
1 Main sequence stars and their evolution

1.1 Equations of stellar structure

We look for spherical symmetric, static solutions of the equations of stellar structure. This
requires that rotation, convection, magnetic fields B, and other effects that break rotational
symmetry have only a minor influence on the star.

1.1.1 Mass continuity and hydrostatic equilibrium

We denote by M(r) the mass enclosed inside a sphere with radius r and density ρ(r),

M(r) = 4π

∫ r

0

dr′r′2ρ(r′) (1.1)

or in differential form
dM(r)

dr
= 4πr2ρ(r) . (1.2)

Although trivial, this constitutes the first (“continuity equation”) of the five equations needed
to describe the structure and evolution of stars. An important application of the continuity
equation is to express physical quantities not as function of the radius r but of the enclosed
mass M(r). This facilitates the computation of the stellar properties as function of time,
because the mass of a star remains nearly constant during its evolution, while the stellar
radius can change considerably.

A radial-symmetric mass distribution M(r) produces according Gauß’ law the same grav-
itational acceleration, as if it would be concentrated at the center r = 0. Therefore the
gravitational acceleration g(r) produced by M(r) is

g(r) = −GM(r)

r2
. (1.3)

If the star is in equilibrium, this acceleration has to be balanced by a pressure gradient from
the center of the star to its surface. Since pressure is defined as force per area, P = F/A, a
pressure change along the distance dr corresponds to an increment

dF = AdP
︸ ︷︷ ︸

force

= ρ(r)Adr
︸ ︷︷ ︸

mass

a(r)
︸︷︷︸

acceleration

(1.4)

of the force F produced by the pressure gradient dP . Hydrostatic equilibrium, g(r) = −a(r),
requires then

dP

dr
= −ρ(r)g(r) = −GM(r)ρ(r)

r2
. (1.5)

If the pressure gradient and gravity do not balance each other, the layer at position r is
accelerated,

atot(r) =
GM(r)

r2
+

1

ρ(r)

dP

dr
. (1.6)
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1.1 Equations of stellar structure

In general, we need an equation of state, P = P (ρ, T, Yi), that connects the pressure P with
the density ρ, the (not yet) known temperature T and the chemical composition Yi of the
star. For an estimate of the central pressure Pc = P (0) of a star in hydrostatic equilibrium,
we integrate (1.5) and obtain with P (R) ≈ 0,

Pc =

∫ R

0

dP

dr
dr = G

∫ M

0

dM
M

4πr4
, (1.7)

where we used the continuity equation to substitute dr = dM/(4πr2ρ) by dM . If we replace
furthermore r by the stellar radius R ≥ r, we obtain a lower limit for the central pressure,

Pc = G

∫ M

0

dM
M

4πr4
> G

∫ M

0

dM
M

4πR4
=

M2

8πR4
. (1.8)

Inserting values for the Sun, it follows

Pc >
M2

8πR4
= 4 × 108bar

(
M

M⊙

)2(R⊙

R

)4

. (1.9)

1.1.2 Gas and radiation pressure

A (relativistic or non-relativistic) particle in a box of volume L3 collides per time interval
∆t = 2L/vx once with the yz-side of the box, if the x component of its velocity is vx.
Thereby it exerts the force Fx = ∆px/∆t = pxvx/L. The pressure produced by N particles
is then P = F/A = Npxvx/(LA) = npxvx or for an isotropic velocity distribution with
〈v2〉 = 〈v2

x〉 + 〈v2
y〉 + 〈v2

z〉 = 3〈v2
x〉

P =
1

3
nvp . (1.10)

If the particles have a distribution np of momenta with

N = V

∫
∞

0

dp np = V

∫
∞

0

dv nv , (1.11)

then we obtain instead of Eq. (1.10) the so-called pressure integral

P =
1

3

∫
∞

0

dp npvp . (1.12)

Although the derivation assumed classical trajectories of the particles, the result holds for
any kind of non-interacting particles, in particular also if quantum effects are important (cf.
Ex. ).

