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Problem 1.

a) Since the current is going from one end to the other of the wire, only the ends will be
charged. The charge can be determined from the differential equation that follows from
the definition of current.

I(t) =
dQ(t)

dt

⇒ Q(t) =

∫
t
dt′I(t′) =

i

ω
I(t)

[As usual, it is the real part of this which is the physical charge, that is
Re{Q(t)} = (I0/ω) sinωt].

b) The (complex) time-dependent dipole moment is

p(t) = Q(t)`ẑ

= i
I0`

ω
exp(−iωt)ẑ

c) Since the wire is coinciding with the z-axis and has length `, it follows directly that

J(r, t) = ẑI(t)δ(x)δ(y)θ(|z| − `/2)

The δ-functions place the wire along the z-axis, and the θ-function gives it the correct
length.

d) The PDE for the vector potential (in the Lorentz gauge reads)

∇2A(r, t)− 1

c2
∂

∂t

2

A(r, t) = −µ0J(r, t)

A particular solution to this equation can be constructed as

Ap(r, t) =

∫
d3r′dt′g(r, t|r′, t′)

[
− µ0J(r′, t)

]
= µ0

∫
d3r′dt′

δ
(
t− t′ − |r−r

′|
c

)
4π|r − r′|

J(r′, t)

=
µ0
4π

∫
d3r′

J(r′, tr)

|r − r′|
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where the retarded tiem is given as

tr = t− |r − r
′|

c
.

This is the time it takes for a signal to propagate from r′ (the source point) to r (the
observation point).

e) We start by looking at the term I(tr) contained in the expression for J(r′, tr)

I(tr) = I0 exp(−iωtr)

= I0 exp(−iωt+ iω
|r − r′|

c
)

= I0 exp(−iωt) exp(iω
|r − r′|

c
)

Now expanding |r − r′| as

|r − r′| = r
[
1− 2

r̂ · r′

r
+
(r′
r

)2]1/2
≈ r
[
1− r̂ · r

′

r

]
= r − r̂ · r′

so that

I(tr) ≈ I0 exp(−iωt) exp(ikr) exp(−ikr̂ · r′).

Now the expression for the vector potential becomes using the result from d)

A(r, t) = ẑ
µ0
4π

∫ `/2

−`/2
dz′

I(tr)

|r − z′ẑ|
r′ = z′ẑ

≈ ẑµ0I0
4π

exp(ikr − iωt)
r

∫ `/2

−`/2
dz′ exp(−ikz′ cos θ)

= ẑ
µ0I0
4π

exp(ikr − iωt)
r

[exp(−ikz′ cos θ)

−ik cos θ

]`/2
−`/2

= ẑ
µ0I0
4π

exp(ikr − iωt)
r

1

−ik cos θ

[
exp(−ik` cos θ/2)− exp(ik` cos θ/2)

]
= ẑ

µ0I0
2π

exp(ikr − iωt)
kr

1

cos θ
sin(k` cos θ/2)

= ẑ
µ0I0

2π cos θ
sin(k` cos θ/2)

exp(ikr − iωt)
kr

f) By definition, it follows that

H(r, t) =
1

µ0
∇×A(r, t).
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In spherical coordinates is A = A(cos θr̂ − sin θθ̂) and ∇×A are given by

∇×A =
1

r sin θ

 ∂

∂θ
sin θ Aφ︸︷︷︸

=0

− ∂Aθ
∂φ︸︷︷︸
=0

 r̂

+
1

r

 1

sin θ

∂Ar
∂φ︸︷︷︸
=0

− ∂

∂r
(r Aφ︸︷︷︸

=0

 θ̂
+

1

r

[
∂

∂r
(rAθ)−

∂

∂θ
Ar

]
φ̂

=
1

r

[
∂

∂r
(rAθ)−

∂

∂θ
Ar

]
φ̂

A might be written as A = R(r)Θ(θ)ẑ which leads to

1

r

∂(rR(r))

∂r
=

1

r

∂

∂r

r exp(ikr − iωt)
kr

=
ik exp(ikr − iωt)

kr
= ikR(r)

∝ 1

r

for large r

∇×A =

(
− sin θ

Θ(θ)

r

∂(rR(r))

∂r
− cos θ

R(r)

r

∂Θ(θ)

