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Problem 1.
a) Two examples of diffusion problems under windy conditions or in a river. The situation

q− 6=+ is generally true when advection is playing a role (in addition to diffusion).

By considering the “flow” of particles into node n from time t to t + ∆t (see lecture
notes for details):

P (n, t+ ∆t) = P (n, t) [1− q+ − q−] + P (n− 1, t)q+ + P (n+ 1, t)q−. (1)

b) Now we take the limit ∆t → 0. To this end, we expand the left-hand-side of Eq. (1)
around time t to first order to obtain

P (n, t) + ∆t
∂P (n, t)
∂t

+O(∆t2) = P (n, t) [1− q+ − q−] + P (n− 1, t)q+ + P (n+ 1, t)q−.

(2)

Now by introducing, q± = k±∆t, into the above equation, and dividing the result by
∆t, one is lead to

∂P (n, t)
∂t

= k−P (n+ 1, t) + k+P (n− 1, t)− [k− + k+]P (n, t), (3)

which is what we should show.

c) To take the continuous spatial limit, we let n∆x→ x, where x is the continuous spatial
coordinate. In this limit, P (n, t) should be interpreted as the probability of being in
an interval of length ∆x about n∆x. Hence, we have the relation P (n, t) = f(x, t)∆x
[and (P (n ± 1, t) = f(x ± ∆x, t)∆x] from which it follows from Eq. (3) after Taylor
expanding f(x±∆x) to second order around x

∂f(x, t)
∂t

= −ν ∂f(x, t)
∂x

+D
∂2f(x, t)
∂x2

, (4a)

where

ν = (k+ − k−)∆x = (q+ − q−)
∆x
∆t

, (4b)
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and

D =
1
2

(k+ + k−)∆x2 = (q+ + q−)
∆x2

2∆t
. (4c)

The coefficients, ν and D, are physically interpreted as drift velocity and diffusion
coefficients, respectively [check the units].

d) In the special limit k− = k+ = k = q/∆t one obtains from Eqs. (4)(b) and (c) that

ν = 0, (5a)

and

D = k∆x2 = 2q
∆x2

2∆t
. (5b)

Notice that even though in Eq. (4a) assumed a continuous representation of position and
time, the nature of the physical problem implies that ∆x and ∆t are finite. The values
for ∆x and ∆t are of the order of the mean free path and mean free time, respectively.

Problem 2.

a) In order to obtain a differential equation for 〈n〉, we start by multiply Eq. (3) by n and
summing the resulting equation from −∞ to ∞. By using that

〈n〉 (t) =
∞∑
−∞

nP (n, t), (6)

we arrive at

∂ 〈n〉 (t)
∂t

= k+ − k−. (7)

Using a similar approach, where the only difference is that we now multiply by n2, leads
to the following equation:

∂
〈
n2
〉

(t)
∂t

= 2 〈n〉 (k+ − k−) + (k+ + k−). (8)

b) under the assumptions that 〈n〉 (t) and
〈
n2
〉

(t) are both zero at t = 0, we can solve
Eqs. (6) and (8) readily to obtain:

〈n〉 (t) = (k+ − k−)t, (9a)

and 〈
n2
〉

(t) = (k+ − k−)2t2 + (k+ + k−)t. (9b)

Hence, we get that 〈
δn2
〈

(t) =
〈
n2
〉

(t)− [〈n〉 (t)]2

= (k+ + k−)t, (10a)
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which is linear in time as expected for diffusion. Alternatively, this latter result can be
expressed in terms of the dimension-less probabilities q± as〈

δn2
〉

(t) = (q+ + q−)
t

∆t
= (q+ + q−)N, (10b)

where N = t/∆t is the number of steps of length ∆t corresponding to time t. In passing
we note that in the limit k− = k+, 〈n〉 (t) = 0 for all times and

〈
n2
〉

(t) ∝ t, also this as
expected.

c) The generating function is defined as

G(s, t) =
∞∑

n=−∞
P (n, t)sn, 0 < |s| ≤ 1. (11)

By multiplying the master equation (2) by sn and summing the resulting equation from
−∞ to ∞, one is arrives at

∂G(s, t)
∂s

= k+sG(s, t) +
k−
s
G(s, t)− (k− + k+)G(s, t). (12)

In arriving at this result we have used that the order of time-differentiation and sum-
mation do commute. Moreover, the terms of this equation containing P (n ± 1, t) have
been multiplied by s/s = 1 in order to get the “correct” powers of s to use the definition
of the generating function. For instance this means that

∑∞
−∞ P (n− 1, t)sn = sG(s, t).

Since, k± is a constant and s is independent of t the differential equation, (12) is solved
straightforwardly with the result

G(s, t) = exp
[(

k−
s

+ k+s− k− − k+

)
t

]
, (13)

where we have used that G(s, t = 0) = 1, due to the initial condition P (n, 0) = δn,0.
This result is that should be derived.

d) From the generating function, moments of the pdf, P (n, t) can be derived via〈
nk
〉

(t) =

[(
s
∂

∂s

)k
G(s, t)

]∣∣∣∣∣
s=1

. (14)

To show this, we start by noting that (assuming k ≤ n)

sk
∂kG(s, t)
∂sk

= sk
∂k

∂sk

∞∑
n=−∞

P (n, t)sn

= sk
∞∑

n=−∞
P (n, t)

∂k

∂sk
sn

= sk
∞∑

n=−∞
P (n, t)

n!
(n− k)!

sn−k

=
∞∑

n=−∞
P (n, t)sn

n!
(n− k)!
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This result is derived via induction, but will not done here.

