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What are we going to discuss?

 Topic of the school:

 What we will do is:

Simple Models    +   Complex Systems

Random Walk  + Complex Networks

=>  Some Application
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Outline

 A simple model: 

 The Random Walk Model 

 Applications

 Structures of Complex Networks

 Cascading Failures on Networks

 Epidemology on Networks

 Conclusions



Random Walks on Networks

The Model
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The Classic Random (RW) Walk Model

 The term RM was coined by Karl Pearson (1905)

 RW is useful in many branches of sciences 

 The walker goes up or down with equal probability

tt )(
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For FOFYs……..

 Recommend book:
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A Primer on Complex Networks?

 A network consists of a collection of

 Nodes (vertices)

 Links (edges)

 Adjacency matrix : W=[Wij]

 Wij is the weight on link from node j to i 

(our convention)

 Wij =0 means no link

i

j

ijW
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Random Walks on Complex Networks

(?)

t=t0t=t0+1t=t0+2t=t0+3

 Random walkers (i.e. particles) 

“live” on the nodes

 They are moving (flowing) around 

on the network!

 In each time step,  a walker  moves 

towards one of the neighboring 

nodes chosen by random

 This process is repeated over and 

over again…….

 Note: The number of walkers is 

constant in time
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The Master Equation for No. of Particle

 Convention : Wij refers to the link from node j to i;

 Define the outgoing link weight from node j :

 The change in no. of particle at node i from t to t+1

 Or….
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The Master Equation for Node Density

 Node Density of walkers at node i

 The (master) equation

 …or using matrix-multiplication
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The Master Equation for Link Current

 The outgoing link current (per link/weight unit) 

 Hence, it follows (if the network is undirected)
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Solution of the Master Equation 

(assuming                 )

 We start from some arbitrary walker dist. : i(t=0)

 Question : What will happen when t ? 

 If T was symmetric, we know the answer:

 but T is NOT symmetric…so what do we do…

 However, T is similar to a symmetric matrix

1( ) (0)  (0)t tt T V V    
  

1       with     S
ij ij

ij ij
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Solution of the Master Equation (cont…)

 Since S is symmetric, the transfer matrix T has 

 real eigenvalues,  () (sorted in decreasing order)

 due to the conservation of walkers |()|≤1   ((1)=1)

 These eigenvalues will control the walker dynamics 

via the factor : [()]t

 Principal eigenvalue : (1)=1      (non-decaying)

 Slowest decaying mode : (2) etc.

 What does the stationary state look like?
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Solution of the Master Equation (cont…)

 What does the stationary state look like?

 Solve  :   st = Tst

 Vertices of high degree will have more walkers in the st. state

 Introduce the outgoing walker current from vertex i :
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Structure of Complex Networks

Application I

K. Eriksen et al., Phys. Rev. Lett. 90, 148701 (2003).
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Motivations

 Idea: The slowest decaying mode will probe the large 

scale structure of the network 

 
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Current Projection Technique

 In the stationary state the currents are all the same

 Idea : For the slowly decaying modes, the currents are 

similar for nodes belonging to the same module!

 Plot all nodes in current space

 Eg.  : d=2   (dimension of the projection)

( 2) (2) (3)( , )d

i i iP c c 



Ingve Simonsen Diffusion and Networks 20

Results for Real-World Networks

 Zachary’s Karate club Network (friendship network)

 The university karate club breaks up due to an internal 

conflict 

 A small network (N=34; L=72)

 The modular structure is known!

 Reference : 

 W.W. Zachary, J. Antropol. Res. 33, 452473 (1977).

Two examples:
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Results for Real-World Networks (cont..)

 Course-grained Internet Network  (Autonomous 

Systems) 

 Medium sized network (N=6,474;  L=12,572)

 The modular structure is not well-known in advance

 Reference : 

 National Laboratory of Applied Network Research 

 http://moat.nlanr.net/AS/ 
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The Zachary Friendship Network

 It is a workbench for 

community-finding algorithms

 W.W. Zachary (1977) studied 

a university karate club, and 

weighted the friendship among 

its members

 Nodes : 34

 Links  : 78

 Known community structure:

 Trainer (node 1)

 Administrator (node 34)

Source : PNAS 99, 7821 (2002)
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The Zachary Friendship Network (cont..)

 Current projection

 d=1 projection 

 =2 : Trainer-Administrator 

 d=2 projection

 =2 : Trainer-Administrator

 =3 : Sub-clusters are mapped out

Q : How does this fit with the 

known community structure?
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Zachary’s friendship Network, cont.

[From PNAS 99, 7821 (2002)]
The known modular structure is well reproduced 
by the diffusion model !
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Projection in higher dimensions

The known modular structure is well reproduced by the diffusion model !
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Network Scientists
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Autonomous System Network 
We now consider a larger network!

6474

12572

N

L





Definition: An Autonomous System (AS) is 
a connected segment of  a network 
consisting of a collection of subnetworks  
interconnected by a set of routers.

Nodes : AS numbers

Links : Information sharing 



Ingve Simonsen Diffusion and Networks 30

Autonomous System Network (cont.)

