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i What are we going to discuss?

= Topic of the school:

Simple Models + Complex Systems

= What we will do is:

Random Walk + Complex Networks
=> Some Application




i Outline

A simple model:
The Random Walk Model

Applications
Structures of Complex Networks
Cascading Failures on Networks
Epidemology on Networks

Conclusions



| Random Walks on Networks

The Model



i The Classic Random (RW) Walk Model

The term RM was coined by Karl Pearson (1905)
RW is useful in many branches of sciences
The walker goes up or down with equal probability

o(t) oc Jt




For FOFYs........

= Recommend book:
click to LOOK INSIDE!

A Guide to
First-I’assage
Processes

Ingve Simonsen Diffusion and Networks



i A Primer on Complex Networks?

A network consists of a collection of

Nodes (vertices)
Links (edges)

Adjacency matrix :
Wij; is the weight on link from node j to i
(our convention)
W;; =0 means no link




Random Walks on Complex Networks

Random walkers (i.e. particles)
“live” on the nodes

They are moving (flowing) around
on the network!

In each time step, a walker moves
towards one of the

nodes chosen by random

This process is repeated over and
over again.......

: The number of walkers is
constant in time




i The Master Equation for No. of Particle

. W; refers to the link from node j to I;
Define the outgoing link weight from node j :

W, = ZWij (kj :Z'Aﬁj
The change in no. of particle at node | from t to t+1

n(t+1)—n(t) = ZWij n\jN(t) - ZWji nIT(t) +n; (1),

j | i

Or....

n (t+1) = Z n(t)+n (t)



i The Master Equation for Node Density

of walkers at node I

Pi(t):niT(t)

The (master) equation
pt+)=2 Tip®+p 1),  Tj=—
j

...or using matrix-multiplication

pt+1) =Tp(t)+ 5" (t)



i The Master Equation for Link Current
The (per link/weight unit)

() = p. (t) _ ni(t)

WN

Hence, it follows (if the network is undirected)

Ct+D) =T C(t)+ ] (t);

B =2

j Wi



Solution of the Master Equation
(assuming p(t)=0)

We start from some arbitrary walker dist. : p;(t=0)
Question : What will happen when t—o ?
If T was symmetric, we know the answer:

o) =T'H0)=VAV™ p0)
T 1s NOT symmetric...so what do we do...
However, T Is similar to a symmetric matrix

O
S=KTK? withK,=—- = § =~

Jki k.



i Solution of the Master Equation (cont...)

Since S Is symmetric, the transfer matrix T has
real eigenvalues, A (sorted in decreasing order)
due to the conservation of walkers |[A(®[<1  (AD=1)

These eigenvalues will control the walker dynamics
via the factor : [A(@]!

Principal eigenvalue : AM=1  (non-decaying)

Slowest decaying mode : A etc.

What does the stationary state look like?



i Solution of the Master Equation (cont...)

What does the stationary state look like?
Solve : py = Tpg

[y Ji = Z—k oc k = p(o0) = p*7

Vertices of high degree will have more walkers in the st. state
Introduce the outgoing walker current from vertex I :

c (1) = A” () co_ 1

k N




| Structure of Complex Networks

Application |

K. Eriksen et al., Phys. Rev. Lett. 90, 148701 (2003).




i Motivations

= ldea: The slowest decaying mode will probe the large
scale structure of the network




i Current Projection Technique

In the stationary state the currents are all the same

. For the slowly decaying modes, the currents are
similar for nodes belonging to the same module!

Plot all nodes In

Eg. : d=2 (dimension of the projection)

P(d =2) _ (C(Z) C(3))



i Results for Real-World Networks

m Zachary’s Karate club Network (friendship network)

The university karate club breaks up due to an internal
conflict

A small network (N=34; L=72)
The modular structure is known!

Reference :
W.W. Zachary, J. Antropol. Res. 33, 452473 (1977).



i Results for Real-World Networks (cont..)