By direct calculations, using Eq. (14), the results obtained in Eqs. (9a) and (9b) can be
re-established using the generating function method.

Problem 3.
a) For the diffusion problem in the half-space x ≥ 0, where the boundary is reflecting,

the proper boundary conditions (at x = 0) reads ∂xp(x = 0, t|x0, t0) = 0. Since the
domain Ω is only bounded at one side, the method of images, similar to what is used
in electro statics, can be used. This method amounts to removing the boundary, but
compensating for this action by placing a source term outside the region of interest so
that the proper boundary condition on the original boundary, ∂Ω, is satisfied for all
times. In our particular case, where the boundary is reflecting, the image source term
is placed in the region x < 0 at position x = −x0. Since we now have no boundary
(i.e. free-diffusion) the solution to the problem is the sum of the free-space propagators
from the two sources. The (conditional) probability density function for the half-space
problem reads

p(x, t|x0, t0) =
1√

4πD(t− t0)
exp

[
− (x− x0)2

4D(t− t0)

]
+

1√
4πD(t− t0)

exp
[
− (x+ x0)2

4D(t− t0)

]
, x ≥ 0. (15)

Obviously this is a solution of the diffusion equations, since each of the two terms,
satisfy the equations. Moreover, from this form it is also straightforward to show that
∂xp(x = 0, t|x0, t0) = 0, something that also shows the correctness of the assumption of
equal source strength for the source and image-source.

b) If we have two reflecting walls, at x = 0 and x = a <∞, the particles will be reflected
many times from the boundaries. In the long time limit, the probability of for finding
the particle anywhere in the interval 0 ≤ x ≤ a will be the same. Hence the probability
density function should be independent of x — a uniform distribution. Since it should
be a normalized function on the interval [0, a], it should satisfy

lim
t→∞

p(x, t|x0, t0) =
1
a
. (16)

This is what our physical intuition is telling us.

c) By direct calculations it follows readily, using the given expressions for vn(x) [Eq. (8)
in the exam set], that

D∂2
xvn(x) = λnvn(x), (17a)

with

λn = −D
(nπ
a

)2
, (17b)

for all n = 0, 1, 2, . . .. We also notice that

∂xvn(x) ∝ −nπ
a

sin
[
nπ

x

a

]
(18)

which all vanish at x = 0 (as they should).
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d) By substituting the expansion

p(x, t|x0, t0) =
∞∑
n=0

αn(t|x0, t0)vn(x), (19)

into the diffusion equation one gets,
∞∑
n=0

∂tαn(t|x0, t0)vn(x) = D

∞∑
n=0

αn(t|x0, t0)∂2
xvn(x) =

∞∑
n=0

αn(t|x0, t0)λnvn(x), (20)

where we have used the the time- and spatial-derivatives commute with the summation
over n. In the latest transition of Eq. (21) we have used the eigen-equation (17b).

Now multiplying Eq. (21) by vm(x), integrating the resulting equation from x = 0 to a,
leads to

∞∑
n=0

∂tαn(t|x0, t0) 〈vm|vn〉 =
∞∑
n=0

αn(t|x0, t0)λn 〈vm|vn〉 , (21)

and after using the orthonormality condition 〈vm|vn〉 = δmn gives the final differential
equation for the expansion coefficients

∂tαm(t|x0, t0) = λm αm(t|x0, t0). (22)

The solution of Eq. (23) is

αm(t|x0, t0) = eλm(t−t0)βm(x0, t0), (23)

where βm(x0, t0) is time-independent constants. The factor eλm(−t0) was included in
this way for later convenience, and you could have absorbed it into the definition of βm
if you so wished.

e) The initial condition for p(x, t|x0, t0) says that p(x, t0|x0, t0) = δ(x− x0) which implies
that

∞∑
n=0

βn(x0, t0)vn(x) = δ(x− x0). (24)

Again taking the scalar product with vm(x) and using the orthogonality condition results
in the determination of the coefficients βm(x0, t0) (assuming x0 ∈ [0, a]):

βm(x0, t0) = vm(x). (25)

Thus the final expression for the propagator becomes

p(x, t|x0, t0) =
∞∑
n=0

eλn(t−t0)vn(x0)vn(x). (26)

f) The long time limit of p(x, t|x0, t0) is easily derived by noticing that all λn < 0 for n > 0.
Hence when t→∞ only the term n = 0 will contribute (since λ0 = 0). Therefore, one
has that

lim
t→∞

p(x, t|x0, t0) = eλ0(t−t0)v0(x0)v0(x) =
1
a
. (27)

This results conforms our initial intuition, but now the result has been derived formally.
Moreover, with Eq. (26), the full time-development from the initial condition to the
long time limit can be studied.