∂θ

)
φ̂

∝
(

1

r
− 1

r2

)
φ̂

≈ −ik sin θR(r)Θ(θ)φ̂

= −ik sin θAφ̂,

k̂ × ẑ = − sin θφ̂

And finally

H(r, t) =
1

µ0
∇×A

= − 1

µ0
ikA sin θφ̂︸ ︷︷ ︸

=− ˆk×ẑ

=
i

µ0
kk̂ ×Aẑ

=
i

µ0
k ×A
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g) From Amperes law it follows

−iωε0E(r, t) = ∇×H(r, t),

so that the electric field becomes

E(r, t) =
1

−iωε0
∇×H(r, t).

Now to calculate ∇×H(r, t) can be done in the “quick” or not so quick manner. Since
we are interested in the behavior in the far field, the magnetic field is locally essentially
a place wave for which it follows that ∇ ×H ≈ ik ×H(r, t). This expression we will
now derive by doing an explicit calculation were we will only keep radiation field terms,
i.e., terms that decay like 1/r. The details of the calculation are like follows :

[∇×H(r, t)]i = εijk∂jHk

≈ εijk∂j
(
i

µ0
εklmklAm

)
=

i

µ0
εijkεklmkl∂jAm.

From this expression it follows that we have to calculate ∂jAm, and we note that Am =
δm3A3. By keeping only terms that are of order 1/r (radiation fields) we get

∂jAm = δm3∂jA3

= δm3
µ0I0

2π cos θ
sin

(
k`

2
cos θ

)
∂j

(
exp(ikr − iωt)

kr

)
+O(1/r2).

Here we have used that derivatives of the angular part will not contribute to 1/r terms
in ∂jAm (show this!). In fact there is only one term that contributes to the 1/r terms
and that comes from the derivatives of the exponential function. This is seen as follows:

∂jAm = δm3∂jA3

= δm3
µ0I0

2π cos θ
sin

(
k`

2
cos θ

)
ikj kr − kj

(kr)2
exp(ikr − iωt) +O(1/r2)

= δm3
µ0I0

2π cos θ
sin

(
k`

2
cos θ

)
ikj

exp(ikr − iωt)
kr

+O(1/r2)

= ikjAm +O(1/r2).

Hence, it follows that

[∇×H(r, t)]i =
i

µ0
εijkεklmkl∂jAm +O(1/r2)

= εijkikj

(
i

µ0
εklmklAm

)
+O(1/r2)

= εijkikjHk +O(1/r2)

= [ik ×H(r, t)]i +O(1/r2),
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so that in the far field one has (i.e. to order 1/r)

∇×H ≈ ik ×H(r, t). (1)

With this results it follows directly from Amperes law that the electric field in the far
field (the electric radiation field) is:

E(r, t) = − k

ωε0
×H(r, t)

= − k

ωµ0ε0
× (ik ×A(r, t))

=
−i

ωµ0ε0
k × (k ×A(r, t)).

h)

〈S〉t =
1

2
E ×H∗, E =

−1

ωε0
k ×H

=
−1

2ωε0
(k ×H)×H∗

=
1

2ωε0
H∗ × (k ×H)

=
1

2ωε0

{
k|H|2 −H(H∗ · k︸ ︷︷ ︸

=0

)
}

= |H|2 k

2ωε0

=
1

2cε0
|H|2k̂

=
cµ0
2
|H|2k̂

=
cµ0
2

1

µ20
k2|A|2 sin2(θ)k̂

=
c

2µ0
k2|A|2 sin2(θ)k̂

i)
dP

dΩ
= |〈S〉t| · r2

=
c

2µ0
k2

µ20
22π2

I20
cos2(θ)

sin2(k` cos θ/2)
r2

k2r2
sin2(θ)

=
cµ0
8π2

I20 sin2(k` cos θ/2) tan2(θ)

j) For small x we have sinx ≈ x.

dP

dΩ
=
cµ0
8π2

I20 sin2(k` cos θ/2) tan2(θ)

≈ cµ0
8π2

I20 (
k`

2
cos θ)2 tan2(θ)

=
cµ0
8π2

I20
k2`2

4
sin2 θ
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Figure 1: Radiation pattern, NOTE: z-axis along the line 0◦ − 180◦

k) This radiation pattern is the same as for a small dipole, Figure 1.