Course-grained Internet Network (Autonomous
Systems)

Medium sized network (N=6,474; L=12,572)

The modular structure is not well-known in advance

Reference :
National Laboratory of Applied Network Research
http://moat.nlanr.net/AS/




i The Zachary Friendship Network

It is a workbench for
community-finding algorithms

W.W. Zachary (1977) studied
a university karate club, and
weighted the friendship among
Its members

Nodes : 34

Links : 78

Known community structure:
Trainer (node 1)
Administrator (node 34)




The Zachary Friendship Network (cont..)

Current projection T

Trainer
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d=1 projection c®
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I I [ '
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d=2 projection ol a e
o=2 : Trainer-Administrator 02k o
a=3 : Sub-clusters are mapped out &_ ,,[ Lo &
0- i &dmmlstrator
- .. . N ]
Q : How does this fit with the ok o T 09
. . 20 !
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i Zachary’s friendship Network, cont.

[From PNAS 99, 7821 (2002)]

041
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02

- | 2
-0k | &
’ ! R0
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0_“'-“-'--"""'--'““""""1""'8"2§ --------
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The known modular structure is well reproduced

by the diffusion model !



-h Projection In higher dimensions
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The known modular structure is well reproduced by the diffusion model !



Network Scientists
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Autonomous System Network

Doraa We now consider a larger network!
omain 2

N =6474
Domain 1 | [ ] Host L — 12572

® Router

DO e [ o

. X a connected segment of a network

Definition: An Autonomous System (AS) is

consisting of a collection of subnetworks

interconnected b)/ a set of routers.

Nodes : AS numbers

Links : Information sbaring

[l Switzerland Spain Bl Japan Egggig?ion [ S [l Urknown

B Germany B rtaly [l Netherlands [l sweden B vsA




Autonomous System Network (cont.)

02T o | The Internet is indeed
b Al 5] | structured
o - FR o) , .
0150 x US The structure follows roughly
> the national/political structure
T
£ 01
9 @ The extreme edges of the Internet are
:o represented by Russian and US military
Ui 0.05¢ sites !
C
%’ -6 -4 -2 0
3
g 0 x 10
g These country modules cou/d not have
been detected using spectral analysis of A
0_i5 02 Ref : PRE 64, 026704 (2001)
seconde.v.: éz)




i Summary : Network Topology

The current projection technigue probes large scale
structures of the network

References
K. Eriksen et al., Phys. Rev. Lett. 90, 148701 (2003)
|. Simonsen, Physica A 357, 317 (2005)



| Cascading Fallure of Networks

Application I

I. Simonsen, et al., Phys. Rev. Lett. 100, 218701 (2008).




Motivation

New York, August 14, 2003 Rome, September 28, 2003




Motivation

Blackout Northern America, 2003: total loss of 6.7 billion USD,

ol

50 Mio. people without electric power for about 24 hours.

Blackout Italy, 2003: total loss of 151 Mio. USD

Blackout in parts of the USA and Canada (2003), an impressive example of the 10ng>reaching accompaniments of supply

network failures.



Risk of Power Blackouts

There are rather few large
blackouts

So why should we care at all? 10"}

Large Power Blackouts are
the most RISKY'!

1-CDF(P)

10°F

107°F
- -0 Data (1984-2002)
- +—+ Data (1984-1998)

10°

US blackouts 1984-1002 (NERC)

-1
— y=const. ' X

10 10° 10°
Power lost in units of MW (P)

Source : Weron and Simonsen (2005)



tate of the power grid shortly

before the incident

1,3,4,5 — lines switched off for construction work

Power Blackouts: Real-Life examples
Europe Nov. 2006: What happened...?

