TFY4275 Classical Transport Theory Problemset 9 Spring 2013

In this problem set, we will consider the mathematical solution of both initial value and boundary value diffusion problems.

Problem 1.

Consider the following initial value problem in one-dimension (i.e. $u \equiv u(x, t)$)

$$
\begin{array}{rlr}
\frac{\partial u}{\partial t} & =D \frac{\partial^{2} u}{\partial x^{2}}, \\
u(x, 0) & = \begin{cases}u_{0}, & \ell_{-}<x<\ell_{+} \\
0, & \text { otherwise }\end{cases}
\end{array}
$$

where u_{0} is a positive constant, and $\ell_{ \pm}$are arbitrary constants satisfying $\ell_{-}<\ell_{+}$.
a) Give examples of physical situations being modeled by the above equation. What is the physical meaning of D and $u(x, t)$ in your examples?
b) Use the Laplace-Fourier technique to find the general solution to the above initial value problem.
c) Show that for this particular problem (and also for the one considered when introducing the Laplace-Fourier transform in the lectures) the combined transform is strictly speaking not needed. Derive the solution to the above initial value problem without the use of the both combined transform.
d) In the lectures we derived an expression for the "propagator" $p\left(x, t \mid x_{0}, t_{0}\right)$. Show that in terms of the propagator, the above solution can be easily obtained.
e) Demonstrate that in the long-time limit, the solution behaves as $u(x, t) \sim 1 / \sqrt{t}$, and derive the full expression for $u(x, t)$ in this limit. Give an estimate for when this longtime limit is appropriate (in terms of the physical parameters of the problem).
f) Plot the (spatial dependence of the) solution $u(x, t)$ for a few fixed times to indicate the time development of the solution from its initial value to it long-time limit (found above).

Problem 2.

Consider the following boundary value problem in one-dimension:

$$
\begin{array}{rlrl}
\frac{\partial u}{\partial t} & =D \frac{\partial^{2} u}{\partial x^{2}}, & & x>0, t>0 \\
u(x, 0) & =0, & & x>0 \\
u(0, t) & =f(t) & & t>0, \\
\lim _{x \rightarrow \infty} u(x, t) & =0, &
\end{array}
$$

where $f(t)$ is some well-behaved function.
a) What physical situation is described by this problem?
b) Find the general solution to this problem for general $f(t)$. Comment: Your final answer will (hopefully) contain an integral over time which you can not perform before we have specified $f(t)$. [Hint: Use the propagator]
c) Now set $f(t)=f_{0} \delta(t)$ and obtain the solution $u(x, t)$ in closed form. What is the physical meaning of this form of $f(t)$?
d) Instead we now consider the "time-extended" source of the form

$$
f(t)=\left(\frac{t}{\tau_{1}}\right)^{2} \exp \left(-\frac{t}{\tau_{2}}\right)
$$

where τ_{1} and τ_{2} are positive constants. Obtain the solution $u(x, t)$ in this case.
e) Make a (3D or contour) plot of the solution $u(x, t)$ over the $x t$-plane assuming the latter form for $f(t)$ with (for simplicity) $\tau_{1}=\tau_{2}=1$.

