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Abstract

Without creating a new solution, we just show explicitly how to obtain the solu-
tion of the Black-Scholes equation for call option pricing using methods available to
physics, mathematics or engineering students, namely, using the Green’s function for
the diffusion equation.

1 Introduction

We show one method of solving the Black-Scholes equation for the value of a call option
using the Green’s function approach to the diffusion equation. This is suitable to the
background of many advanced physics, mathematics, and engineering students.

We consider a stock held at a variable market price z, and whose temporal evolution
we treat as only determined by a random walk or a Gaussian probability distribution.
This equity is hedged by selling call options at a price w(z,t), which allow a call on
the stock at the maturity date ¢* at the strike price c¢. The conservative stock holder is
then protecting themselves against some possible loss in the stock value by selling some
possible profits from a large increase in the stock price. (Since I am not an economist,
an arbitrager, a market analyst, a market bull, or even a day trader, I disown any
responsibility for any errors or misunderstandings caused by this document.)



We refer the reader to the original Black-Scholes paper[l], to the website of the
Nobel Prize in Economics explaining the origin and significance of the method and
equation[2], and to a Scientific American article[3] which examines the limitations of
the assumptions when applied to the real stock situation.

2 Boundary Condition

The temporal boundary condition on the option price is that at maturity at time ¢*, if
the stock has risen above c, the call option is worth w(z,t*) = = — ¢, so that a caller
could buy the option at time t* at the strike price ¢, making a profit  — ¢, which would
equal the cost or value of the call option then, w(z,t*). However, if the stock price z
has fallen below the strike price ¢, then the call option is not exercised since it would
result in a loss, and the value of the option is worthless, or w(z,t*) =0 if x < ¢. The
boundary condition is continuous at = c.

3 Derivation of the Black-Scholes equation

A neutral hedge equity is constructed by selling 31”1% = Ax/Aw call options at price
w(z,t), so that the net equity invested is
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A change in z by Az accompanied by a change in w by Aw then gives no change in
the equity
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In writing the Black-Scholes equation, we will find the value of the price of the call

option w(x,t) necessary to allow the hedge equity to grow at the same rate as investing

the equity value in an interest account or instrument at the fixed interest rate r per

day so that

Az — Aw rAt. (3)
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The Taylor expansion for the the change Aw is
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It is now assumed that the variance < (Az)? > comes from a random walk in the
fractional price, and is therefore proportional to At, giving

(Az)? = v2z2At. (5)

v? is the variance per unit time, or the variance rate.
Putting Eq. 4 and Eq. 5 into Eq. 3, cancelling the Az, dividing by At and multi-

plying by Ow/0z gives the Black-Scholes equation
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4 Conversion of the Black-Scholes Equation to
the Diffusion Equation

We first bring the equation into the standard form of the diffusion equation, and then
solve it using the Green’s function for the diffusion equation on the initial condition at
t=1t"

The first difference we notice from the canonical equation is that the coefficients
depend on x. However, the equation is homogeneous or invariant under the scaling
of £ — ax. The standard way to simplify this and eliminate the explicit coordinate
dependence is to define a new variable u = In(z/c), where we have scaled = by ¢ to
make it dimensionless. Then under z — ax, u — u + In(a). Since the equation is
invariant under this, it cannot have any explicit dependence on u in the coefficients.
Changing variables to u using % = 1, and defining @ (u,t) = w(z,t), the derivatives
become
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The 1/x and 1/z? factors cancel those in the Eq. 6 giving an equation with constant
coefficients . o5 1 . 0%
%:Tw_(r_v2/2)8_l:_5028—$' (9)
Now we observe that even if w(u,t) is independent of u, it still grows as e from
the rw term. Factoring this out at the start will remove the r@ term. We normalize
this behavior where the boundary condition is at ¢ = t* by writing the solution as

B(u,t) = e " Dy (u,t). (10)
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Substituting this into Eq. 9 eliminates the rw term giving
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We next scale towards a canonical form. First we scale u to get a common coefficient
for the u derivatives, and then absorb that coefficient into a rescaling for ¢t. The new
variables are
(r—v*/2)

UI = Uw, (12)

and
(r —2/2)?
v2/2
With §(u',t') = y(u,t) the equation has become
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Now, even with a constant gradient in ' there is an increase with time in §. This is
because the ¢ is moving at constant velocity bringing a larger value to a fixed u' point.
This term can then be eliminated by going to a comoving frame, or changing the v’
spatial coordinate to z = u’' + ' where the velocity is 1. Thus with

t = (t* —1). (13)

