
11 Symmetries and symmetry breaking

We have seen in the last chapter that the discrete Z2 symmetry of our standard λφ4 La-
grangian could be hidden at low temperatures, if we choose a negative mass term in the zero
temperature Lagrangian. Although such a choice seems at first sight unnatural, we will inves-
tigate this case in the following in more detail. Our main motivation is the expectation that
hiding a symmetry by choosing a non-invariant ground-state retains the “good” properties of
the symmetric Lagrangian. Coupling then such a scalar theory to a gauge theory, we hope
to break gauge invariance in a “gentle” way which allows e.g. gauge boson masses without
spoiling the renormalisability of the unbroken theory.

As additional motivation we remind that couplings and masses are not constants but depend
on the scale considered. Thus it might be that the parameters determining the Lagrangian
of the Standard Model at low energies originate from a more complete theory at high scales,
where the mass parameter µ2 is originally still positive. In such a scenario, µ2(Q2) may
become negative only after running it down to the electroweak scale Q = mZ .

11.1 Symmetry breaking and Goldstone’s theorem

Let us start classifying the possible destinies of a symmetry:

• Symmetries may be exact. In the case of local gauge symmetries as U(1) or SU(3) for
the electromagnetic and strong interactions, we expect that this holds even in theories
beyond the SM. In contrast, there is no good reason why global symmetries of the SM
as B −L should be respected by higher-dimensional operators originating from a more
complete theory valid at higher energy scales.

• A classical symmetry may be broken by quantum effects. As a result, the corresponding
Noether currents are non-zero and the Ward identities of the theory are violated. If
the anomalous symmetry is a local gauge symmetry, the theory becomes thereby non-
renormalisable. Moreover, we would expect e.g. in case of QED that the universality of
the electric charge does not hold exactly.

• The symmetry is explicitly broken by some “small” term in the Lagrangian. An example
for such a case is isospin which is broken by the mass difference of the u and d quarks.

• The Lagrangian contains an exact symmetry but the ground-state is not symmetric
under the symmetry. In field theory, the ground-state corresponds to the mass spectrum
of particles. As a result, the symmetry of the Lagrangian is not visible in the spectrum
of physical particles. If the ground-state breaks the original symmetry because one
or several scalar fields acquire a non-zero vacuum expectation value, one calls this
spontaneous symmetry breaking (SSB). As the symmetry is not really broken on the
Lagrangian level, a perhaps more appropriate name would be “hidden symmetry.”
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11.1 Symmetry breaking and Goldstone’s theorem

In this and the following chapter, we discuss the case of spontaneous symmetry breaking, first
in general and then applied to the electroweak sector of the SM. Since the breaking of an
internal symmetry should leave Poincaré symmetry intact, we can give only scalar quantities
a non-zero vacuum expectation value. This excludes non-zero vacuum expectation values
for tensor fields, which would single out a specific direction. On the other hand, we can
construct scalars as 〈0|φ|0〉 = 〈0|ψ̄ψ|0〉 6= 0 out of the product of multiple fields with spin.
In the following, we will always treat φ as an elementary field, but we should keep in mind
the possibility that φ is a composite object, e.g. a condensate of fermion fields, 〈φ〉 = 〈ψ̄ψ〉,
similar to the case of superconductivity.

Spontaneous breaking of discrete symmetries We will first consider the simplest example
of a theory with a broken symmetry: A single scalar field with a discrete reflection symmetry.
Consider the familiar λφ4 Lagrangian, but with a negative mass term which we include into
the potential V (φ),

L =
1

2
(∂µφ)2 +

1

2
µ2φ2 − λ

4
φ4 =

1

2
(∂µφ)2 − V (φ) . (11.1)

The Lagrangian is invariant under the symmetry operation φ → −φ for both signs of µ2.
The field configuration with the smallest energy is a constant field φ0, chosen to minimise the
potential

V (φ) = −1

2
µ2φ2 +

λ

4
φ4, (11.2)

which has the two minima
φ0 ≡ v = ±

√

µ2/λ . (11.3)

In quantum mechanics, we learn that the wave-function of the ground state for the potential
V (x) = −1

2µ
2x2 +λx4 will be a symmetric state, ψ(x) = ψ(−x), since the particle can tunnel

through the potential barrier. In field theory, such tunnelling can happen in principle too.
However, the tunnelling probability is proportional to the volume L3, and vanishes in the
limit L→ ∞: In order to transform φ(x) = −v into φ(x) = +v we have to switch an infinite
number of oscillators, which clearly costs an infinite amount of energy.

Thus in quantum field theory, the system has to choose between the two vacua ±v and the
symmetry of the Lagrangian is broken in the ground state. Had we used our usual Lagrangian
with µ2 > 0, the vacuum expectation value of the field would have been zero, and the ground
state would respect the symmetry.

Quantising the theory with µ2 < 0 around the usual vacuum, |0〉 with 〈0|φ|0〉 = φc = 0, we
find modes behaving as

φk ∝ exp(−iωt) = exp(−i
√

−µ2 + |k|2 t) , (11.4)

which can grow exponentially for |k|2 < µ2. More generally, exponentially growing modes
exists, if the potential is concave at the position of φc, i.e. for

m2
eff(φc) = V ′′(φc) = −µ2 + 3λφ2

c < 0 (11.5)

or |φc| < 2µ2/(3λ).
Clearly, the problem is that we should, as always, expand the field around the ground-state

v. This requires that we shift the field as

φ(x) = v + ξ(x) , (11.6)
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11 Symmetries and symmetry breaking

splitting it into a classical part 〈φ〉 = v and quantum fluctuations ξ(x) on top of it. Then we
express the Lagrangian as function of the field ξ,

L =
1

2
(∂µξ)

2 − 1

2
(2µ2)ξ2 − µ

√
λξ3 − λ

4
ξ4 +

1

2

µ4

λ
. (11.7)

In the new variable ξ, the Lagrangian describes a scalar field with positive mass mξ =
√

2µ >
0. The original symmetry is no longer apparent: Since we had to select one out of the
two possible ground states, a term ξ3 appeared and the φ → −φ symmetry is broken. The
new cubic interaction term rises now the question, if our scalar λφ4 theory becomes non-
renormalisable after SSB: As we have no corresponding counter-term at our disposal, the
renormalisation of µ and λ has to cure also the divergences of the −µ

√
λξ3 interaction.