Sequence of events on November 4, 2006

Nr. Zeit kV
1 22:10:13 380

2 22:10:15 220
3 22:10:19 380
4 22:40:2 220
5 22:10:22 380
3 2210:% 380
7 22:10:27 380
3 22:10:27 380
3 22:10:27 380
10 22:10:27 380
11 22:10:27 220
12 22:10:27 380
13 22:10:27 220

14 22:10:27 380

Bechterdissen/Gutersich *

Leitung
Wehrendorf-
Landesbergen
Bielefeld/Ost-
Spesxard
Bechterd ssen-
Elsen
Paderbom/Sliid-

Dippera- /
GroRkrotzenburg 1
Grolkkrotzenourg-
Dipperz 2 -
Oberhaid-
Grafenrheinfald
Redwitz-
Raitersaich
Redwitz-
Oberhaid
Redwitz-
Etzenricht
Wirgau-
Redwitz
Ekzenricht-
Schwandorf
Mechlenreuth-
Schwandorf
Schwandorf-
Pleinting

J' : ) "L .' &Y '1.:.-'/“//(' A e T

2 — line switched off for the transfer of a ship by Meyer-Werft

Source : Report on the system incident of November 4, 2006, E.ON Netz GmbH



Failure in the continental European electricity grid on November 4, 2006
Baltic Séa
Oland

Kalining

Bornholm <=2 “

!j.y,rl x

Ligurian
Sea

' .“ 2 A
Corsica . )
; r
a ary
=
EU project IRRIIS: E. Liuf (2007) Critical Infrastructure protection, R&D view

Ingve Simonsen Diffusion and Networks

Power Blackouts: Real-Life examples

L B

37



Power Blackouts:
The Domino Effect (Cascading failure)

“Under certain conditions, a
network component shutting
down can cause current
fluctuations in neighboring
segments of the network, though
this is unlikely, leading to a
cascading failure of a larger
section of the network. This may
range from a building, to a
block, to an entire city, to the
entire electrical grid.”

Source :Wikipedia




i Cascading Failures Exist in Real Systems

Examples
The power grid
Telecommunication networks
Transportation systems
Computer networks/ the Internet
Pipe line systems (water/gas/oil)

They can be very costly
They typically affect many people

Question : can one protect (supply) network
systems against cascading failures?




A few words on System Design

The systems are designed with a In mind

To ensure stability, the engineering approach, is to introduce
some Into the system (security margins)

...but overcapacity is !
System robustness is often ONLY evaluated locally

Cascading failure: When an initial perturbation occurs, loads
have to redistributes. If the resulting loads exceed the capacities
of link/nodes, new failures can result.... “the Domino effect”




System load (throughput)
optimized to get the maximum out of the system
high load means small operating margins
has impact on interactions and component failures

Tradeoff between load

and risk of failure
at system level
for system components

What is the role of the
deregulation?




i Some Terminology
Node Capacity:
L+a)”

Load in the stationary state : [
Overcapacity (tolerance) : o
Overload when :

L) > 1+a)L”

Fraction of nodes remaining (in the Giant Component)

Néaé) (t — o)
N

G(a) =



Previous physics works : Cascading Failures
i Motter and Lai: PRE 66, 065102R (2002)

Load calculated as betweeness centrality
1.0 ‘ ‘ ‘

Overload checked only for the 08

stationary state G

0.6/

No sinks/sources
0.4/

0.2/

0.0 0.2 0.4 0.6 0.8 1.0



.-h Previous works : Summary/Open Questions

= Previous works of cascading failures exclusively
considered the stationary state

= But...why should the system not experience additional
failures due to overloading during the transient period?

= Question to address:

What is the role played by the dynamics in cascading failures
on complex networks

= A dynamical model is needed for such a study
... But which one to choose?



Expected difference between a static and a
i dynamic model for flow redistribution

Initial failure Stationary model Dynamic model




Model : Requirements

= It should be: P
= Generic : no particular physical process is addressed
= As simple as possible, but not simpler... e !

