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NTNU Institutt for fysikk

Contact during the exam:
Professor Ingve Simonsen
Telephone: 9 34 17 or 470 76 416

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY
May 16, 2013
09:00–13:00

Allowed help: Alternativ C
Authorized calculator and mathematical formula book

This problem set consists of 4 pages, plus an Appendix of one page.

This exam consists of three problems each containing several sub-problems. Each of the sub-
problems will be given approximately equal weight during grading (if nothing else is said to
indicate otherwise). It is estimated that problem three is the most time consuming to answer.
Problem two may seem long, but there is actually not so much calculations required to answer
it.

I (or a substitute) will be available for questions related to the problems themselves (though
not the answers!). The first round (of two), I plan to do a round 10am, and the other one,
about two hours later.

The problems are given in English only. Should you have any language problems related to
the exam set, do not hesitate to ask. For your answers, you are free to use either English or
Norwegian.

Good luck to all of you!
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Problem 1.
In this problem, we study the continuous time random walk (CTRW) model characterized by
the (joint) jump-distribution

ψ(x, t) = N exp

(
−|x|
a
− t

τ

)
. (1)

In Eq. (1), x denotes the jump-size and t the waiting time of the CTRW process, and N , a
and τ are all positive constants.

a) Determine the constant N , when assuming a and τ to be given. Obtain expressions
for the marginal distributions for jump-size and waiting time, denoted px(x) and pt(t),
respectively.

b) Explain why the CTRW process characterized by Eq. (1) is an ordinary diffusive process.
Determine the corresponding diffusion constant, D.

Problem 2.
Here we will study a surface growth model where atoms from some external source absorb onto
a surface and absorbed atoms can evaporate. Depending on the nature of the incident flux, the
mobility of the adatoms, and relaxation mechanisms, a wide variety of surface morphologies
can arise.

A surface is characterized by its height from a reference plane x3 = H(x‖, t), as a function
of transverse (in-plane) coordinate x‖ = (x1, x2, 0) and time t. Here we have defined a
coordinate system where the x1x2 plane is parallel to the mean (plane) surface, and the
x3-axis is perpendicular to this plane and pointing upward.

It is more convenient to consider deviations of the surface from its average height (
〈
H(x‖, t)

〉
),

so we define

h(x‖, t) = H(x‖, t)−
〈
H(x‖, t)

〉
. (2)

The particular surface growth model that will be consider here is described by the so-called
Edwards-Wilkinson equation

∂h(x‖, t)

∂t
= D∇2h(x‖, t) + η(x‖, t), (3)

where D is a positive constant. In Eq. (3), η(x‖, t) denotes a noise term that is assumed to
be Gaussian with zero mean, independent of h, and spatially and temporally uncorrelated,
i.e. 〈

η(x‖, t)
〉

= 0 (4a)〈
η(x‖, t)η(x′‖, t

′)
〉

= 2Γδ(x‖ − x′‖)δ(t− t
′), (4b)

where Γ > 0 is a constant. Hence, Eq. (3) represents a diffusion equation with noise.

Comment: Viewed as a surface evolution model, the Laplace operator in Eq. (3) is positive
near local surface minima (positive curvature) and negative near local maxima (negative



Exam in TFY4275/FY8907 Classical Transport Theory, May 16, 2013 Page 3 of 4

curvature). Thus the Laplacian tends to smooth a surface and mimics the influence of the
surface tension.

The purpose of this problem, is to study some of the statistical properties of the growing
surface. For simplicity we will restrict ourselves to one-dimensions in space and let x denote
the lateral (in-plane) spatial coordinate1 In particular, we will be interested in the time-
evolution of the surface width that we defined as

w(t) =
√
〈h2(x, t)〉. (5)

Initially it is assumed that the surface is flat, i.e., h(x, t = 0) = 0.

a) Use dimensional analysis to show that the non-trivial scaling relation for the width
(squared) is

w2(t) = DtF (κ), (6)

where F (·) is an unknown, dimensionless function. Identify the function argument κ in
terms of the parameters of the problem.

b) Use the linearity of the Edwards-Wilkinson equation (3) to determine the functional
form of F (·) up to a constant.

Hence, dimensional analysis and linearity are alone capable of determining the form of the
surface width up to a constant. We now aim at, by direct calculations of the surface width,
to verify this result and to obtain the unknown constant.

c) Use the propagator, p(x, t|x0, t0), of the diffusion equation, also called the fundamental
solution (see the appendix and/or Eq. (9)), to write down a general solution, h(x, t), of
the Edwards-Wilkinson equation (3). State the physical reasons for the expression you
give. Note that your answer will contains some integrals, but you are not expected to
evaluate them in this sub-problem.

d) Use your expression for h(x, t) to explicitly calculate the surface width w2(t). Is your
result consistent with what was found above by dimensional analysis?