Finally, we note that the contribution µ4/(2λ) to the energy density of the vacuum is in
contrast to the vacuum loop diagrams generated by Z[0] classical and finite. Thus it unlikely
that we can use the excuse that “quantum gravity” will solve this problem. Moreover, we see
later that symmetries will be restored at high temperatures or at early times in the evolution
of the Universe. Even if we take the freedom to shift the vacuum energy density, we have
either before or after SSB an unacceptable large contribution to the cosmological constant
(problem 11.1).

Spontaneous breaking of continuous symmetries As next step we look at a system with
a global continuous symmetry. We discussed already in section 5.1 the case of N real scalar
fields described by the Lagrangian

L =
1

2

[

(∂µφ)2 +
1

2
µ2φ2

]

− λ

4
(φ2)2 . (11.8)

Since φ = {φ1, . . . , φN} transforms as a vector under rotations in field space,

φi → Rijφj (11.9)

with Rij ∈ O(n), the Lagrangian is clearly invariant under orthogonal transformations.
Before we consider the general case of arbitrary N , we look at the case N = 2 for which the

potential is shown in Fig. 11.1. Without loss of generality, we choose the vacuum pointing
in the direction of φ1: Thus v = 〈φ1〉 =

√

µ2/λ and 〈φ2〉 = 0. Shifting the field as in the
discrete case gives

L =
1

2

µ4

λ
+

1

2
(∂µξ)2 − 1

2
(2µ2)ξ21 + Lint , (11.10)

i.e. the two degrees of freedom of the field φ split after SSB into one massive and one massless
mode.

Since the mass matrix consists of the coefficients of the terms quadratic in the fields, the
general procedure for the determination of physical masses is the following: Determine first
the minimum of the potential V (φ). Expand then the potential up to quadratic terms,

V (φ) = V (φ0) +
1

2
(φ− φ0)i(φ− φ0)j

∂2V

∂φi∂φj
︸ ︷︷ ︸

Mij

+ . . . (11.11)

The term of second derivatives is a symmetric matrix with elements Mij ≥ 0, because we
evaluate it by assumption at the minimum of V . Diagonalising Mij gives as eigenvalues the
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11.1 Symmetry breaking and Goldstone’s theorem

squared masses of the fields. The corresponding eigenvectors are called the mass eigenstates
or physical states. Propagators and Green functions describe the evolution of fields with
definite masses and should be therefore build up on these states. If the potential has n > 0
flat directions, the vacuum is degenerated and n massless modes appear.

Looking at Fig. 11.1 suggests to use polar instead of Cartesian coordinates in field space.
In this way, the rotation symmetry of the potential and the periodicity of the flat direction
is reflected in the variables describing the scalar fields. Introducing first the complex field
φ = (φ1 + iφ2)/

√
2, the Lagrangian becomes

L = ∂µφ
†∂µφ+ µ2φ†φ− λ(φ†φ) . (11.12)

Next we set

φ(x) = ρ(x)eiϑ(x) (11.13)

and use ∂µφ = [∂µρ+ iρ∂µϑ]eiϑ to express the Lagrangian in the new variables,

L = (∂µρ)
2 + ρ2(∂µϑ)2 + µ2ρ2 − λρ4 . (11.14)

Shifting finally again the fields as ρ = v + ξ, we find

L =
1

2

µ4

λ
+
µ2

2λ
(∂ϑ)2 + (∂µξ)

2 − 2µ2ξ2 − µ
√

2λξ3 − λξ4

+

[√

2µ2

λ
ξ + ξ2

]

(∂µϑ)2 .

(11.15)

The phase ϑ which parametrises the flat direction of the potential V (ϑ, ξ) remained massless.
This mode is called Goldstone (or Nambu-Goldstone) boson and has derivative couplings to
the massive field ξ, given by the last term in Eq. (11.15). This is a general result, implying
that static Goldstone bosons do not interact. Another general property of Goldstone boson
is that they carry the quantum number of the corresponding symmetry generator. Thus
they are scalar or pseudo-scalar particles, except in the case where we consider the SSB of a
supersymmetry which has fermionic generators.

Let us now discuss briefly the case of general N for the Lagrangian (11.8). The lowest
energy configuration is again a constant field. The potential is minimised for any set of fields
φ0 that satisfies

φ2
0 =

µ2

λ
. (11.16)

This equation only determines the length of the vector, but not its direction. It is convenient
to choose a vacuum such that φ0 points along one of the components of the field vector.
Aligning φ0 with its Nth component,

φ0 =

(

0, . . . , 0,

√

µ2

λ

)

, (11.17)

we now follow the same procedure as in the previous example. First we define a new set of
fields, with the Nth field expanded around the vacuum

φ(x) = (φk(x), v + ξ(x)) , (11.18)
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11 Symmetries and symmetry breaking

Figure 11.1: Scalar potential symmetric under O(2)

where k now runs from 1 to N − 1. Then we insert this, and the value v =
√

µ2/λ for the
vacuum expectation value into the Lagrangian, and obtain

L =
1

2
(∂µφ

k)2 +
1

2
(∂µξ)

2 − 1

2
(2µ2)ξ2 +

1

4

µ

λ

−
√
λµξ3 −

√
λµξ(φk)2 − λ

2
ξ2(φk)2 − λ

4

[
(φk)2

]2 − λ

4
ξ4 .