= Important ingredient (in our opinion) 5
= The flowing quantity should be CONSERVED ‘

‘ Our solution : A Random Walk (or Diffusion type) model ! I



i The Master Equation

Our simple dynamical model incorporates:
Flow conservation
Network topology
Load redistribution

R W..
Ct+D)=T'C®)+j°(); T =-—Y2

c(t) : The outgoing current from node 7 per link weight unit




_L Model Dynamics: Is it realistic?

time [s] time [s]
0 10 20 30 40 0 10 20 30 40 50

T | T | T | T | T T | T | T | T | T
= f (b)
5
-
S,
.=
S
5 I !
= (d)
D)
N
E
Qo
Z

L A R B . . A I B
0 10 20 30 40 0 10 20 30 40 50
time [steps] time [steps]




i Currents and Loads

Link current on the link from node j to |
Cij (t) :WijCj (t)

Loads (on the same link)

L; (1) =C;; (t) + C;; (t) =W, (t) +W, c, (1)

ij i



i Stationary Solution

Equation
(L-T")C(0) =j*;
Solution
C(0) =€V () +(A-T")"j*
where

0
Homogeneous solution Ci( )(OO) =1/N
(1—TT)* isthe generalized inverse of 1—T7

Link capacities (]__|_ 05) I_EJ.O)



Model Dynamics:

UK high voltage power grid (300-400kV)

Red sink nodes

At t=0, link 0 is broken!

time [steps]

0 200 400 600 800 1000
.030 T T T T T
(b) ]
., -020 =~ —
‘g T e e e e e
=
=2 1.010 §1_03_| T T T T 3
= 3 L |
T—;, =102 - 7
N — - 1 4
= 1.000 2 Lotk ]
5 £1.00f 4
Z 0.990 ; | 1 1 1 | 1 | 1 | 1 9 —
— Link A 0 20 40 60 80 100
I = == Link B time [steps] .
0.980 1 1 1 1 1 1
T T T T T T
1L.O15F e -
— Lmlﬁ C -_—
=== T ink D - C
- I === Link E -~ ( ) E
=
g | =i e e e e e s L -
S1.010 -7 -
= -
4 i
‘-8 T I T I T I T I T I T I T
N L . 4
=1.005 n — LikFo g
5 = .
p ~ i
PR P IR BRUN B
1.000 0O 10 20 30 40 50 60 4
1 | 1 | 1 | til}le [StePS] | 1
0 200 400 600 800 1000

time [steps]



i When does a link/node fail?

0

Link/node capacities relative
to the undisturbed state (L;;)
via a

(0)
1+ ) L,
A link/node fails whenever
ItS load, L;;(t)
exceeds the capacity of that
link/node

Failure if :

(0)
L, (1) > (1+a) L

1.030—

1.020

,_.
[
—_
<

1.000

Normalized Link Loads

o
o
it
S

0.980

1.015

1.010

1.005

Normalized Link Loads

1.000

time [steps]

200 400 600 800 1000
T T T T T T T

(b)

—
—
b B TR ——

E L L 1 L 1 L L
0 20 40 60 80

I == == Link B time [steps]
C L L L . L L .
T T T T T T
— [ ink C ——
=== T ink D - C
= ==« Tink E L ( )
P S —
- 4 — - —
-
S
=]
3 1.20 _I I T I T I T I T I T I T
EI.IS— - 4
;J 1.10_— —
S1.05F -
Eloo 1 1 | 1 1 1 | 1 | 1 | |_
= 0O 10 20 30 40 50 60 4

. tiqle [steps]

400 200

time [steps]

600



i Main steps of the simulations

The simulations consist of the following steps:
A (t=0) [remove a random link]
Calculate the link loads L;(t)
Check if any links are via L;(t)> (1+a)Ly
If so such overloaded links
Repeat step 2 and 3 till no more links are overloaded

Average the results over the triggering event of pnt. 1
(and source and slinks locations)




Stationary Model vs. Dynamic Model :
The northwestern US power transmission grid

Phys. Rev. Lett. 100, 218701 (2008)