Problem 3.
In this problem, we will be concerned with diffusion in one-dimension, but the diffusion
“constant” may potentially be spatially dependent.

a) State Fick’s two laws of diffusion, and use them to obtain the diffusion equation for a
system of a general, potentially spatially dependent, diffusion constant D(x).

In the rest of this problem, we will limit ourselves to the following special form for the diffusion
constant:

D(x) =

{
D−, x < 0

D+, x ≥ 0
, (7)

whereD± are positive constants (D± > 0). Furthermore, we will assume (the initial condition)
that at t = 0 the particles are at x = x0 > 0.

1Strictly speaking, the amplitude of the noise (see Eq. (4)), have different units in one and two-dimensions.
Since it will cause no confusion, we will still denote the noise amplitude in one-dimension by Γ.
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b) State the boundary conditions that the solution of the diffusion problem, p(x, t|x0, 0),
should satisfy at (i) x = ±∞ and at (ii) x = 0. Give reasons for your answers.

We will below use these boundary conditions to analytically solve this diffusion problem. To
this end, we will assume a solution of the form

p(x, t|x0, 0) =

{
A−p−(x, t|x0, 0), x < 0

A+p+(x, t|x0, 0), x ≥ 0
, (8)

where A± are unknown functions independent of space (but potentially dependent on time),
and p±(x, t|x0, 0) are the fundamental solutions of the (one-dimensional) diffusion equation
with diffusion constants D± everywhere in space, i.e.

p±(x, t|x0, 0) =
1√

4πD±t
exp

(
−(x− x0)2

4D±t

)
, (9)

where p±(x, 0|x0, 0) = δ(x − x0). Since the form (8) automatically satisfies the boundary
conditions at x = ±∞, the remaining boundary condition is the one at x = 0.

Before we embark on the analytic solution of this problem, we will consider a property that
the solution should satisfy.

c) Since the initial condition is, p(x, 0|x0, 0) = δ(x − x0), with x0 > 0, one should expect
that p(x, t|x0, 0) ≈ p+(x, t|x0, 0) for sufficiently short time t � t∗ (for some constant
t∗ to be determined). From general principles, obtain an expression for t∗ and express
your answer in terms of x0 and D+.

Now we will try to obtain an analytic expression for the solution p(x, t|x0, 0) of our diffusion
problem.

d) Use the boundary condition at x = 0 to obtain a relation between A+ and A−, and
express A− in terms of A+. Check explicitly your answer in the limit D+ = D−. Is the
answer as expected?

[Answer :

A− = A+

√
D−
D+

exp

{
(D+ −D−)x20

4D+D−t

}
.

This expression you should derive, but we give you the answer here so that the remaining
sub-problems can still be completed even without answering this one correctly.]

e) With the relation for A− in terms of A+, write down the expression for the solution
p(x, t|x0, 0). Explicitly demonstrate that for time t � t∗ (with your expression for t∗),
the solution satisfies p(x, t|x0, 0) ≈ p+(x, t|x0, 0).

f) (Double weight) Finally, obtain an expression for A+. Express you answer in terms of
the error-function (see appendix), erf(·), the constants x0 and D± as well as t. Check
you answer in the special case where D+ = D−.

[Are you not able to obtain A+, or should you not have time to do so, explain, for
partial credit, how you in principle would proceed with the calculation.]
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Appendix

• The error function (x ≥ 0):

erf(x) =
2√
π

∫ x

0
dχ exp

(
−χ2

)
• Properties of erf(x): erf(−x) = −erf(x) (odd function); erf(0) = 0; erf(±∞) = ±1;

• The complementary error function

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

dχ exp
(
−χ2

)
• Gaussian integrals∫ ∞

−∞
dx exp

(
−ax2 − 2bx

)
=

√
π

a
exp

(
b2

a

)
, a > 0

• Integrals of integrands containing exponential functions∫ ∞
0

dxxn exp(−ax) =
n!

an+1
; a > 0; n = 0, 1, 2 . . .

• The fundamental solution of the diffusion equation:

p(x, t|x0, t0) =
1√

4πD(t− t0)
exp

(
− (x− x0)2

4D(t− t0)

)
,