The two most important cases in astrophysics are a classical, non-relativistic gas of atoms
and a gas of photons. In the first case, we can derive the momentum distribution noting that
the states describing a free particle are labelled by the continuous three-momentum p. Thus
the sum over discrete quantum numbers in the Boltzmann factor is replaced by an integration
over the momenta d3p and the volume d3x occupied by the system,

∑

i

exp(−E/kT ) → V

∫
d3p

(2π)3
exp

(

−mv2

2kT

)

=
V

(2π)3

∫
∞

0

exp

(

−mv2

2kT

)

4πm3v2dv . (1.13)
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1 Main sequence stars and their evolution

If we compare the RHS with Eq. (1.11) we see that we need only to normalize correctly nv.
The integral can be evaluated by substituting α = m/(2kT ) and noting that

− ∂

∂α

{∫
∞

−∞

dx exp(−αx2)

}

=

∫
∞

−∞

dxx2 exp(−αx2) = − ∂

∂α

√
π

α
=

1

2α

√
π

α
. (1.14)

Multiplying the integrand with 4(α/π)3/2, we obtain the Maxwell-Boltzmann distribution of
velocities for a classical gas,

nvdv = n
( m

2πkT

)2/3

exp

(

−mv2

2kT

)

4πv2dv . (1.15)

Because of npdp = nvdv, we can insert now nv into the pressure integral (1.12),

P =
1

3

∫
∞

0

dv nvvp = n
(α

π

)2/3
∫

∞

0

dx x4 exp
(
−αx2

)
= nkT . (1.16)

The integral
∫

dxx4 exp(−αx2) has been calculated with the same method, but now differen-
tiating twice the Gaussian integral with respect to α. Since we use generally the mass density
ρ instead of the particle number density n, it is more convenient to introduce the gas constant
R = k/mH and the mean atomic weigth µ defined by n = ρ/(µmH). Then the ideal gas law
becomes

P = nkT = RρT/µ . (1.17)

A fully ionized plasma consisting mainly of hydrogen has µ ≈ 1/2 because of mp ≫ me.
The second important example is the pressure Prad of radiation, i.e. the pressure of a photon

gas. With p = hν/c and nνdν = npdp it follows

Prad =
1

3

∫
∞

0

dν nνhν . (1.18)

Noting that the spectral energy density uν and the intensity Bν of a thermal photon gas are
connected by uνdν = 4π/cBνdν, it follows

Prad = aT 4/3 . (1.19)

Here we introduced also the radiation constant a = 4σ/c.

1.1.3 Virial theorem

The virial theorem is an important link between the (gravitational) potential energy and the
internal (kinetic) energy of any system in equilibrium. In order to derive it for the special
case of a star, we multiply both sides of the hydrostatic equilibrium Eq. (1.5) with 4πr3 and
integrate over r,

∫ R

0

dr 4πr3 P ′ = −
∫ R

0

dr 4πr3 GM(r)ρ

r2
. (1.20)

Next we insert dM(r) = 4πr2ρdr on the RHS and integrate partially the LHS,

[
4πr3 P

]R

0
− 3

∫ R

0

dr 4πr2P = −
∫ M

0

dM
GM(r)

r
. (1.21)
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1.1 Equations of stellar structure

The RHS is the gravitational potential energy Upot of the star. Using the boundary conditions
V (0) = 0 and P (R) = 0, we see that the first term of the LHS vanishes. We can rewrite the
remaining second term of the LHS as

−3

∫ M

0

dM
P

ρ
= Upot . (1.22)

For the special case of an ideal gas, P = nkT = 2
3
Ukin/V , and we obtain the virial theorem,

−2Ukin = Upot . (1.23)

Hence the average energy of a single atom or molecule of the gas is 〈Ekin〉 = −1
2
〈Epot〉. This

is the same result as for a free hydrogen atom, indicating that only the shape not the strength
of the potential V (r) ∝ r−α determines the ratio of kinetic and potential energy.

Ex.: Estimate the central temperature of the Sun with the virial theorem.
We estimate the gravitational potential energy of a proton at the center of the Sun as

〈Egrav〉 ∼ −GM⊙mp

R⊙

≈ −3.2keV/c2

For a thermal velocity distribution of a Maxwell-Boltzmann gas we obtain

〈Ekin〉 =
3

2
kT = −1

2
〈Egrav〉 ≈ 1.6 keV/c2 .

Hence our estimate for the central temperature of the Sun is Tc ≈ 1.1keV/c2 ≈ 1.2×107 K – compared

to Tc ∼ 1.3 keV/c2 in the so-called Solar Standard Model.

