TFY4240

Solution problemset 9 Autumn 2014

Problem 1.

a) How to chose $\Lambda(\boldsymbol{r}, t)$ in the Lorentz gauge?

We want in the transformed system that

$$
\nabla \cdot \mathbf{A}^{\prime}+\epsilon \mu \partial_{t} V^{\prime}=0
$$

where (the gauge transformation)

$$
\begin{aligned}
\mathbf{A}^{\prime} & =\mathbf{A}+\nabla \Lambda(\mathbf{r}, t) \\
V^{\prime} & =V-\partial_{t} \Lambda(\mathbf{r}, t)
\end{aligned}
$$

Plugging these latter results into the Lorentz gauge condition:

$$
\begin{aligned}
\nabla(\mathbf{A}+\nabla \Lambda)+\epsilon_{0} \mu_{0} \partial_{t}\left(V-\partial_{t} V\right) & =\nabla \mathbf{A}+\nabla^{2} \Lambda+\epsilon_{0} \mu_{0} \partial_{t} V-\epsilon_{0} \mu_{0} \partial_{t}^{2} \Lambda \\
& =0
\end{aligned}
$$

which leads to

$$
\begin{align*}
\nabla^{2} \Lambda-\epsilon_{0} \mu_{0} \partial_{t}^{2} \Lambda & =-\nabla \mathbf{A}-\epsilon_{0} \mu_{0} \partial_{t} V \tag{1}\\
\nabla^{2} \Lambda-\epsilon_{0} \mu_{0} \partial_{t}^{2} \Lambda & =-\left[\nabla \mathbf{A}+\epsilon_{0} \mu_{0} \partial_{t} V\right] \tag{2}
\end{align*}
$$

For a given set (V,A) of allowed potentials, the Lorentz gauge can be obtained by choosing a gauge function $\Lambda(\mathbf{r}, t)$ that satisfies equation (2), i.e. a wave-equation with a right hand side given by the original potentials.

Problem 2.

a) We have

$$
\begin{aligned}
\mathbf{A}(\mathbf{r}, t) & \left.=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right.}{R}\right) \\
t_{r} & =t-\frac{R}{c} \\
R & =\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \\
\mathbf{B} & =\nabla \times \mathbf{A}
\end{aligned}
$$

For the calculation

$$
\begin{aligned}
\mathbf{B} & =\nabla \times \mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \nabla \times \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{R} \\
B_{i} & =\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \epsilon_{i j k} \partial_{j} \frac{J_{k}\left(\mathbf{r}^{\prime}, t_{r}\right)}{R}
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{j} \frac{J_{k}\left(\mathbf{r}^{\prime}, t_{r}\right)}{R}=\frac{\dot{J}_{k}\left(\mathbf{r}^{\prime}, t_{r}\right)\left(-\frac{1}{c} \partial_{j} R\right)}{R}-\frac{J_{k}\left(\mathbf{r}^{\prime}, t_{r}\right) \partial_{j} R}{R^{2}} \\
&=-\left[\frac{J_{k}\left(\mathbf{r}^{\prime}, t_{r}\right.}{R^{2}}+\frac{\dot{J}_{k}\left(\mathbf{r}^{\prime}, t_{r}\right.}{R c}\right] \partial_{j} R \\
& R=|\boldsymbol{R}|=\left|\mathbf{r}-\mathbf{r}^{\prime}\right|=\sqrt{\left(x_{m}-x_{m}^{\prime}\right)\left(x_{m}-x_{m}^{\prime}\right)} \\
& \partial_{j} R=\frac{2\left(x_{m}-x_{m}^{\prime}\right) \partial_{j} x_{m}}{2 R} \\
&=\frac{\left(x_{m}-x_{m}^{\prime}\right)}{R} \delta_{j m} \\
&=\frac{x_{j}-x_{j}^{\prime}}{R} \\
&=\frac{R_{j}}{R}
\end{aligned}
$$

Collecting all the terms gives

$$
B_{i}=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \epsilon_{i j k} \frac{R_{i}}{R}\left\{-\left[\frac{J_{k}\left(\mathbf{r}^{\prime}, t_{r}\right.}{R^{2}}+\frac{\dot{J}_{k}\left(\mathbf{r}^{\prime}, t_{r}\right.}{R c}\right]\right\}
$$

Hence

$$
\begin{aligned}
& \mathbf{B}=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \hat{R} \times\left[\frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right.}{R^{2}}+\frac{\dot{\mathbf{J}}\left(\mathbf{r}^{\prime}, t_{r}\right.}{R c}\right](-1) \\
& \mathbf{B}=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime}\left[\frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right.}{R^{2}}+\frac{\dot{\mathbf{J}}\left(\mathbf{r}^{\prime}, t_{r}\right.}{R c}\right] \times \hat{R}
\end{aligned}
$$

