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NTNU Institutt for fysikk

Contact during the exam:
Professor Ingve Simonsen
Telephone: 9 34 17 or 470 76 416

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY
May 28, 2014
09:00–13:00

Allowed help: Alternativ C
Authorized calculator and mathematical formula book

This problem set consists of 6 pages, plus an Appendix of one page.

This exam consists of three problems each containing several sub-problems. Each of the sub-
problems will be given approximately equal weight during grading (if nothing else is said to
indicate otherwise). It is estimated that problem three is the most time consuming to answer.
Problem two and three may seem long since that have a lot of text, but there is actually
not so much time consuming calculations required to answer them. Note also that it may
be possible to answer later sub-problems even if you were not able to answer correctly all
previous sub-problems.

I (or a substitute) will be available for questions related to the problems themselves (though
not the answers!). The first round (of two), I plan to do around 10am, and the other one,
about two hours later.

The problems are given in English only. Should you have any language problems related to
the exam set, do not hesitate to ask. For your answers, you are free to use either English or
Norwegian.

Good luck to all of you!
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Problem 1.
Consider a discrete-time random walk so that the position after N steps is given by

xN =
N∑

n=1

ξn. (1)

Here, as for any random walk process, the jumps ξn are assumed to be statistically independent
random variables. Moreover, we here also assume them to be drawn for the same probability
distribution function.

The jump size (or step length) distribution for a single jump, p(ξ), is defined by the charac-
teristic function

G(k) = p̂(k) = exp (− |k|). (2)

a) Define what is meant by a characteristic function. Determine a mathematical expression
for the jump size distribution p(ξ).

b) Derive an expression for the distribution of the position xN of the walker, pN (xN ), valid
for any number of steps N > 0.

c) Determine the behavior of the mean-square displacement
〈
x2
N

〉
in the limit N � 1.

What is this class of random walk processes called?

d) Identify the scaling relation that expresses pN (xN ) in terms of p(ξ) [i.e. pN (xN ) ∝ p(ξ′)
where ξ′ ∝ ξ]. With such a scaling relation, pN (xN ) is uniquely determined in terms of
p(ξ). What are distributions of such properties called, and why?

e) Determine how the width of the distribution pN (xN ) increases with increasing N .

Problem 2.
This problem is devoted to the so-called Holtsmark distribution that was mentioned in the
lectures. It is a specific distribution from the Levy family with α = 3/2 and β = 0. In 1919,
Norwegian physicist Johan Peter Holtsmark (1894–1975), who later became a professor at the
Norwegian Institute of Technology (now NTNU), proposed this distribution as a model for
the fluctuating fields in plasma due to chaotic motion of charged particles. It is also applicable
to other types of Coulomb forces, in particular to modeling of gravitating bodies, and thus is
important in astrophysics. We will in this problem take the latter physical application and
derive the Holtsmark distribution.

A physical realization of a random walk with a broad distribution of displacements arises in
the distribution of gravitational fields — the Holtsmark distribution — that is generated by
a random distribution of matter.

Consider an infinite system of stars that are randomly distributed with a uniform density
and with no correlations in spatial positions. We want to compute the distribution of the
gravitational force acting on a single “test” star that we take to be located at the origin with
no loss of generality. For simplicity, suppose that stars have equal masses (the general case
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of random star masses can also be treated, but the formulae become more cluttered). We are
interested in the distribution of the random variable:

F =
∑

fj (3a)

where

fj = GM
rj
r3
j

(3b)

Here rj is the location of the jth star; fj is the force on the test star; G is Newton’s gravita-
tional constant; and M is the mass of each star. We ignore the factor GM henceforth; it can
be easily restored in the final results on dimensional grounds.
We may interpret (3) as an infinite random walk with a broad distribution of (vector) steps
fj . It is convenient to begin with a finite system and then take the thermodynamic limit.
Specifically, consider a sphere of radius R with the center at the origin. The number of stars
in this sphere is close to N = nV , where n is the density of stars and V = (4/3)πR3. We
first want to determine the finite sum