1.1.4 ∗∗∗ Stability of stars ∗∗∗
We want to generalize the virial theorem to a gas with an polytropic equation of state,
P = Kργ . To do so, we have to express the energy density as function of the pressure and
the polytropic index γ. Combining dP/P = −γdρ/ρ and dρ/ρ = −dV/V , we obtain

V dP = −γPdV . (1.24)

Next we add pdV to both sides,

d(V P ) = V dP + PdV = −(γ − 1)PdV , (1.25)

or

d

(
V P

γ − 1

)

= −PdV = dU . (1.26)

Hence the pressure and the (kinetic) energy density are connected by P = (γ − 1)U/V . For
an ideal gas, U/V = 3/2kT and P = nkT , the adiabatic index is γ = 5/3, while for radiation,
U/V = aT 4 and P = aT 4/3, and thus γ = 4/3.

The relation P = (γ − 1)U/V allows us to re-express the LHS of Eq. (1.21) as

−3(γ − 1)Ukin = Upot . (1.27)
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1 Main sequence stars and their evolution

A star can be only stable, if its total energy Utot = Ukin + Upot is smaller than zero,

Utot = (4 − 3γ)Ukin =
3γ − 4

3γ − 3
Upot < 0 . (1.28)

For γ = 5/3, we obtain back our old result for an ideal gas. A star with γ = 4/3 has zero
energy and marks the border of matter that can become gravitationally bound. Adding an
arbitrary small amount of energy would disrupt such a star, while subtraction would lead to
its collapse. Important examples for matter with γ = 4/3 are all relativistic particles, i.e. not
only photons but also relativistic electrons and nucleons.

Stars with γ > 4/3, or more generally all gravitationally bound systems, have surprising
thermodynamical properties: Consider e.g. the heat capacity using the EoS of an ideal gas,
CV = ∂Utot/∂T = −∂Ukin/∂T = −3

2
Nk: Losing energy, the star becomes hotter.

1.1.5 Energy transport

There exist three different mechanism for the transport of energy: i) radiative energy transfer,
i.e. energy transport by photons, ii) conduction, i.e. scattering of electrons or atoms, and iii)
macroscopic matter flows. Conduction plays a prominent role as energy transport only for
dense systems, and is therefore only relevant in the dense, final stages of stellar evolution.

Radiative energy transport

For the energy flux F emitted per area and time by an layer of the star at radius r and
temperature T , a transport equation similar to Eq. (??) for the intensity I holds,

dF = −σnFdr = −κρFdr . (1.29)

Here we introduced also the opacity κ being the cross section per mass of a certain material.
Absorption of radiation means also a transfer of momentum to the medium. Since the mo-
mentum of photons is p = E/c and F = E/(At), a slab of matter absorbs the momentum
F/c per area and time. According to Newton’s second law, F = dp/dt, this has to be equal
to the net force applied to the layer. This force is simply the difference in radiation pressure
dPrad times the area. Thus

1

c
dF =

dp

dAdt
= dPrad (1.30)

and

F = − 1

κρ

dF
dr

= − c

κρ

dPrad

dr
. (1.31)

The pressure of radiation is Prad = aT 4/3 and hence

F = − c

3κρ

d(aT 4)

dr
= −4acT 3

3κρ

dT

dr
. (1.32)

The luminosity of a shell at radius r and temperature T is thus connected with a temperature
gradient dT/dr as

L(r) = 4πr2F(r) = −16πr2 acT 3

3κρ

dT

dr
. (1.33)
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1.1 Equations of stellar structure

Figure 1.1: In the shadowed regions convection is important for Main Sequence stars, the x
axis labels the total mass of the stars, x = log(M/M⊙), while the y axis labels
the position in the star, y = M(r)/M .

Convection

Convection is a cyclic mass motion carrying energy outwards, if the temperature gradient
becomes too large (or L > LEdd as discussed later) – a phenomen familiar to everybody from
water close to the boiling point. In the shadowed regions of Fig. 1.1 convection is important
for Main Sequence stars of various masses. In the case of the Sun, convection takes places in
its outer layer, M(r) > 0.98M⊙.