This Lagrangian describes N − 1 massless fields and a single massive field ξ, with cubic and
quartic interactions. The O(N) symmetry is no longer apparent, leaving as symmetry group
the subgroup O(N−1), which rotates the φk fields among themselves. This rotation describes
movements along directions where the potential has a vanishing second derivative, while the
massive field corresponds to oscillations in the radial direction of V . This can be visualised
for N = 2, where we get the ”Mexican hat” potential shown in figure 11.1.

Goldstone’s theorem The observation that massless particles appear in theories with spon-
taneously broken continuous symmetries is a general result, known as Goldstone’s theorem.
The first example for such particles was suggested by Nambu in 1960: He showed that a mass-
less quasi-particle appears in a magnetised solid, because the magnetic field breaks rotation
invariance. Goldstone applied soon after that this idea to relativistic QFTs and showed that
massless scalar elementary particles appear in theories with SSB. Since no massless scalar
particles are known to exist, this theorem appeared to be a dead end for the application of
SSB to particle physics. So our task is two-fold: First we should derive Goldstone’s theorem
and then we should find out how we can bypass the theorem applying it our case of interest,
gauge theories.

The theorem is obvious at the classical level: Consider a Lagrangian with a symmetry G
and a vacuum state invariant under a subgroup H of G. For instance, choosing a Lagrangian
invariant under G = O(3) and picking out a vacuum along φ3, the subgroup H = O(2) of
rotation around φ3 keeps the vacuum invariant. Let us denote with U(g) a representation
of G acting on the fields φ and with U(h) a representation of H, respectively. Since we

160



11.1 Symmetry breaking and Goldstone’s theorem

consider constant fields, derivative terms in the fields vanish and the potential V alone has
to be symmetric under G, i.e.

V (U(g)φ) = V (φ) . (11.19)

Moreover, we know that the vacuum is kept invariant for all h, φ′
0 = U(h)φ0, but changes

for some g, φ′
0 6= U(g)φ0. Using the invariance of the potential and expanding V (U(g)φ0)

for an infinitesimal group transformation gives

V (φ0) = V (U(g)φ0) = V (φ0) +
1

2

∂2V

∂φi∂φj

∣
∣
∣
∣
0

δφiδφj + . . . , (11.20)

where δφi denotes the resulting variation of the field. Equation (11.20) implies that

Mijδφiδφj = 0 . (11.21)

The variation δφi depends on whether the transformation belong to U(h) or not: In the
former case, the vacuum φ0 is unchanged, δφi = 0 and (11.21) is automatically satisfied. If
on the other hand g does not belong to H, i.e. is a member of the left coset G/H, then
δφi 6= 0, implying that the mass matrix Mij has a zero eigenvalue. It is now clear that the
number of massless particles is simply determined by the dimensions of the two groups G and
H: The number of Goldstone bosons is equal to the dimension of the left coset G/H, or the
number of symmetries spontaneously broken.

Quantum case The previous discussion was based on the classical potential. Thus we should
address the question if this picture survives quantum corrections.

Noether’s theorem tells us that every continuous symmetry has associated to its generators
gi conserved charges Qi. On the quantum level this means the operators Qi commute with
the Hamiltonian, [H,Qi] = 0. Subtracting the cosmological constant, we have H |0〉 = 0. If
the vacuum is invariant under the symmetry Q, then exp(iϑQ) |0〉 = |0〉. For the infinitesimal
form of the symmetry transformation, exp(iϑQ) ≈ 1 + iϑQ, and we conclude that the charge
annihilates the vacuum,

Q |0〉 = 0 . (11.22)

Or, in simpler words, the vacuum has the charge 0.

Now we came to the case we are interested in, namely that the symmetry is spontaneously
broken and thus Q |0〉 6= 0. We first determine the energy of the state Q |0〉. From

HQ |0〉 = (HQ−QH) |0〉
︸ ︷︷ ︸

H|0〉=0

= [H,Q] |0〉 = 0 , (11.23)

we see that at least another state Q |0〉 exists which has as the vacuum |0〉 zero energy.

We represent the charge operator as the volume integral of the time-like component of the
corresponding current operator,

Q =

∫

d3xJ0(t,x) . (11.24)

The state

|s〉 =

∫

d3x eik·xJ0(t,x) |0〉 → Q |0〉 for k → 0 (11.25)
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11 Symmetries and symmetry breaking

becomes in the zero-momentum limit equal to the state Q |0〉 we are searching for. Moreover,
applying P on |s〉 gives (problem 11.5)

P |s〉 = p |s〉 . (11.26)

Thus the SSB of the vacuum, Q |0〉 6= 0, implies excitations of the system with a frequency
that vanishes in the limit of long wavelengths. In the relativistic case, Goldstone’s theorem
predicts massless states, while in the non-relativistic case relevant for solid states the theorem
predicts collective excitations with zero energy gap.

11.2 Renormalisation of theories with SSB

When we went through the SSB of the scalar field, we saw that new φ3 interactions were
introduced. The question then arises, are new renormalisation constants needed when a
symmetry is spontaneously broken? This would make these theories non-renormalisable.

