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This solution consists of 7 pages.

Problem 1. “Icelandic” ash problem

a) The main transport mechanisms are advection and convection. Diffusion plays only a
minor role.

b) The diffusion-advection equation reads

∂c(r, t)
∂t

+ ∇ [c(r, t)v] = D∇2c(r, t) (1)

c) Here it is simplest to make the following change of variables

R = r− rs − v(t− ts),
T = t− ts.

To simplify the notation let R = (X,Y ). Hence it follows that ∂
∂x = ∂X

∂x
∂
∂X so that

∇ = ∇R.

Moreover, it readily follows that since both T and R depend on time t

∂

∂t
=
∂T

∂t

∂

∂T
+ (∇ ·R) ∇R,

=
∂

∂T
− v ·∇R.

Substituting these results into the diffusion-advection equation and using that P (R, T ) ≡
p(r, t|rs, ts) it follows that Eq. (1) is converted into an ordinary diffusion equation in R
and T which has the solution

P (R, T ) =
1

4πDT
exp

{
− R2

4DT

}
. (2)

From this expression it is straight forward to show that Eq. (2) fulfills the two-dimensional
ordinary diffusion equation.
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The meaning of rs and ts in the expression for p(r, t|rs, ts) is the source location and
time when the (δ-function) source was active. The initial condition that this function
satisfies is

lim
t→ts

p(r, t|rs, ts) = δ(r− rs), (3)

while the boundary condition is

lim
|r−rs|→∞

p(r, t|rs, ts) = 0. (4)

d) The propagator, p(r, t|rs, ts), gives the response of the system at an arbitrary position
r and time t > ts to a delta function source located at the source point rs that was
turned on at time ts and turned off shortly thereafter. Due to causality one must have
that p(r, t|rs, ts) = 0 for t < ts —that is, “no effect before the cause”.

e) Let us assume that time t satisfies t0 ≤ t < t1. During this period the (dust) source term
coming from the volcano (located at rs) will be time independent and can be written as

A(r, t) = A0δ
2(r− rs)

= A0δ
2(r− rs)

∫
dt′ δ(t− t′), (5)

that is, a sum of delta-function sources of the same strength. Therefore, the dust
concentration c(r, t) will be given by the following integral

c(r, t) =
∫

R2

d2r′
∫ t

t0

dt′ p0(r, t|r′, t′)A(r′, t′)

= A0

∫ t

t0

dt′ p0(r, t|rs, t′), t0 ≤ t < t1, (6)

where p0(r, t|rs, ts) denotes the propagator, Eq. (1) of the problems set, but with v = 0.
Note that the spatial integration here is trivial since the source is localized at the position
of the volcano. Eq. (6) can be viewed as a sum, i.e. superposition, of fundamental
solutions corresponding to different times.

f) For time t > t1 the wind starts to play a role (v 6= 0). Hence, an advaction term
will appear, and as a result, the propagator will be different from p0(r, t|rs, ts) (since
v 6= 0). We will in this case denote it by p1(r, t|rs, ts) and the mathematical form is
that of Eq. (1) of the problems set.

In this case the source term will consist of two terms; One term is due to the ash that
is emitted from the volcano after t > t1. This terms will spread out in a way similar
to Eq. (6), but with the important difference that the propagator now is p1(r, t|rs, ts)
instead of p0(r, t|rs, ts). The second term, however, will result from the spread of the
now spatially distributed ash as it appeared at time t = t1, that is, c(r, t = t1) as given
by Eq. (6). Due to the spatially distribution of c(r, t = t1), the source term in this case,
we will now have a non-trivial spatial integral. Since for this latter case, the source
term does not inject more ash, no time-integration will be needed.
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Hence the ash concentration valid for t > t1 results from adding the two terms mentioned
above in order to obtain

c(r, t) = A0

∫ t

t1

dt′ p1(r, t|rs, t′) +
∫

R2

d2r′ p1(r, t|r′, t1)c(r′, t1)

= A0

[∫ t

t1

dt′ p1(r, t|rs, t′) +
∫

R2

d2r′ p1(r, t|r′, t1)
∫ t1

t0

dt′ p0(r′, t1|rs, t′)
]
. (7)

Problem 2. Langevin equation

a) The Langevin equation is the equation of motion (Newtons law) for a small particle
where the result of the many interactions with even smaller particles of the surrounding
medium is given in terms of a stochastic force. The Langevin equation is used for
stochastic systems.

b) Applying Newton’s 2nd law to the particle results in

mẍ = −F(t) + S(t),

and after dividing this equation through by m, using the given expression for the friction
force F(t), and finally introducing the velocity, it reads

v̇(t) + γv(t) = ξ(t), (8)

where ξ(t) = S(t)/m is the scaled stochastic force. Equation (8) is the final expression
for the Langevin equation for the particle.

c) The formal solution of Eq. (8) consists of the sum of a homogeneous solution, vH(t),
and a particular solution, vP (t). The homogeneous solution is easily obtained as

vH(t) = v0 e
−γt.

