TFY4275 Classical Transport Theory Problemset 2 Spring 2013

Problem 1. Discrete Random Walk

In this problem, we will study a Discrete Random Walk with a continuous jump size distribution. As in the lectures, we will denote the position of the walker at (discrete) time t by $x(t)$. It is obtained as a sum of independent jumps

$$
\begin{equation*}
x(t)=\sum_{i=1}^{t} \xi_{i}, \quad t=1,2,3, \ldots \tag{1}
\end{equation*}
$$

where the size of the jumps ξ_{i} are assumed to be statistically independent and distributed uniformly in the interval between -1 and 1, i.e. $\xi=U(-1,1)$. In writing Eq. (1), we have assumed that $x(t=0)=0$.
a) What is the characteristic function of the uniform jump $\operatorname{pdf} p_{\xi}(\xi)$?
b) Use the convolution theorem of probabilities to calculate the probability distribution function (pdf) for $x(t)$ for $t=2$? We will denote this probability by $p(x, t=2)$.
c) Calculate $p(x, t=2)$ using the characteristic function from question a.
d) Obtain the characteristic function, $G_{x}(k ; t)$, valid for any time t.
e) Use this result to calculate the probability density function, $p(x ; t)$, of the walker for an arbitrary time t. [You may have to do this numerically.]
f) Plot $p(x ; t)$ vs. x for small and large times $t=2,5,10,50$ and 100 .
g) Calculate the 1st and 2 nd moment of the $\operatorname{pdf} p(x ; t)$.
h) Use these results to calculate the standard deviation of the position of the random walker.
i) Plot the rescaled probability $p(x ; t) \sigma(t)$ vs. x for the same values of t as used above. Based on this result, what do you think will happen when $t \rightarrow \infty$? How do you explain this result.

Problem 2. Numerical Implementation of the Discrete Random Walk

In this exercises you are asked to perform a simulation of the discrete random walk model mentioned above. For this purpose, you can use whatever computer program that you are familiar with; e.g. Matlab (or the open source clone Octave) will quite nicely do the job.
a) Write a routine (and main program) for implementing the random walk model from the previous problem. You should specify the time variable t (the input), and the routine will output one realization of the walker.
b) Plot this realization as position $x(t) v s$. time t in a xy-plot.
c) In the same graph, plot a few different realization of the random walker. [If you end up with the same path, you will have to change the so-called seed of your random number generator].
d) Optional : Write a routine that can calculate the standard deviation, $\sigma(t)$, of the position of the walker up to a maximum time t. This quantity has to be averaged over an ensemble of realizations, N, with a suitable sampling of time (up to, say, $t=100$). The number of samples has to be large enough to make sure that the results have converged.
e) Compare these numerical results for $\sigma(t)$ to what you obtained theoretically in the previous problem.