FN =
N∑
j=1

fj . (4)

a) Show that the probability distribution of FN is given by the N -fold integral

pN (FN ) =

∫
d3r1

V

d3r2

V
. . .

d3rN
V

δ

 N∑
j=1

fj − FN

 . (5)

b) Obtain the characteristic function of pN (FN ), denoted GN (kN ), and show that it can
be expressed in terms of

1− 1

V

∫
ΩR

d3r
[
1− exp (ikN · f)

]
, (6)

where ΩR is a spherical volume of radius R centered at the origin, and f = r/r3.
Moreover, recall that we for simplicity have put GM = 1.

Take the thermodynamic limit of GN (kN ), that is, take the limits N →∞ and V →∞, but
so that N/V = n remains finite, non-zero and constant.

c) Demonstrate that in the thermodynamic limit, one obtains the characteristic function
GN (kN )→ G(k) (and FN → F)

G(k) = exp

[
−n
∫

d3r
(

1− eik·f
)]

(7)

where the integral in Eq. (7) is over all of space.

The final force distribution (in the thermodynamic limit) — the Holtsmark distribution — is
therefore given by

p(F) =
1

(2π)3

∫
d3k exp [−ik · F− nΦ(k)] , (8a)
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where we have used the shorthand notation

Φ(k) =

∫
d3r

(
1− eik·f

)
, f =

r

r3
. (8b)

To obtain explicit results for p(F) we must now compute the integral in Eq. (8b) and then
invert the Fourier transform (8a). However, we can determine the dependence of Φ(k) on k
without calculation.

d) Demonstrate that

Φ(k) = ak3/2 (9)

where a is some constant [Hint : show first that Φ(k) = Φ(k)].

Together, Eqs. (8) and (9) define the Holtsmark distribution of gravitational fields due to a
random distribution of matter. A tedious, but in principle straight forward calculation that
you are not asked here to perform, shows that a = (4/15)(2π)3/2.

Problem 3.
In this problem, we will be concerned with the three dimensional Lorentz gas model for which
non-interacting classical particles (electrons) move among randomly distributed immobile
hard spheres (atoms) of radii a. The electrons do not interact with each other and are
elastically scattered by the hard spheres. Consequently, only the direction of the electron
velocity v, and not its magnitude, changes in a collision.

For the Lorentz gas model the Boltzmann equation takes the (linear) form (as shown in the
lectures) 1 (

∂

∂t
+ v · ∂

∂r

)
f(r,v, t) =

1

τ

{
[Pf ] (r,v, t)− f(r,v, t)

}
(10a)

with a projection operator defined via2

[Pf ] (r,v, t) =

∫
dv̂

4π
f(r,v, t), (10b)

where f(r,v, t) denotes the probability density to find an electron at position r with velocity
v at time t. In Eq. (10), 1/τ = v/` is the collision frequency; ` = (nπa2)−1 is the mean free
path (n is the density of hard spheres); and v̂ = v/v with v = |v|. Equation (10) is often
referred to as the (three dimensional) Boltzmann-Lorentz equation.

In the lectures we used the Boltzmann-Lorentz equation (10) to obtain the distribution of
velocities

F (v, t) =

∫
d3r f(r,v, t), (11)

and subsequently used the so-called Einstein-Green-Kubo relation3 to derive an expression
for the diffusion constant that is associated with the three dimensional Lorentz gas model.

The purpose of this problem is solve the Boltzmann-Lorentz equation for the (full) probability
density f(r,v, t), and to base an alternative derivation of the diffusion constant, D, on it.

1Here ∂
∂r

denotes the nabla operator ∇.
2The integration over v̂ means that we integrate over the direction of the unit vector v̂, that is, the solid

angle in velocity space.
3Derived in the exam set for 2012 for this class.
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a) In your own words, explain the meaning of the left and right hand side of Eq. (10a).
What is the meaning of the operator [Pf ] (r,v, t) defined in Eq. (10b), and what is the
physical reason for its presence in the three dimensional Boltzmann-Lorentz equation,
Eq. (10a).