However, one particular solution is given by

vP (t) = e−γt
∫ t

0
dt′ eγt

′
ξ(t′),

as can be shown by substituting this expression into the Langevin equation. [Alterna-
tively you may assume a form of the solution v(t) = u(t) e−γt where u(t) is an unknown
function to be determined.] Hence, the general solution becomes

v(t) = vH(t) + vP (t)

= v0 e
−γt + e−γt

∫ t

0
dt′ eγt

′
ξ(t′), (9)

which was the expression that one was asked to derive.

d) On physical grounds it is reasonable to expect that the system is isotropic. This has
the consequence that 〈S(t)〉 = 〈ξ(t)〉 = 0.
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e) From Eq. (9) it follows that

〈v(t)〉 = v0 e
−γt + e−γt

∫ t

0
dt′ eγt

′ 〈
ξ(t′)

〉
= v0 e

−γt,

where we have used that 〈ξ(t)〉 = 0.

Moreover, one has that

δv(t) = v(t)− 〈v(t)〉

= e−γt
∫ t

0
dt′ eγt

′
ξ(t′),

so that 〈
[δv(t)]2

〉
=
〈
e−2γt

∫ t

0
dt′ eγt

′
ξ(t′)

∫ t

0
dt′′ eγt

′′
ξ(t′′)

〉
= e−2γt

∫ t

0
dt′ eγt

′
∫ t

0
dt′′ eγt

′′ 〈
ξ(t′)ξ(t′′)

〉
= e−2γt

∫ t

0
dt′
∫ t

0
dt′′ eγ(t

′′+t′)W (t′′ − t′)
m2

.

Now making a change of variable τ = t′′ − t′ and using that the stochastic force is
assumed to be stationary, one arrives at the final result〈

[δv(t)]2
〉

=
e−2γt

m2

∫ t

0
dt′ e2γt

′
∫ t−t′

−t′
dτ eγτW (τ). (10)

f) The equipartition theorem states that every quadratic term in the Hamiltonian of the
system will contribute a factor kBT/2 to energy of the system when it is in thermal
equilibrium. When t → ∞, the system should be in thermal equilibrium, so that the
equipartition theorem should apply.

The quadratic terms in the Hamiltonian in this case corresponds to the kinetic energy,
K = m[δv(t)]2/2, so one should have with Eq. (10) that

3
2
kBT = lim

t→∞
〈K〉

= lim
t→∞

〈
1
2
m [δv(t)]2

〉
= lim

t→∞

e−2γt

2m

∫ t

0
dt′ e2γt

′
∫ t−t′

−t′
dτ eγτW (τ).

[Note that limt→∞
〈
v2(t)

〉
= limt→∞

〈
[δv(t)]2

〉
since limt→∞ 〈v(t)〉 = 0.] Rearranging

this equation results in the expression that should be derived, i.e.

3kBT m = lim
t→∞

e−2γt

∫ t

0
dt′ e2γt

′
∫ t−t′

−t′
dτ eγτW (τ). (11)



Solution TFY4275/FY8907 Classical Transport Theory, Jun 08, 2010 Page 5 of 7

g) Due to the finite correlation time of the correlation function W (τ) the integrand of the
second integral will vanish whenever |τ | ≥ τ0. Therefore, without loss of generality, the
integration limits of the second integral can be set to ±∞ so that it becomes

I2(t) =
∫ ∞
−∞

dτ eγτW (τ),

which is independent of t′, and the two integrals, as a result, have been decoupled.
Under the assumption that γτ0 � 1 the exponential function appearing in I2(t) can be
set equal to one with the result that

I2(t) =
∫ ∞
−∞

dτ W (τ).

The first integral can now be calculated analytically to produce

I1(t) =
∫ t

0
dt′ e2γt

′
=

1
2γ
[
e2γt − 1

]
.

Hence, by substituting these results for I1(t) and I2(t) back into Eq. (11) one finds

3kBT m = lim
t→∞

e−2γtI1(t)I2(t)

=
1

2γ

∫ ∞
−∞

dτ W (τ),

and after solving this expression for γ one obtains

γ =
1

6kBT m

∫ ∞
−∞

dτ W (τ), (12)

which is the final results.