 The Internet is indeed 
structured

 The structure follows roughly 
the national/political structure

These country modules could not have 
been detected using spectral analysis of A

Ref : PRE 64, 026704 (2001)

The extreme edges of the Internet are 
represented by Russian and US military
sites !

Ford’s Russian Branch
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Summary : Network Topology

 The current projection technique probes large scale 

structures of the network

 References

 K. Eriksen et al., Phys. Rev. Lett. 90, 148701 (2003)

 I. Simonsen, Physica A 357, 317 (2005)



Cascading Failure of Networks

Application II

I. Simonsen, et al., Phys. Rev. Lett. 100, 218701 (2008).
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New York,  August 14, 2003 Rome, September 28, 2003

Motivation



Ingve Simonsen Diffusion and Networks 34

Blackout in parts of the USA and Canada (2003), an impressive example of the long-reaching accompaniments of supply 
network failures.

Blackout Northern America, 2003: total loss of 6.7 billion USD, 
50 Mio. people without electric power for about 24 hours.

Blackout Italy, 2003: total loss of 151 Mio. USD

Motivation
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Risk of Power Blackouts

 There are rather few large 

blackouts

 So why should we care at all?

 Risk = Probability . Cost

 Large Power Blackouts are 

the most RISKY!

Source : Weron and Simonsen (2005)

US blackouts 1984-1002 (NERC)
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Source : Report on the system incident of November 4, 2006, E.ON Netz GmbH

State of the power grid shortly
before the incident

Sequence of events on November 4, 2006

1,3,4,5 – lines switched off for construction work
2 – line switched off for the transfer of a ship by Meyer-Werft

Power Blackouts: Real-Life examples

Europe Nov. 2006: What happened…?



Ingve Simonsen Diffusion and Networks 37

Power Blackouts: Real-Life examples

EU project IRRIIS:  E. Liuf (2007) Critical Infrastructure protection, R&D view

Failure in the continental European electricity grid on November 4, 2006
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Power Blackouts: 

The Domino Effect (Cascading failure) 

“Under certain conditions, a 

network component shutting 

down can cause current 

fluctuations in neighboring 

segments of the network, though 

this is unlikely, leading to a 

cascading failure of a larger 

section of the network. This may 

range from a building, to a 

block, to an entire city, to the 

entire electrical grid.”

Source :Wikipedia
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Cascading Failures Exist in Real Systems

 Examples 

 The power grid

 Telecommunication networks

 Transportation systems

 Computer networks/ the Internet 

 Pipe line systems (water/gas/oil) 

 They can be very costly

 They typically affect many people

Question : How can one protect (supply) network                                                                                             

systems against cascading failures?
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A few words on System Design

 The systems are designed with a given load in mind

 To ensure stability, the engineering approach, is to introduce 

some overcapacity into the system (security margins)

 …but overcapacity is costly!

 System robustness is often ONLY evaluated locally

 Cascading failure: When an initial perturbation occurs, loads 

have to redistributes. If the resulting loads exceed the capacities 

of link/nodes, new failures can result….   “the Domino effect”
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Why do we have blackouts…..?

 System load (throughput)

 optimized to get the maximum out of the system

 high load means small operating margins

 has impact on interactions and component failures

 Tradeoff between load 

and risk of failure 

 at system level 

 for system components

 What is the role of the 

deregulation?
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Some Terminology 

 Node Capacity:      

 Load in the stationary state : 

 Overcapacity (tolerance) : 

 Overload when :  

 Fraction of nodes remaining (in the Giant Component)

N

tN
G GC )(

)(
)( 






)0()1( iL
)0(

iL

)0()1()( ii LtL 
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Previous physics works : Cascading Failures

Motter and Lai: PRE 66,  065102R (2002)

Northwest US power grid

Load calculated as betweeness centrality

Removing high load nodes

 Overload checked only for the  

stationary state

 No sinks/sources

Removing random nodes

Removing high degree nodes
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Previous works : Summary/Open Questions

 Previous works of cascading failures exclusively 

considered the stationary state

 But…why should the system not experience additional 

failures due to overloading during the transient period?  

 Question to address:

 What is the role played by the dynamics in cascading failures 

on complex networks

 A dynamical model is needed for such a study

 .... But which one to choose?
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Initial failure Stationary model Dynamic model

t = 1

t = 2

Expected difference between a static and a 

dynamic model for flow redistribution
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Model : Requirements

 It should be:

 Generic : no particular physical process is addressed  

 As simple as possible, but not simpler…

 Important ingredient (in our opinion)

 The flowing quantity should be CONSERVED

Our solution : A Random Walk (or Diffusion type) model !
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The Master Equation

 Our simple dynamical model incorporates:

 Flow conservation 

 Network topology

 Load redistribution

ci(t) : The outgoing current from node i per link weight unit

);()()1( tjtcTtc T 


j

ij

ij
w

W
T 
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Model Dynamics: Is it realistic?