We will now try to solve the Boltzmann-Lorentz (BL) equation, Eq. (10a) for the probability
density f(r,v, t). The linearity of the BL equation suggests using the Laplace transform in
time, as we are interested in t ≥ 0, and the Fourier transform in space, as we consider the
entire three-dimensional space R3. The Fourier-Laplace transform of the function f(r,v, t) is
defined as

˜̂
f(k,v, s) =

∫ ∞
0

dt e−st
∫ ∞
−∞

d3r f(r,v, t) e−ik·r. (12)

b) Use the Fourier-Laplace transform technique to obtain a mathematical expression for
˜̂
f(k,v, s). Show that it can be written in the form

˜̂
f(k,v, s) =

τ−1

τ−1 + s+ ik · v

[
P ˜̂
f
]

(k,v, s) + φ0(k,v, s), (13)

and identify the function φ0(k,v, s). In your derivation, use the initial condition
f(r,v, t = 0) = f0(r,v) with f0(r,v) a known function.

c) (Double weight) To complete the solution, one needs an expression for P ˜̂
f . Show that

the equation satisfied by P ˜̂
f reads4

P ˜̂
f =

[
1

kvτ
arctan

(
kvτ

sτ + 1

)]
P ˜̂
f + Pφ0, (14)

and use it to establish that in the Fourier-Laplace space the probability density f(r,v, t)
satisfies, for an arbitrary initial condition, the equation

˜̂
f(k,v, s) =

τ−1

τ−1 + s+ ik · v

[
1− 1

kvτ
arctan

(
kvτ

sτ + 1

)]−1

[Pφ0 ] (k,v, s) + φ0(k,v, s).

(15)

Inverting the exact solution (15) to obtain f(r,v, t), is hard even for the isotropic initial
condition (like f(r,v, t = 0) = δ(r)δ(v − v0)/(4πv2

0)). Nevertheless, the Fourier-Laplace
transform allows one to extract the diffusion coefficient. In the hydrodynamic regime of large
spatial and temporal scales, the density

ρ(r, t) =

∫
d3v f(r,v, t) ∼ Pf (16)

should evolve according to the ordinary diffusion equation

∂ρ(r, t)

∂t
= D∇2ρ(r, t). (17)

4For not to clutter the notation, we have here suppressed the function arguments (k,v, s).
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d) Obtain an expression for the Fourier-Laplace transformed density, ˜̂ρ(k, s), under the
assumption of an initial condition ρ(r, t = 0) = δ(r).

From the generic form of ˜̂ρ(k, s) one may extract the diffusion constant, D, by taking the
hydrodynamic limit of Eq. (15). It is recalled that in the hydrodynamic limit, t� τ .

e) In the hydrodynamic limit argue why s ∼ t−1 and k ∼ t−1/2, and together with t � τ
(hydrodynamic limit), show that in this limit it follows that τ−1 � s and τ−1 � kv.
Introduce these results into Eq. (15) and show that it takes the form

˜̂
f(k,v, s) =

[
1− 1

kvτ
arctan

(
kvτ

sτ + 1

)]−1

[Pφ0 ] (k,v, s) + φ0(k,v, s). (18)

Also identify the expression for φ0(k,v, s) valid in the hydrodynamic limit.

f) Finally deduce the diffusion constant, D, by comparing the scaling forms of ˜̂ρ(k, s) and
˜̂
f(k,v, s) in the hydrodynamic limit. [Hint expand the expression in the square brackets
of Eq. (18).]
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Appendix

• ∫
ecx cos bx dx =

ecx

c2 + b2
(c cos bx+ b sin bx) (19)

• ∫ ∞
0

e−ax cos bxdx =
a

a2 + b2
(a > 0) (20)

• ∫ 1

−1

dx

a+ ibx
=

2

b
arctan

(
b

a

)
(a, b > 0) (21)