We can address this questions in two ways. One possibility is to repeat our analysis of the
renormalisability of the scalar theory in section 9.3.2, but now for the broken case with µ2 < 0.
Then we would find that the φ3 term becomes finite, renormalising fields, mass and coupling
as in the unbroken case. This is not unexpected, because shifting the field φ → φ̃ = φ − v,
which is an integration variable in the generating functional, should not affect physics. On the
other hand, such a shift reshuffles the splitting L = L0 + Lint in our standard perturbative
expansion in the coupling constant. To avoid this problem, we analyse SSB in the following in
a different way: We develop as a new tool the loop expansion which is based on the effective
action formalism. Additionally of being not affected by a shift of the fields, this formalism
allows us to calculate the potential including all quantum corrections in the limit of constant
fields.

First we recall the definition of the classical field,

φc(x) =
δW

δJ(x)
=

1

Z

∫

Dφφ(x) exp{i(S +

∫

d4x′J(x′)φ(x′)} (11.27)

and of the effective action1

Γ[φc] = W [J ] −
∫

d4x′J(x′)φc(x
′)} ≡W [J ] − 〈Jφ〉 , (11.28)

which lead to the converse relation for J ,

J(x) = −δΓ[φc]

δφ(x)
. (11.29)

Effective potential In general we will not be able to solve the effective action. Studying
SSB, we can however make use of a considerable simplification: The fields we are interested in
are constant, and it should be therefore useful to perform a gradient expansion of the effective
action Γ[φ],

Γ[φ] =

∫

d4x

[

−Veff(φ) +
1

2
Z(φ)(∂µφ)2 + . . .

]

. (11.30)

1We will suppress the subscript c on the classical field from now on and use brackets 〈Jφ〉 to indicate

integration.
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11.2 Renormalisation of theories with SSB

Here, we introduced also the effective potential Veff(φ) as the zeroth order term of the expan-
sion in (∂µφ)2, i.e. the only term surviving for constant fields.

If we now choose the source J(x) to be constant, the field φ(x) has to be uniform too,
φ(x) = φ, by translation invariance. Together this implies that

Γ = −ΩVeff , (11.31a)

−J =
δΓ[φ]

δφ
= −Ω

∂Veff(φ)

∂φ
, (11.31b)

where Ω is the space-time volume. Hence, as announced, we only have to calculate the effective
potential, not the full effective action. In the absence of external sources, J = 0, Eq. (11.31b)
simplifies to V ′

eff(φ) = 0. Thus this is the quantum version of our old approach where we
minimised the classical potential V (φ) in order to find the vacuum expectation value of φ.
Note that Eq. (11.31b) contains all quantum corrections to the classical potential, the only
approximation made so far neglecting gradients of the classical field.

In order to proceed, we use that we know the classical potential and we assume that
quantum fluctuations are small. Then we can perform a saddle-point expansion around the
classical solution φ0, given by the solution to

δ{S[φ] + 〈Jφ〉}
δφ

∣
∣
∣
∣
φ0

= 0 (11.32)

or,

�φ0 + V ′(φ0) = J(x) . (11.33)

We write the field as φ = φ0 + φ̃, i.e. as a classical solution with quantum fluctuations on top.
Then we can approximate the path integral by

Z = exp{ i

~
W} ≈ exp{ i

~

[
S[φ0] + 〈Jφ0〉

]
}
∫

Dφ̃ exp

{
i

~

∫

d4x
1

2

[

(∂µφ̃)2 − V ′′(φ0)φ̃
2
]}

,

(11.34)
where V ′′ is the second derivative of the potential term of the theory. Planck’s constant ~

has been restored to indicate that what we are doing here is an expansion in ~, or a loop
expansion, which we will show later. The functional integral over φ̃ is quadratic and can be
formally solved directly, it is equal to (det(� + V ′′)−

1

2 . Using the identity ln detA = tr lnA,
we find

W = S[φ0] + 〈Jφ0〉 +
i~

2
tr ln[� + V ′′(φ0)] + O(~2) . (11.35)

To evaluate the operator trace, we write out the definition and insert two complete set of
plane waves,

tr ln[� + V ′′] =

∫

d4x〈x| ln[� + V ′′]|x〉

=

∫

d4x
d4k

(2π)4
d4q

(2π)4
〈x|k〉〈k| ln[� + V ′′]|q〉〈q|x〉

=

∫

d4x
d4k

(2π)4
ln[−k2 + V ′′] .
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11 Symmetries and symmetry breaking

Performing the Legendre transform and putting everything together, we obtain for the
effective potential including the first quantum corrections

Veff(φ) = V (φ) − i~

2

∫
d4k

(2π)4
ln

[
k2 − V ′′(φ)

]
+ O(~2) . (11.36)

As an example we can use the λφ4 theory, with

V ′′(φ) = µ2 +
1

2
λφ2 . (11.37)

The second term can be interpreted as an effective mass contribution due to the constant
background field φ.

Not surprisingly, the effective potential is divergent and we have to introduce counter-terms
that can eliminate the divergent parts. Our effective potential is then

Veff(φ) = V (φ) +
~

2

∫
d4k

(2π)4
ln

(
k2

E + V ′′(φ)

k2
E

)

+Bφ2 + Cφ4 + O(~2) . (11.38)

Here, we Wick rotated the integral to Euclidean space and subtracted an infinite constant in
order to make the logarithm dimensionless. (Equivalently we could have added an additional
constant counter-term A renormalising the vacuum energy density.) The integral can be
solved in different regularisation schemes, here we will expand the logarithm,

ln

(

1 +
V ′′

k2
E

)

=

∞∑

n=1

1

n

(
V ′′

k2
E

)n

, (11.39)

and cutoff the integral at some large momenta Λ. The first two terms of the sum will depend
on the cutoff, being proportional to Λ2 and ln(Λ2/V ′′), respectively. Performing the integral
and throwing away terms that vanishes for large Λ, we obtain

Veff(φ) = V (φ) +
Λ2

32π2
V ′′(φ) +

V ′′(φ)2

64φ2
ln

(
V ′′(φ)

Λ2

)

. (11.40)

Now we see that if we start out with a massless λφ4, our cutoff-dependent terms are

V ′′ =
1

2
λφ2, and (V ′′)2 =

λ2

4
φ4, (11.41)

which both can be absorbed into the counter-terms B and C by imposing appropriate renor-
malisation conditions.