Power grid  simulator             
model

Random walk 
model

Source :  R. Sadikovic, Power flow control with UPFC, (internal report) 

EUROSTAG power simulator :   wwwaurostag.epfl.ch
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Currents and Loads

 Link current on the link from node j to i

 Loads (on the same link)

)()( tcWtC jijij 

)()()()()( tcWtcWtCtCtL iijjijjiijij 
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Stationary Solution

 Equation

 Solution

where

 Homogeneous solution 

 is the generalized inverse of

 Link capacities

;)()1(  jcT T


 jTcc T


)1()()( )0(

 )1( TT TT1

Nci /1)()0( 

)0()1( ijL
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At t=0, link 0 is broken!

Model Dynamics: 

UK high voltage power grid (300-400kV)

Green source nodes

Red sink nodes
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When does a link/node fail?

 Link/node capacities relative 

to the undisturbed state (Lij) 

via a tolerance parameter α

 A link/node fails whenever 

its current load, Lij(t)  

exceeds the capacity of that

link/node

Failure if :

)0()1()( ijij LtL 

)0()1( ijL
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Main steps of the simulations

The simulations consist of the following steps:

1. A triggering event (t=0) [remove a random link]

2. Calculate the  link loads Lij(t)

3. Check if any links are overloaded via

1. If so remove such overloaded links

4. Repeat step 2 and 3 till no more links are overloaded

5. Average the results over the triggering event of pnt. 1 

(and source and slinks locations)   

)0()1()( ijij LtL 
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number of remaining
nodes

number of nodes (5000)

number of links

number of remaining
links

Stationary Model vs. Dynamic Model :

The northwestern US power transmission grid

The stationary model can 
overestimates robustness by 
more than 80% (in this case)

Overload exposure times may be  
relevant and will increase the
robustness…… 

Phys. Rev. Lett. 100, 218701 (2008) 
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Stationary Model vs. Dynamic Model :

The role of the two time-scales

 There are two characteristic time-scales in the problem:

 Overload exposure time (protection system response time): 

 Typical transient time for the dynamics: 0

 Control parameter :     

 Static cascading failure model:  1

 Dynamical (0) cascading failure model : 0

 The real situation is probably somewhere in between….

0


 
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Summary: Cascading Failure

 The dynamical process on the network may be important to 

consider when evaluating network robustness (cascading)

 Using a stationary model may dramatically overestimate (by 

80-95%) the robustness of the underlying network

 The actual overestimation does depend on the actual overload 

exposure time 

 In a dynamical model:

 links may fail that otherwise would not have done so (overshooting)

 The proximity to a disturbance is more important in a dynamical model 
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Epidemology on Networks

Application III

Colizza et al., Nature Physics 3, 276 (2007).

Lund et al. Work in progress (2010)
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Epidemiology: The Questions

 What is the ratio of infected people in a population?

 Does the ratio remain small or is it close to unity

 What is the steady state behavior

 Other important questions:

 How fast does an infection spread?

 Can we stop it and how?
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Reaction-Diffusion on Networks

 More then one type of 

particle A, B, …

 Two processes 

 Reactions on nodes 

 Diffusion between nodes

Reactions

),(, tiN BA

BAD ,

(Diffusion constants)
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The SIS-Model

 The SIS Model

 Individuals can become  infected with the decease and 

recover from it with no immunity

 Two types of individuals: Susceptible (A) and Infected (B)

 Reactions

AB

BBA







 2
Parameters:

Contact/Infection rate   :    

Recovery rate   :    
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SIS-Reactions Only

No diffusion

 No. of A and B-particles at node i at time t

 Reaction Kernels

AB

BBA
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 2
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tiNtiN
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v
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Reactions-Diffusion on Networks

 Each time step consists of two processes

 SIS-reactions on a node

 Diffusion to neighboring nodes 
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)()(

)()()1()1(
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.
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tNTDtNDtN
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tNTDtNDtN
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The Stationary State for Infected “particles”

 Quantities:

 Population ratio of infected in the stationary state

N

tNt

V

tN
t

V

N BBB
B

)()(
;

)(
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Special Cases

 Cases 

 DA=0; DB=0;    (not so interesting)

 DA=1; DB=0;    (not so interesting)

 DA=0; DB=1 

 DA=1; DB=1 

 Assumptions

 Mean field approximation

 Uncorrelated network
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Phase Transitions

Analytic Mean Field Results     (Colizza et al. 2007)

 Type I : “the village”

 Type II: “the city”
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Analytic Mean Field Results (Lund et al. 2010)

 Phase Transition

 where the critical nodal density is (DB=1)
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Analytic Results

Type I

Type II

Type M

o   DA=0

+   DA=1

2



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Numerical Results : Type I “the village”
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Numerical Results : Type II “the city”
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Type M : The Mixed Reaction 

2




Type II limit
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Summary: Epidemology on Networks

 Reaction-Diffusion can be used to study epidemic 

spreading on complex networks

 Phase transitions will occur depending on

 Diffusion constants

 Reaction rates

 Network properties

 Nodal densities



Conclusions 
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Conclusions

 Random walk (RW) models are simple and powerful

 Combined with complex networks (CN) they shine

 The combination RW+CN shown useful for

 Networks topology studies

 Cascading failures

 Epidemiology studies



Take home message

A model is almost never too simple to be useful!

Thank you for your attention!
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