1.1.6 Thermal equilibrium and energy conservation

Thermal equilibrium and energy conservation require that the energy density ǫ produced per
time and mass by all possible processes corresponds to an increase of the luminosity L,

dL

dr
= 4πr2ǫρ . (1.34)

The energy production rate per time and mass unit, ǫ = dE/(dt), consists of three terms,

ǫ = ǫgrav + ǫnuc − ǫν , (1.35)

where ǫnuc accounts for the energy production by nuclear processes and ǫν for the energy
carried away by neutrinos. Both effects will be discussed in the next chapter in more detail.
The term ǫgrav is the only one that can be both positive (contraction) or negative (expansion
of the star) and is therefore crucial for the stability of a star.
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1.3 Eddington or standard model

and insert it into Eq. (1.36),
dPrad

dP
=

κη

4πcG

L

M
. (1.43)

At the surface, η = 1 by definition. In general, κ increases for small r, while η decreases
(L(r) ≈ const. and M(r) → 0 for r → 0). To proceed, Eddington made the assumption that
the product κη is approximately independent from the radius r, κη ≡ κs = const. Then we
can integrate Eq. (1.43) immediately,

Prad =
κsL

4πcGM
P . (1.44)

Defining β as the fraction the gas contributes to the total pressure, Prad = (1 − β)P and
Pgas = βP , we have

Prad

1 − β
= P =

Pgas

β
. (1.45)

Assuming an ideal gas law, Pgas = RρT/µ, and inserting Prad = aT 4/3, we have

aT 4

3(1 − β)
=

R

βµ
ρT . (1.46)

Now we can express the temperature as function of the density,

T =

(
3R(1 − β)

aβµ

)1/3

ρ1/3 . (1.47)

The total equation of state, P = Pgas/β = (Rρ/βµ)T , is therefore

P =

(
3R4(1 − β)

aβ4µ4

)1/3

︸ ︷︷ ︸

K

ρ4/3 , (1.48)

where the factor K is a constant. An equation of state with P = Kργ is called polytropic
with index γ = 1 + 1/n. Values of n that are of special interest are n = 5/3 (nr. degenerate)
4/3 (rel. degenerate) and 3 (fully convective star).

Lane-Emden equation For a polytropic equation of state, the continuity and the hydrostatic
equation decouple from the other equations of stellar structure. We want to combine now
these two first order differential equation into one of second order. Thus we multiply the
hydrostatic equation by r2/ρ and differentiate it then with respect to r,

d

dr

(
r2

ρ

dP

dr

)

= −G
dM(r)

dr
= −4πGρ(r) , (1.49)

where we inserted the continuity equation in the last step. Using also the equation of state
with P = Kργ , we obtain

(n + 1)

n

K

4πGr2

d

dr

(

r2

ρ
n−1

n

dρ

dr

)

= −ρ(r) , (1.50)
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1 Main sequence stars and their evolution

In order to solve this equation, we need two boundary conditions: One of them, ρ(R) = 0, is
obvious, another one, dρ/dr(r = 0) = 0, follows from dP/dr(0) = 0. It is convenient to go
over to a new dimensionless variable ϑ ∈ [0 : 1] defining ρ = ρcϑ

n with ρc as central density.
Then

(n + 1)K

4πGρ
n−1

n
c

︸ ︷︷ ︸

α2

1

r2

d

dr

(

r2 dϑ

dr

)

= −ϑn . (1.51)

Since ϑ is dimensionless, the parameter α has the dimension of a length. Hence we can use α
to make the variable r dimensionless, r = αξ, obtaining finally

1

ξ2

d

dξ

(

ξ2 dϑ

dξ

)

= −ϑn . (1.52)

This second order differential equation was studied already a century ago by Lane and Emden.
Apart from the cases n = 0, 1,∞, the Lane-Emden equation has to be solved numerically. For
n < 5, the solutions ϑ(ξ) decrease monotonically and become zero at a finite value ϑ(ξ0) = 0,
corresponding to the stellar radius Rn = αξ0.