Let us stress the important point in this result: The renormalisation of the λφ4 theory
using the effective potential approach is not affected at all by a shift of the field: We are free
to use both signs of µ2 and any value of the classical field φ in Eq. (11.40). Independently of
the sign of µ2, we need only symmetric counter-terms, as a cubic term does not appear at all.

We can rephrase this point as follows: If we renormalise before we shift the fields, we know
that we obtain finite renormalised Green functions. But shifting the fields does not change
the total Lagrangian. Thus the effective action and the effective potential are unchanged too.
Consequently the theory has to stay renormalisable after SSB.

Let us now discuss what happens with a non-renormalisable theory in the effective potential
approach. Including e.g. a φ6 term leads to (V ′′)2 ∝ φ8 which requires an additional counter-
term Dφ8, generating in turn even higher order terms and so forth. Thus in this case an
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11.2 Renormalisation of theories with SSB

= + + . . .

1

Figure 11.2: Perturbative expansion of the one-loop effective potential V
(1)
eff for the λφ4 theory;

all external legs have zero momentum.

infinite number of counter-terms is needed for the calculation of V
(1)
eff . How does this finding

goes together with our statement that non-renormalisable theories are predictive below a
certain cutoff scale Λ? The reason for this apparent contradiction becomes clear, if we look

again at the series expansion of the logarithm in the one loop contribution V
(1)
eff ,

V
(1)
eff = i

∞∑

n=1

∫
d4k

(2π)4
1

2n

[
V ′′(φ)

k2

]n

. (11.42)

This contribution is an infinite sum of single loops with progressively more pairs of external
legs with zero-momentum attached, see Fig. 11.2 for the case of V ′′(φ) = 1

2λφ
2. (The factor

i appeared, because we are back in Minkowski space; the symmetry factor 2n appearing
automatically in this approach accounts for the symmetry of a graph with n vertices under
rotations and reflection.) As we saw, the superficial degree of divergence increases with the
number of external particles for a λφn theory and n > 4. Hence every single diagram in the

infinite sum contained in V
(1)
eff diverges and requires a counter-term of higher order in φn.

Therefore the effective potential approach is not useful for non-renormalisable theories.

Expansion in ~ as a loop expansion To show that the expansion in ~ is really a loop
expansion, we introduce artificially a parameter a into our Lagrangian so that

L (φ, ∂µφ, a) = a−1
L (φ, ∂µφ) . (11.43)

Now we want to determine the power P of a in an arbitrary Feynman diagram, aP : A
propagator is the inverse of the quadratic form in L and contributes thus a positive power
a, while each vertex ∝ Lint adds a factor a−1. The number of loops in an 1PI diagram is
given by L = I − V + 1, cf. Eq. (9.45), where I is the number of internal lines and V is the
number of vertices. Putting this together we see that

P = I − V = L− 1 (11.44)

and it is clear that the power of a gives us the number of loops.
We should stress that using a loop expansion does not imply a semi-classical limit, S ≫ ~:

Our fictitious parameter a is not small; in fact, it is one. The loop expansion is not affected
by a shift in the fields, since a multiplies the whole Lagrangian. Thus this procedure is
particularly useful discussing the renormalisation of SSB.
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11 Symmetries and symmetry breaking

Effective action as generating functional for 1PI Green functions We have now all the
necessary tools in order to show that the tree-level graphs generated by the effective action
Γ[φ] correspond to the complete scattering amplitudes of the corresponding action S[φ]. We
compare our familiar generating functional

Z[J ] =

∫

Dφ exp{iS + 〈Jφ〉} = eiW [J ] , (11.45)

with the functional Va[J ] of a fictitious field theory whose action S is the effective action Γ[φ]
of the theory (11.45) we are interested in,

Va[J ] =

∫

Dφ exp

{
i

a
{Γ[φ] + 〈Jφ〉}

}

= eiUa[J ] . (11.46)

Additionally, we introduced the parameter a with the same purpose as in (11.43): In the limit
a → 0, we can perform a saddle-point expansion and the path integral is dominated by the
classical path. From (11.34), we find thus

lim
a→0

aUa[J ] = Γ[φ] + 〈Jφ〉 = W [J ] , (11.47)

where we used the definition of the effective action, Eq. (11.28), in the last step. The RHS
is the sum of all connected Green functions of our original theory. The LHS is the classical
limit of the fictitious theory Va[J ], i.e. it is the sum of all connected tree graphs of this theory.
Equation 9.146 shows the vertices of this theory are given by Γ(n)(x1, ..., xn), i.e. the 1PI
Green functions of our original theory. Thus we can represent the connected graphs of W
as tree graphs whose effective vertices are the sum of all 1PI graphs with the appropriate
number of external lines.