(14)

§lz,t) = g’ +1,¢) = g(u, ) (15)
we finally get the canonical form of the diffusion equation with unit diffusion coefficient
oy 8%y
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The boundary conditions at ¢ = t* are now at ' = 0 where z = «/. = > c¢ translates
into 4 > 0. We now use the case where (r —v%/2) > 0 so the condition on u translates
into u’ > 0. The boundary conditions are then

7(2,0) = z—c=c(e"—1) for z>0, and (17)
= 0 forz<0. (18)

5 Green’s Function Solution

We now use the Green’s function for the Diffusion or Heat equation[4], which is the
solution to that equation for a point (or delta function) source at point 2’ at time ¢’ = 0

1 (z—z")2

G(z—2;t) = 47rt’e_ . (19)
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The verification of this Green’s function solution is shown in Appendix A. The Green’s
function shows the Gaussian diffusion of the pointlike input with distance from the
input (z — 2’) increasing as the square root of the time #', as in a random walk.

We can use the Green’s function to write the solution for §(z, ¢') in terms of summing
over its input values at points 2z’ on the boundary at the initial time #' = 0
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Putting in the initial condtions at ¢ = 0, where §(2,0) vanishes for negative 2/, gives
2
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To do the integral we change the variable to

2 —z
q = —2t/, and (22)

d2 = V2t'dq. (23)

The lower limit on the ¢ integral is now

where substitution gives the dimensionless

_ Inz/c+ (r —v?/2)(t* —t).

d2
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(25)

In the first term we now complete the square to get a new variable

,02
q'zq—@ﬁ. (26)

The new lower limit on ¢’ in the first term is now —d1 where

_ Inz/c+ (r +v?%/2)(t* —t).
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After completing the square on the first term, the exponent simplifies to
1
Inz/c+r(t" —t) — =4 (28)
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Both integrals are now related to the Cumulative Distribution Function of the Normal

Distribution
Nz) = —— / T g (29)
V2T J—x '
If we change t to —t in the above integral and invert the limits we get the form of our
integrals
Nw) == [ et (30)
T) = — e .
2w J—z

We now have our solution for the canonical g
(2, t") = c(e@/AFTE=IN(d1) — N(d2)) (31)
Finally, we use the facts that § = § = y, and that e (#/9) = /¢, and the conversion
t) =

w(z,t) = w(u,t) = e " Dy(u,t), (32)

to get the Black-Scholes solution
w(z,t) = eN(d1) — ce "IN (d2). (33)

6 Post-Analysis

We verify that the boundary conditions are satisfied. For z > z, log(z/c) > 0, and

as t — t*, dl — oo and d2 — oco. Then both N(dl) — 1 and N(d2) — 1, giving

w(z,t*) = x — ¢ as required. For = < z, log (z/c) < 0, and as t — t*, d1 — —oo, and
d2 — —o0, so both N(d1) and N(d2) vanish, and w(z,t*) = 0.

To find the number of call options to hold at a given time (1/(0w/dz)), we calculate

0
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Ifz<c ast— t*,dl - oo and d2 — o0, so dw/dzr — 1, and the number of call
options to own at the maturity time ¢* is 1. The value of the hedge equity at ¢* is then
z—w/(0w/dr) =x — (x — ¢) x 1 = ¢, as it should be.

A Green’s function for the Diffusion equation

We show that the Green’s function for the diffusion equation,

Glo— 3t) = e T 35
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satisfies the equation and behaves like a delta function at ' = 0.
Plugging the Green’s function into the canonical diffusion equation, Eq. 16, gives
on both sides

0G(z—215t) 1 -

(z—2)?
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G(z—2;t) = 552 ,

(36)

verifying that it is a solution to the equation.

Ast' — 0, for z # 2/, the argument of the exponent goes to —oo, and G(z—2';t') —
0. For z = 2/, it goes to infinity as # — oco. The integral over 2z’ can be found by
substituting ¢ = (z — 2')/v/2t' and gives

1 o0
/G(z -2 t)dY = \/T_ﬂ'/ e Tdg =1, (37)
—0o0

showing that it is correctly normalized to be the solution for a delta function source or
point source at z = 2z’ when ' — 0.
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