‘N| number of nodes (5000) [

|
| — Satatetotatatatatel R -G —

| £ ‘ number of links

0.8
N number of remaining
R i

nodes

- Static
A-A Dynamic (t=0) |
w7 Dynamic (t=1) |
Dynamic (t=10)
——

Vo
[: R ‘ number of remaining 3
links o

The stationary model can 0.2
overestimates robustness by
more than 80% (in this case)

Overload exposure times may be o
relevant and will increase the

robustness...... Grlo) = W ~ Gy (a) = W = G(a)



Stationary Model vs. Dynamic Model :
i The role of the two time-scales

There are two characteristic time-scales in the problem:
Overload exposure time (protection system response time): t
Typical transient time for the dynamics: T,

Control parameter : = z
To

Static cascading failure model: y>>1
Dynamical (t=0) cascading failure model : y=0

The real situation i1s probably somewhere 1in between....



Summary: Cascading Failure 6

= The dynamical process on the network may be important to
consider when evaluating network robustness (cascading)

= Using a stationary model may dramatically overestimate (by
80-95%) the robustness of the underlying network

= [he actual overestimation does depend on the actual overload
exposure time

= In a dynamical model:
= links may falil that otherwise would not have done so (overshooting)
= The proximity to a disturbance is more important in a dynamical model



i References

Dynamical model :
|. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing,
Phys. Rev. Lett. 100, 218701 (2008).

See also : Phys. Rev. Lett. 90, 14870 (2003).
Physica A 357, 317 (2005).

Stationary models:
Motter and Lai, Phys. Rev. E 66, 065102R (2002).
Bakke et al. Europhys. Lett. 76, 717 (2006).



| Epidemology on Networks

Application I1I

Colizza et al., Nature Physics 3, 276 (2007).
Lund et al. Work in progress (2010)




i Epidemiology: The Questions

Does the ratio remain small or is it close to unity
What is the

Other important questions:
How fast does an infection spread?
Can we stop it and how?



i Reaction-Diffusion on Networks

Reactions

Nag (1)
DA,B

(Diffusion constants)

More then one type of
particle A, B, ...

TwO processes
Reactions on nodes
Diffusion nodes



i The SIS-Model

The SIS Model

Individuals can become infected with the decease and
recover from it with no immunity

Two types of individuals: and
Reactions
p Parameters:
A+B—>?2B

Contact/Infection rate :

a Recovery rate :
B—>A yTae



p
i SIS-Reactions Only A+B—2B

No diffusion 2
B> A

No. of A and B-particles at node 1 at time t

AN (i, 1) = 1N (i, 1) = AT, (i,t) = =3, N, (i, )

Reaction Kernels

NG ONG (D) V=1 Typel
Fv(i,t)zNA("IL)(T)B("D; y=2  Typell
N (L NG (1,1)
N_+N(,t)

v=3 Type M (for Mixed)




i Reactions-Diffusion on Networks

Each time step consists of two processes
SIS-reactions on a node
Diffusion to neighboring nodes

Diffusionwith diijusion const Dy
N, (t+1) = (1—D,)N,(t)+ D, TN, (t)

Reaction

I\IAB(J[ +1) =(1- DB)NB(t) T DBTNB(t)
— uN (t) + 3T, (1)




i The Stationary State for Infected “particles”

Quantities:
N CNg(®).  pe®  Ng()
p_V’ pe(t) = v 5 TN

Population ratio of infected in the stationary state

Ps lim N, (t)
p t—>o N




i Special Cases

Cases
Da=0; De=0; (not so interesting)
Da=1; De=0; (not so interesting)
Da=0: De=1
Da=1: D=1

Assumptions
Mean field approximation
Uncorrelated network



Phase Transitions
i Analytic Mean Field Results  (colizzaetal. 2007)

Type I : “the village” .
% D, =0
_ fp=p. p2p, _
Ps = 0 pe = H <k>2
L P < P 5 DA =1
7 (K)
Type 1I: “the city”
7
— —— <
'OB:<IO( :Bj “<p D, {01}
0 o>




i Analytic Mean Field Results (Lund et al. 2010)