Another proof of the Goldstone theorem With the help of the effective potential we can
give another simple proof of the Goldstone theorem. We know that the zero of the inverse
propagator determines the mass of a particle. From Eq. (9.147), the exact inverse propagator
in momentum space for a set of scalar fields is given by

∆−1
ij (p2) =

∫

d4x eip(x−x′) δ2Γ

δφi(x)δφj(x′)
. (11.48)

Massless particles correspond to zero eigenvalues of this matrix equation for p2 = m2. If we
set p = 0, the fields are constant. But differentiating the effective action w.r.t. to constant
fields is equivalent to differentiating simply the effective potential,

∂2Veff

∂φi(x)∂φj(x′)
= 0 . (11.49)

The effective potential has the same symmetry properties as the classical potential, but ac-
counts for all quantum effects. Thus our previous analysis of Goldstone’s theorem using the
classical potential is not modified by quantum corrections.
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Coleman-Weinberg Problem Sidney Coleman and Erick Weinberg [CW73] used this for-
malism to investigate if quantum fluctuations could trigger SSB in an initially massless theory.
Rewriting the effective potential a bit we have

Veff(φ) =

[
Λ2

64π2
λ+B

]

φ2 +

[
λ

4!
+

λ2

(16π)2
ln
φ2

Λ2
+ C

]

φ4 . (11.50)

Now we impose the renormalising conditions, first

d2Veff

dφ2

∣
∣
∣
∣
φ=0

= 0 , (11.51)

which implies that

B = − λΛ2

64π2
. (11.52)

When renormalising the coupling constant, we have to pick a different point than φ = 0, due
to the logarithm being ill-defined there. This means that we have to introduce a scale µ.
Taking the fourth derivative and ignoring terms that are independent of φ, we find

d4Veff

dφ4

∣
∣
∣
∣
φ=µ

= λ = 24
λ2

(16π)2
ln
µ2

Λ2
. (11.53)

We can convince ourselves that this expression gives the correct beta function,

β(µ) = µ
∂λ

∂µ
=

3

16π2
λ2 + O(λ3) . (11.54)

Using the complete expression for Eq. (11.53), we can determine C and obtain for the
renormalised effective potential (problem 11.6)

Veff(φ) =
λ(µ)

4!
φ4 +

λ2(µ)

(16π)2
φ4

[

ln
φ2

µ2
− 25

6

]

+ O(λ3) . (11.55)

This potential has two minima outside of the origin, so it seems that SSB does indeed happen.
These minima lie however outside the expected range of validity of the one loop approximation:
Rewriting the potential as Veff(φ) = λφ4/4!(1 + aλ ln(φ2/µ2) + . . . suggest that we can trust
the one-loop approximation only as long as (3/32π2)λ ln(φ2/µ2) ≪ 1.

11.3 Abelian Higgs model

After we have shown that the renormalisability is not affected by SSB, we now try to apply
this idea to a the case of a gauge symmetry. First of all, because we aim to explain the
masses of the W and Z bosons as consequence of SSB. Secondly, we saw that SSB of global
symmetries leads to massless scalars which are however not observed. As SSB cannot change
the number of physical degrees of freedom, we hope that each of the two diseases is the
cure of the other: The Goldstone bosons which would remain massless in a global symmetry
disappear becoming the required additional longitudinal degrees of freedom of massive gauge
bosons in case of the SSB of a gauged symmetry.
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11 Symmetries and symmetry breaking

The Abelian Higgs model, which is the simplest example for this mechanism, is obtained
by gauging a complex scalar field theory. Introducing in the Lagrangian (11.12) the covariant
derivative

∂µ → Dµ = ∂µ − ieAµ (11.56)

and adding the free Lagrangian of an U(1) gauge field gives

L = −1

4
FµνF

µν + (Dµφ)†(Dµφ) + µ2φ†φ− λ(φ†φ)2 . (11.57)

The symmetry breaking and Higgs mechanism is best discussed changing to polar coordinates
in field-space, φ = ρ exp{iϑ}. Then we insert

Dµρ =
[
∂µρ+ iρ(∂µϑ− eAµ)

]
eiϑ (11.58)

into the Lagrangian, obtaining

L = −1

4
FµνF

µν + ρ2(∂µϑ− eAµ)2 + (∂µρ)
2 + µ2ρ− λρ4 . (11.59)

The only difference to the ungauged model is the appearance of the gauge field in the prospec-
tive mass term ρ2(∂µϑ− eAµ)2. This allows us to eliminate the angular mode ϑ which shows
up nowhere else by performing a gauge transformation on the field Aµ: The action of a U(1)
gauge transformation on the original field φ is just a phase shift, hence ρ is unchanged and ϑ
is shifted by a constant. This means that if we do the transformation

Aµ → Bµ = Aµ − 1

e
∂µϑ ,

we eliminate ϑ completely, as Fµν is gauge invariant,

L = −1

4
FµνF

µν + e2ρ2(Bµ)2 + (∂µρ)
2 + µ2ρ− λρ4 . (11.60)

It is now evident that the Goldstone mode ϑ has disappeared, while the new gauge field Bµ

obtained a mass and interaction term eρ. Eliminating the field ρ in favour of fluctuations ξ
around the vacuum v =

√

µ2/λ, i.e. shifting as usually the field as

ρ =
1√
2
(v + χ) , (11.61)

we obtain after some algebra as new Lagrangian

L = − 1

4
FµνF

µν +
1

2
M2(Bµ)2 + e2vχ(Bµ)2 +

1

2
e2χ2(Bµ)2

+
µ2

4λ2
+

1

2
(∂µχ)2 − 1

2
(
√

2µ)2χ2 −
√
λµχ3 − λ

4
χ4 .

(11.62)

As in the ungauged model we obtain a χ3 self-interaction and a contribution to the vacuum
energy density. But the gauge field Bµ acquired the mass M = ev, therefore having now three
spin degrees of freedom. The additional longitudinal one has been delivered by the Goldstone
boson which in turn disappeared: The gauge field has eaten the Goldstone boson, so to speak.
We also see that the number of degrees of freedom before SSB (2 + 2) matches the number
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11.3 Abelian Higgs model

afterwards (3+1). The phenomenon that breaking spontaneously a gauge symmetry does not
lead to massless Goldstone bosons because they become the longitudinal degree of freedom
of massive gauge bosons is called the Higgs effect.