Equation (12) determines the friction coefficient, γ, in terms of the stochastic properties
of the fluctuating force S(t). So, by studying the stochastic force, one may obtain
information on the friction coefficient.

At equilibrium, the energy that the particle looses via the friction term as heat (dissi-
pation) to the bath is exactly balanced by that being gained by the particle as kinetic
energy taken up from the bath via the stochastic force. This is a feature of the so-called
fluctuation-dissipation theorem.

Problem 3. Student random walk

a) The characteristic function, φ(k), of a general pdf, p(x), is defined via the Fourier
transform as

φ(k) =
〈
e−ikx

〉
=
∫ ∞
−∞

dx p(x)e−ikx. (13)
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b) According to the definition of the characteristic function, Eq. (13), it follows that we
have to calculate the integral

φ(k) =
∫ ∞
−∞

dx
Ae−ikx

(1 + x2)2
. (14)

The simplest way to evaluate this integral is to note that the integrand can be written
as

e−ikx

(1 + x2)2
=

e−ikx

(x− i)2(x+ i)2
, (15)

which means that it has poles of order two at x = ±i. Thus, we will calculate the
integral using the residue theorem.

Let us start by considering the case where k < 0. By closing the integration contour by
a half-circle in the upper half-plane, the contour will encompass the poles at x = i and
make the integration along the semi-circle vanish so that only the integration along the
real axis survives. Hence, one has that

φ(k) = A

∫ ∞
−∞

dx
e−ikx

(x− i)2(x+ i)2
,

= 2πiARes
(

e−ikx

(x− i)2(x+ i)2
;x = i

)
= 2πiA

d

dx

(
e−ikx

(x+ i)2

)∣∣∣∣
x=i

=
Aπ

2
ek (1− k)

=
Aπ

2
e−|k| (1 + |k|) . (16)

For the case when k > 0 the integration contour has to be closed in the lower half-plane,
and the calculation is analogous to what was just shown above. However, note that
an extra minus sign has to be included that steams from the direction of integration
(negatively oriented closed path) . Anyhow, the result is that also for k > 0 the
characteristic function is given by Eq. (16). Hence the form of the characteristic function
is proven. In passing we note that alternatively one for the case k > 0 could have made
a change of variable y = −x in the integral and mapped it onto the that of the case
k < 0.

c) From Eq. (13) it follows that for k = 0 one has

φ(0) =
∫ ∞
−∞

dx p(x) = 1,

where the last relation follows from the fact that p(x) is a pdf and therefore has to be
normalized. Thus, the constant A becomes

A =
2
π
.
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To get the average 〈x〉 we simply argue that it should be zero since p(x) is symmet-
rically distributed around zero. [The integrand is a product of a symmetric and an
antisymmetric term integrated over a symmetric interval].

An alternative way of arriving at the same result is to Taylor expand φ(k) to obtain

φ(k) =
[
1− |k|+ k2

2
− . . .

]
[1 + |k|]

= 1− k2

2
+ . . . .

Thus, one may conclude that 〈x〉 = 0, but also that σ2 = 1. This latter result follows
from taking successive derivatives with respect to k of the characteristic function as
outlined in the lecture notes, i.e.

〈xn〉 =
1

(−i)n
dn

dkn
φ(k)

∣∣∣∣
k=0

.

d) Since the variance for the step size distribution is finite, the random walk process is
ordinary diffusion.

e) Since the characteristic functions of independent random increments multiply when
adding the corresponding random variables, one has that

pN (x) =
1

2π

∫ ∞
−∞

dk φN (k)eikx

=
1

2π

∫ ∞
−∞

dk e−N |k| [1 + |k|]N eikx.

f) In the limit |x| → ∞ we have that

p(x) ∼ 2
πx4

, |x| → ∞.

Hence, from the addition theorem of power-laws one has that the asymptotic limit of
pN (x) should be

pN (x) ∼ 2N
πx4

, |x| → ∞. (17)

To realize that this addition law is correct follows from the small k dependence of the
characteristic function φN (k) (which governs the tail of the pdf pN (x)).

When |k| � 1 one has that

φN (k) =
[
1− k2

2
+ . . .

]N
' 1−N k2

2
+ . . . , (18)

which should be compared with the small |k| expansion for φ(k) that is similar to that
of Eq. (18) except for the pre-factor N of the second term. Hence, the power law tail
(for large |x|) of pN (x) will be that of p(x), but multiplied by N .

This result can be derived more rigorously for any power-law tail behavior, and the
result is known as the addition theorem of power-law tails.