Phase Transition

5 _|p=p. p2p.
S0 p<p
where the critical nodal density is (Ds=1)
Pe = pr for DA =0
B—u
;j,<k>
O, = for D, =

Zlo(k)< )

+kp



Analytic Results

1 1
Type |
(0.8
Type 1l
= 0.6} = L
= Onk @ s O e =
<) 4 5 Type M
- g;ﬂ"a':s"
0.2} '
o Da=0
% 5 2 25 3 + Da=1
i
(a) Bfp=2
Figure 4.1: Analvtical expressions for stationary states of tvpe I, II and M (p, = 1) with
diffusing B particles (Dg = 1), from Eqs. (4.14), (4.16), (4.18), (4.20), (4.21) and (4.22). IB
Solid lines are tvpe I, dashed lines are tvpe Il and dash-dot lines are type M. Circles e 2
indicate D4 = 0, cross (4] indicates )4 = 1. The network is scale-free with V" = 1000 lLl

nodes and ~ = 2.5.



b

Numerical Results : Type I “the village’

1.9
115
(.7
1.6
-=>0.5

204

4

(a) Colizma (stochastic, g and & unkown). Simu- (b) Lund [2] {deterministic, g = 0.02, 4= 0.01)
lation results read directly from figure in Ref. [8],
analytical results superimposad by us.

Figure 4.2: Comparison of {a) Colizza's [8] and (b) Lund’s [2] simulation results for type
I reactions, with /7 = 2 and D)y = 1. Lines indicate analytical results (Eqs. (4.14) and
(4.20)), symbols are simulation results. Each symbol with properties (+, V', D4 ): Circles
o (2.5, 10°, 1), squares 0 (2.5, 10%, 1), diamends ¢ (2.5, 10%, 1), downward triangle
(2.5, 104, 0), upward triangle & (2.5, 10°, 0), leftward triangle 9 (3.0, 104, 0).



Numerical Results : Type 11 “the city”

057
At
_E:_[J.S -
&
2+
.1r
s _ 5 1
G/p ain
{a) Colizsa (stochastic, g and & unkown). Simu- ik} Lund |2] {deterministic, @ = 0.1}

laticn results read directly from figure in Ref. [8],
analytical results superimposad by us.

Figure 4.3: Comparison of (a) Colizza's and (b) Lund's simulation results for type II
reactions, with p = 20 and D = 1. Lmmes indicate analytical result (Eq. (4.21)), svmbols
are simulation results. Each symbol with properties (v, V, Dy Cireles © (2.5, IDJ': 1),
squares 0 (3.0, 104, 1), diamonds ¢ (2.5, 10%, 0) and triangles w (3.0, 104, 0).



Type M : The Mixed Reaction

0.4

0.1

DA 1.5 2

Type Il limit

]
=]
w

PP

{a) Scale-free network, 7= 2.5

Figure 4.6: Simulation results for type M reactions, with D = 1 and Gfp = 2. Lines
indicate analytical result (Eqs. (4.18) and {4.22)), svmbols are simulation resnlts. Each
symbol with properties [V, D 4): Cireles 0 (Il:]d, 1), squares O ( 102, 1), diamonds ¢ (1[]‘,

0 and triangles w (10%, 0),

L3 1 1.5 2 A0 3

oo

(b} Seale-fres netwerk, = 3.0

RS

Type M =+

I
N

Type |

kType [

ol p, <<1
ol p, >>1



i Summary: Epidemology on Networks

Reaction-Diffusion can be used to study epidemic
spreading on complex networks

Phase transitions will occur depending on
Diffusion constants
Reaction rates
Network properties
Nodal densities



1 Conclusions



i Conclusions

Random walk (RW) models are simple and powerful
Combined with complex networks (CN) they shine

The combination RW+CN shown useful for
Networks topology studies
Cascading failures
Epidemiology studies



j Take home message

A model is almost never too simple to be useful!

Thank you for your attention!
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! The End!



