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TFY4240 NTNU
Solution problemset 10-11 Autumn 2014

Institutt for
fysikk
Problem 1.

a) Since the current is going from one end to the other of the wire, only the ends will be
charged. The charge can be determined from the differential equation that follows from
the definition of current.

dQ(t)
i |
> QW= [a1e) =110

t

I(t) =

[As usual, it is the real part of this which is the physical charge, that is
Re{Q(t)} = (lo/w) sinwt].

b) The (complex) time-dependent dipole moment is

p(t) = Q)2

l
=i~ exp(—iwt)z
w
c) Since the wire is coinciding with the z-axis and has length ¢, it follows directly that

J(r,t) = 21()0(x)d(y)o(|z] — £/2)

The J-functions place the wire along the z-axis, and the #-function gives it the correct
length.

d) The PDE for the vector potential (in the Lorentz gauge reads)

VA1) - 22 At = ped ()
9 02 (9t I - /*LO 9

A particular solution to this equation can be constructed as

Ay(r,t) = / 't g(r, thr ¢) | = pod (17, 1)]
5, /5(t—t’—4‘rfc7'/|>
= d°r'dt J(r' t
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where the retarded tiem is given as

This is the time it takes for a signal to propagate from r’ (the source point) to r (the
observation point).

e) We start by looking at the term I(¢,) contained in the expression for J(r’, t,)

I(t,) = Ipexp(—iwt,)

o
:Ioexp(—iwt+z'w|r "

)

r— v

= Iy exp(—iwt) exp(iw

Now expanding |r — 7’| as

so that

I(t,) =~ Iy exp(—iwt) exp(ikr) exp(—ik? - r’).

Now the expression for the vector potential becomes using the result from d)

2@ b2 dZ/ I<t7") / !

A(r,t) = =72
(T; ) A7 —[/2 |’I"—Z’2’ r zzZ
] e — i) (42
. 5 Holo exp(ikr — iwt) / d' exp(—ikz' cos6)
4 T —0/2

2,&0]0 exp(ikr — iwt) [exp(—ik‘z’ cos 9)}5/2

47 T —tikcosf —£/2

polo exp(ikr —iwt) 1 . .
T r ik cos0 | exp(—ike cos /2) — exp(ik cos6/2)

polo exp(ikr —iwt) 1
=2

5 - p—" sin(kl cos6/2)
L oo exp(tkr — iwt)
Rl " sin(kl cos 0/2) —

f) By definition, it follows that

H(r,t) = —V x A(r,t).
Ho
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In spherical coordinates is A = A(cos 07 — sin#0) and V x A are given by

1 a . 0Ay | .
A= —sinf Ay — ——
VX rsing | 00" \i’/ 0¢p '
=0 ~—~~

=0

1|1 1 0A, 0

r |sind 9¢ _E(T& o
S~ =0

=0

+% [8(7"Ae) -4 ] ¢

or 00~ "
1[0 0 N
= {ar(h‘le) - %Ar] o}

A might be written as A = R(r)O(0)Z which leads to

19(rR(r)) 1 0 rexp(ikr —iwt)

r or T ror kr
ik exp(ikr — iwt)
N kr
=ikR(r)
1
x =
”
for large r
VxA= —sin@g(e)M —COSGEM q%
r or r 00
1 1) 4
x ( B 2) ¢
~ —iksin OR(r)O(0)¢
= —iksinfAd,
kx 2= —sin 0(;5
And finally
H(r,t) = iv x A
Ho
= —iik‘A sin f¢
=—kxZz
= Lk x Az
Ho
1
=—kxA

Ho
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g) From Amperes law it follows
—twegE(r,t) =V x H(r,t),

so that the electric field becomes

B(r,t) = ——V x H(r,1).

—iWGO

Now to calculate V x H (7, t) can be done in the “quick” or not so quick manner. Since
we are interested in the behavior in the far field, the magnetic field is locally essentially
a place wave for which it follows that V x H ~ ik x H(r,¢). This expression we will
now derive by doing an explicit calculation were we will only keep radiation field terms,
i.e., terms that decay like 1/r. The details of the calculation are like follows :

[V X H(’I",t)]i = Ez'jkaij
1
~ €iik0i | —ErimkiAm
jkYj <,U0 klmM )
)
= —€iikEkim K10 Am.
110 jkEklmNiUj

From this expression it follows that we have to calculate 0;A,,, and we note that A,, =
dm3As. By keeping only terms that are of order 1/r (radiation fields) we get

0jAm = 6m30j A3
=0 Holo sin <M cos 9> 0; <exp(zk:r — Mt)) +0(1/r?).

m3 27 cos b 2 kr

Here we have used that derivatives of the angular part will not contribute to 1/7 terms
in 0jA,, (show this!). In fact there is only one term that contributes to the 1/r terms
and that comes from the derivatives of the exponential function. This is seen as follows:

0 Am = Om30; As

uolo . (KL ik; kr — k; . . ,
= Om, — bt RS . 1
g 39mcosf ( 2 COSQ) (kr)2 exp(ikr —iwt) + O(1/r7)
puolo . (kL . exp(ikr —iwt)
= dm3 Cy— sin <2 cos 9) ijT + O(l/r2)
= ikj Ay + O(1/r?).

Hence, it follows that
[V x H(r,t)], = i&‘ijkfklmklaj/lm +0(1/r?)

= Eijkik‘j </j€klmklAm> + 0(1/7“2)
0

= €ijkik‘ij + 0(1/1"2)

= [ik x H(r,t)], + O(1/r?),
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so that in the far field one has (i.e. to order 1/r)

V x H ~ ik x H(r,t). (1)

With this results it follows directly from Amperes law that the electric field in the far
field (the electric radiation field) is

k
E(r,t)=—— x H(r,t
(rt) =~ x Hr.t)
ki x A1)
WHo€o ’
—i
= k x (kx A(r,t)).
ek (e x A1)
h)
<s>t:1ExH*, E=—kxH
2 weg
—1
= (kx H) x H*
2(«}60
1
=—H"x(kx H)
2we
= klH>—HH" -k
2w60{ ‘ ‘ <“/—’_0 )}
S (i
2(.4)60
1 2’*
=5 —|H[k
2ceq
ZCMOIH] i
1
= o k:2\A]281n()k:
2 ug
— k2142 sin2(0)k
o |A|”sin”(6)
i)
dpP 9
dTZ_KSM'T

€ 42 Mo o r?
2,u0k 2277 cos2 (0) sin” (k£ cos 9/2)]{:2742 sin” (@)

IO sin?(k£ cos 0/2) tan?(6)

:8?

j) For small x we have sinz ~ z.

% ;,uo 12 sin’(kl cos 0/2) tan?(6)
~ MO 2 R
o= IO( 5 COS 6)% tan?(6)

_ o LA
877210 1 sin” 6
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Figure 1: Radiation pattern, NOTE: z-axis along the line 0° — 180°

k) This radiation pattern is the same as for a small dipole, Figure 1.