The gauge transformation we used to eliminate the ϑ field corresponds to the Higgs model
in the unitary gauge, where only physical particles appear in the Lagrangian. The massive
gauge boson is decribed by the Procca Lagrangian and we know that the resulting propagator
becomes constant for large momenta. Hence, this gauge is convenient for illustrating the
concept of the Higgs mechanism, but not suited for loop calculations.

A different way to consider the model is to keep the Cartesian fields φ = 1√
2
(φ1 + iφ2).

Then the Lagrangian is

L = − 1

4
FµνF

µν +
1

2

[
(∂µφ1 + eAµφ2)

2 + (∂µφ2 − eAµφ1)
2
]

+ µ2(φ2
1 + φ2

2) − λ(φ2
1 + φ2

2)
2 . (11.63)

Performing the shift due to the SSB, φ1 = v + φ̃1 and φ2 = φ̃2, the Lagrangian becomes

L = − 1

4
FµνF

µν +
1

2
M2(Aµ)2 − evAµ∂µφ̃2

+
1

2

[

(∂µφ̃1)
2 − 2µ2φ̃2

1

]

+
1

2
(∂µφ̃2)

2 + . . . ,
(11.64)

where we have omitted interaction and vacuum terms not relevant to the discussion. As we
see, the Goldstone boson φ̃2 does not disappear and it couples to the gauge field Aµ. On the
other hand, the mass spectrum of the physical particles is the same as in the unitary gauge.
The degrees of freedom before and after breaking the symmetry do not match, hence there is
an unphysical degree of freedom in the theory, namely that corresponding to φ̃2.

Gauge fixing and gauge boson propagator In order to make the generating functional
Z[Jµ, J, J∗] of the abelian Higgs model well-defined, we have to remove the gauge freedom
of the classical Lagrangian. Using the Faddeev-Popov trick to achive this implies to add a
gauge-fixing and a Faddeev-Popov ghost term to the classical Lagrangian,

Leff = Lcl + Lgf + LFP = Lcl −
1

2ξ
G2 − c̄

∂G

∂ϑ
c . (11.65)

Here G = 0 is a suitable gauge condition, ϑ are the generators of the gauge symmetry and
c, c̄ are grassmannian ghost fields.

In the unbroken abelian case we used as gauge condition G = ∂µA
µ. With the gauge

transformation Aµ → Aµ − ∂µϑ the ghost term becomes simply LFP = c̄(−�)c. Thus the
ghost fields completely decouple from any physical particles, and the ghost term can be
absorbed in the normalisation.

In the present case of a theory with SSB, we want to use the Fadeev-Popov term to cancel
the mixed Aµ∂µφ2 term. Therefore we include the Goldstone boson φ2 in the gauge condition,

G = ∂µA
µ + ξevφ2 = 0 . (11.66)

From

φ2 = −∂µA
µ

ξev
, (11.67)
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11 Symmetries and symmetry breaking

we see that the unitary gauge corresponds to ξ → ∞. We calculate first G2,

G2 = (∂µA
µ)(∂νA

ν) + 2ξevφ2∂µA
µ + ξ2e2v2φ2

2 , (11.68)

integrate partially the cross term and insert the result into Lgf ,

Lgf −
1

2ξ
G2 = − 1

2ξ
(∂µA

µ)2 + evAµ∂
µφ2 −

1

2
ξ(ev)2φ2

2 . (11.69)

Now we see that the second term cancels the unwanted mixed term in Lcl, while a ξ dependent
mass term ξM2 for φ2 appeared.

If we write out the terms in Leff quadratic in Aµ and φ2,

Leff,2 = −1

4
FµνF

µν +
1

2
M2A2

µ − 1

2ξ
(∂µA

µ)2 +
1

2
(∂µφ

µ
2 )2 − 1

2
ξM2φ2

2 , (11.70)

we can find the boson propagator. Using the antisymmetry of Fµν and a partial integration,
we transform F 2 into standard form,

−1

4
FµνF

µν = −1

2

(
∂µA

ν∂µAν − ∂νAµ∂
µAν

)

=
1

2

(
Aν∂µ∂

µAν −Aµ∂
µ∂νAµ

)

=
1

2
Aµ(gµν

� − ∂µ∂ν)Aν .

The part of the Lagrangian quadratic in Aµ then reads

LA =
1

2
Aµ

[
gµν

� − ∂µ∂ν
]
Aν +

1

2
Aµg

µνM2Aν +
1

2ξ
Aµ∂

µ∂νAν

=
1

2
Aµ

[
gµν(� +M2) − (1 − ξ−1)∂µ∂ν

]
Aν .

To find the propagator we want to invert the term in the bracket, denote this term by Pµν(k).
If we go to momentum space, then

Pµν = −(k2 −M2)gµν + (1 − ξ−1)kµkν . (11.71)

This can be split into a transverse and a longitudinal part by factoring out terms proportional
to Pµν

T = gµν − kµkν

k2 ,

Pµν = −(k2 −M2)
(
Pµν

T +
kµkν

k2

)
+ (1 − ξ−1)kµkν

= −(k2 −M2)Pµν
T −

(
k2 −M2

k2
− 1 + ξ−1

)

kµkν

= −(k2 −M2)Pµν
T − ξ−1(k2 − ξM2)Pµν

L , (11.72)

where the longitudinal part is Pµν
L = kµkν

k2 . Since Pµν
T and Pµν

L as projection operators are
orthogonal to each other, we can invert the two parts separately and obtain

iDµν
F (k2) =

−iPµν
T

k2 −M2 + iε
+

−iξPµν
L

k2 − ξM2 + iε

=
−i

k2 −M2 + iε

[

gµν − (1 − ξ)
kµkν

k2 − ξM2 + iε

]

. (11.73)
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As we see, the transverse part propagates with mass M2, while the longitudinal part propa-
gates with mass ξM2. ξ → ∞ corresponds again to the unitary gauge and ξ = 1 corresponds
to the easier Feynman-’t Hooft gauge. For finite ξ we see that the propagator is proportional
to k−2 and no problems arise in loop calculations, as it did in the unitary gauge.

