10} e^{2 i \delta_{1}}}{1-r_{12} r_{10} e^{2 i \delta_{1}}}=r_{01}+\frac{t_{01} r_{12} t_{10} e^{2 i \delta_{1}}}{1+r_{12} r_{01} e^{2 i \delta_{1}}} \\
& =\frac{r_{01}+r_{12} r_{01}^{2} e^{2 i \delta_{1}}+t_{01} r_{12} t_{10} e^{2 i \delta_{1}}}{1+r_{12} r_{01} e^{2 i \delta_{1}}}=\frac{r_{01}+r_{12} e^{2 i \delta_{1}}\left(r_{01}^{2}+t_{01} t_{10}\right)}{1+r_{12} r_{01} e^{2 i \delta_{1}}} \\
& =\frac{r_{01}+r_{12} e^{2 i \delta_{1}}}{1+r_{12} r_{01} e^{2 i \delta_{1}}}
\end{aligned}
$$

where in the last line it is used that $r_{01}^{2}+t_{01} t_{10}=1$. Similarily, we get for the transmission coefficient

$$
\begin{aligned}
t & =t_{01} t_{12} e^{i \delta_{1}}+t_{01} r_{12} r_{10} t_{12} e^{3 i \delta_{1}}+\ldots \\
& =t_{01} t_{12} e^{i \delta_{1}} \sum_{k=0}^{\infty}\left(r_{12} r_{10} e^{2 i \delta_{1}}\right)^{k} \\
& =\frac{t_{01} t_{12} e^{i \delta_{1}}}{1+r_{12} r_{01} e^{2 i \delta_{1}}}
\end{aligned}
$$

c) The phase difference between the the component reflected at the interface between media 0 and 1 and the component reflected at the interface between media 1 and 2 , is $2 \delta_{1}$. The difference in optical pathlength $s$ can be found from Figure 1:

$$
\begin{aligned}
s & =2 n_{1} \frac{d}{\cos \phi_{1}}-2 d \tan \phi_{1} n_{0} \sin \phi_{0} \\
& =2 d\left(\frac{n_{1}}{\cos \phi_{1}}-\frac{\sin \phi_{1}}{\cos \phi_{1}} n_{1} \sin \phi_{1}\right) \\
& =2 d n_{1} \cos \phi_{1}
\end{aligned}
$$

This gives

$$
\begin{equation*}
\delta_{1}=\frac{2 \pi}{\lambda} n_{1} d \cos \phi_{1} \tag{4}
\end{equation*}
$$

d) Assuming normal incidence, we have the reflection coefficients

$$
\begin{align*}
r_{01} & =\frac{n_{0}-n_{1}}{n_{0}+n_{1}} \\
r_{12} & =\frac{n_{1}-n_{2}}{n_{1}+n_{2}} \tag{5}
\end{align*}
$$

Insert this into

$$
\begin{aligned}
\frac{r_{01}+r_{12}}{1+r_{01} r_{12}} & =\frac{\left(\frac{n_{0}-n_{1}}{n_{0}+n_{1}}\right)+\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)}{1+\left(\frac{n_{0}-n_{1}}{n_{0}+n_{1}}\right)\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)} \\
& =\frac{2 n_{1}\left(n_{0}-n_{2}\right)}{2 n_{1}\left(n_{0}+n_{2}\right)}=\frac{n_{0}-n_{2}}{n_{0}+n_{2}}=r_{02}
\end{aligned}
$$

This must also be so from the equation for a thin film on a surface:

$$
r=\frac{r_{01}+r_{12} e^{2 i \delta_{1}}}{1+r_{12} r_{01} e^{2 i \delta_{1}}}
$$

If the thin film thickness is zero, we have $\delta_{1}=0$ and

$$
r=\frac{r_{01}+r_{12}}{1+r_{01} r_{12}}
$$

This corresponds to the reflection at the 0-2 interface.
e) If $2 \delta_{1}=2 \pi$ the wall becomes "invisible" for the radiation (that follows by comparing Eqs.(1) and (3) from the problem set)

$$
\begin{aligned}
\delta_{1} & =\frac{2 \pi}{\lambda} n_{1} d \cos \phi_{1} \quad \phi_{1}=0 \\
2 \pi & =2 \frac{2 \pi}{\lambda} n_{1} d \\
d & =\frac{\lambda}{2 n_{1}}=\frac{c}{2 \nu n_{1}}=\frac{3 \cdot 10^{8}}{2 \cdot 10^{10} \cdot 2.5}=0.6 \cdot 10^{-2} \mathrm{~m}=6 \mathrm{~mm}
\end{aligned}
$$