The Goldstone boson φ2 has the usual propagator of a scalar particle, however with gauge-
dependent mass ξM2.

Ghosts Using the Faddeev-Popov ansatz for the gauge introduces ghosts field through the
term

LFP = −c̄ δG
δϑ

c (11.74)

into the Lagrangian. To calculate δG/δϑ, we have to find out how the gauge fixing condition
G changes under an infinitesimal gauge transformation. Looking first at the change of the
complex field,

φ→ φ̃ = φ− ieϑφ = φ− ieϑ
1√
2
(v + φ1 + iφ2) , (11.75)

we see that the fields φ1 and φ2 are mixed under the gauge transformation.

Aµ → Ãµ = Aµ + ∂µϑ (11.76)

φ1 → φ̃1 = φ1 + eϑφ2 (11.77)

φ2 → φ̃2 = φ2 − eϑ(v + φ1) . (11.78)

Inserting this into the gauge fixing condition (11.66) and differentiating with respect to the
generator, we obtain

δG

δϑ
=

δ

δϑ

(

∂µÃ
µ − ξevφ̃2

)

= � + ξe2v(v + φ1) . (11.79)

That is, with spontaneous symmetry breaking the ghost particles will get a ξ-dependent mass
and they interact with the Higgs field φ1. To see this explicitly we insert δG/δϑ into the
ghost Lagrangian,

LFP = −c̄
[
� + ξe2v(v + φ1)

]
c

= (∂µc̄)(∂µc) − ξM2c̄c− ξe2vφ1c̄c .

The second term corresponds to the mass ξe2v2 = ξM for the ghost field, the third one
describes ghost-ghost-Higgs interaction.

To sum this up, we have the following propagators in the Rξ gauge, where we follow common
practise and denote with h the physical Higgs boson and with φ the Goldstone boson:
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Gauge boson Aµ with mass MA = ev

µ ν = i

k2
−M2+iǫ

[

−gµν + (1 − ξ)
kµkν

k2
−ξM2+iǫ

]

Higgs boson h with mass squared M2
h = 2µ2

= i

k2
−M2

h
+iǫ

Goldstone boson φ with mass squared ξM2
A

= i

k2
−ξM2

A
+iǫ

Ghost c with mass squared ξM2
A

= i

k2
−ξM2

A
+iǫ

1

Before we finish this chapter, we should answer why the Goldstone theorem does not apply
to the case of the Higgs model. The characteristic property of gauge theories that no man-
ifestly covariant gauge exists which eliminates all gauge freedom is also responsible for the
failure of the Goldstone theorem: In the first version of our proof, we may either choose a
gauge as the Coulomb gauge. Then only physical degrees of freedom of the photon propagate,
but the potential A0(x) drops only as 1/|x| and the charge Q defined in (11.24) becomes ill-
defined. Alternatively, we can use a covariant gauge as the Lorentz gauge. Then the charge
is well-defined, but unphysical scalar and longitudinal photons exist. The Goldstone does
apply, but the massless Goldstone bosons do not couple to physical modes.

In the second version of our proof, the effective potential for the scalar and for the gauge
sector do not decouple and mix by the same reason after SSB. This invalidates our analysis
including only scalar fields.

Summary of chapter Examining spontaneous symmetry breaking of internal symmetries, we
found three different behaviours: If the broken symmetry is discrete, no problem arises. For
a broken global continuous symmetry, Goldstone’s theorem predicts the existence of massless
scalars. In the case of broken approximate symmetries, this can explain the existence of
light scalar particles—an example are pions. The case of broken global continuous symmetry
which are exact seems to be not realised in nature, since no massless scalar particles are
observed. If we gauge the broken symmetry, the would-be massless Goldstone bosons become
the longitudinal degrees of freedom required for massive spin-1 bosons.

We developed the effective potential as tool to study the renormalisability of spontaneously
broken theories: This approach allows the calculation of all quantum corrections to the clas-
sical potential in the limit of constant fields and is invariant under a shift of fields. Thereby
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we could establish that renormalisability is not affected by SSB.

Further reading

Our discussion of the effective potential is based on the Erice lectures of S. Coleman [Col88].

Exercises

11.1 Contribution to the vacuum energy

density from SSB.

Calculate the difference in the vacuum energy
density before and after SSB in the SM using
v = 256GeV and m2

h
= 2µ2 = (125)2 GeV2. Com-

pare this to the observed value of the cosmological
constant.

11.2 Scalar Lagrangian after SSB.

Derive Eq. (11.10) and write down the explicite
form of Lint.

11.3 Quantum corrections to 〈φ〉.
We implicitely assumed that quantum corrections
are small enough to that the field stays at the
chosen classical minimum. Calculate 〈φ(0)2〉 for

d space-time dimensions and show that this as-
sumption is violated for d ≤ 2.

11.4 Instability of 〈φ〉.
Calculate the imaginary part of the self-energy

for a scalar field with the Lagrangian (11.1), i.e.
with a negative squared mass µ2 < 0. Discuss the
physical interpretation.

11.5 Goldstone mode as zero mode.

Show that the state |s〉 defined in Eq. (11.25) has
zero energy for k → 0.

11.6 Coleman-Weinberg problem.

Derive Eq. (11.55), find the minima of the po-
tential and discuss the validity of the one-loop ap-
proximation.
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