Mass-radius relation The radius R of a star is given by ξ0, i.e. the value when ϑ becomes
zero, via Rn = αξ0. The mass of the star is then

M = 4π

∫ R

0

drr2ρ = 4πα3ρc

∫ ξ0

0

dξξ2ϑn . (1.53)

We can replace ϑn by the Lane-Emden equation,

M = −4πα3ρc

∫ ξ0

0

dξ
d

dξ

(

ξ2 dϑ

dξ

)

= −4πα3ρcξ
2
1

dϑ

dξ

∣
∣
∣
∣
ξ0

≡ 4πα3ρcMn . (1.54)

Inserting α = Rn = /ξ0 and solving for ρc, we find

ρc =
M

4π
3

R3

ξ3
0

Mn
≡ ρ̄Dn . (1.55)

In the last step, we inserted the average density ρ̄ and defined

Dn = Mn/ξ3
0 = −

[

3

ξ0

dϑ

dξ

∣
∣
∣
∣
ξ0

]−1

. (1.56)

Using first the definition of α to eliminate ρc in Eq. (1.54) and then α = R/ξ0 = R/Rn to
eliminate α, we find the total mass M as function of the radius R as

(
GM

Mn

)n−1( R

Rn

)3−n

=
[(n + 1)K]n

4πG
. (1.57)

For the case of interest, n = 3, the mass is independent of the radius and is determined only
by K,

M = 4πM3

(
K

πG

)3/2

, (1.58)
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1.3 Eddington or standard model

Table 1.1: Numerical constants from the integration of the Lane-Emden equation.

n Rn = ξ0 Mn = ξ2
0 (dϑ/dξ)ξ0 Dn Bn

1 3.14 3.14 3.29
2 4.35 2.41 4.35
3 6.90 2.02 54.2

0.2

0.4

0.6

0.8

1

1. .1e2 .1e3 .1e4 .1e5

x

Figure 1.2: The solution β of Eddington’s quartic equation as function of x = µ2M/M⊙.

where M3 ≈ 2.02. Inserting K gives

M ∝ (1 − β)1/2

µ2β2
. (1.59)

Squaring and inserting the numerical values of the constants, we obtain “Eddington’s quartic
equation”,

1 − β = 0.003

(
M

M⊙

)2

µ4β4 . (1.60)

Its solution is shown in Fig. 1.2.
What can one learn about the structure and evolution of stars from this result?

• Remember the meaning of β = Pgas/P . Thus β → 0 corresponds to a free gas of
photons, β → 1 to a “primordial”, cold cloud of gas. Only in the small range of µ2M
where β has an intermediate value stars can exist.

• Inserting

L =
4πcGM

κs
(1 − β) (1.61)

into Eq. (1.60), we obtain

L

L⊙

=
4πcGM⊙

κsL⊙

µ4β4

(
M

M⊙

)3

, (1.62)

close to a power-law and observations of main-sequence stars!
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1 Main sequence stars and their evolution

n p 2p+2n 4He

m/u 1.0090 1.0081 4.0342 4.0039

Table 1.2: The masses of nucleons and 4He in atomic mass units u.

• The variation in µ can explain scatter in L-M plot.

• For stars of given composition (fixed µ), β increases as M increases. Thus, radiation
pressure is more important in massive stars.

• Nuclear reaction cause a gradual increase of µ and therefore an decrease of β. Thus,
radiation pressure becomes more important when stars become older. In late stages,
stars may eject part of their envelope (stellar winds).

1.4 Nuclear processes in stars

The origin of the radiation energy emitted by the Sun was questioned already 1846, soon after
the establishment of the law of energy conservation, by J.R. Meyer. It remained mysterious
for ninety years. Since the temperature on the Earth was approximately constant during the
last τ ≈ 4 × 109 years, the solar luminosity should be also roughly constant. Thus we can
estimate the energy output of the Sun as τL⊙ ≈ 6 × 1050 erg.

1.4.1 Nuclear fusion

The total mass m(Z,N) of a nuclei with Z protons and N neutrons is because of its binding
energy Eb somewhat reduced compered to its constituent mass,

Eb/c
2 = ZmH + Nmn − m(Z,N) . (1.63)

Measured values of the binding energy per nucleon Eb/A as function of nucleon number A are
shown in Fig. 1.3. In Tab. 1.2, the masses of 4He and its constituent nucleons are compared.

• The binding energy per nucleon Eb/A has its maximum at A ∼ 56, i.e. iron 56Fe is the
most stable element.

• Energy can be released by fusing two light nuclei or ’breaking’ a heavy one.

• While Eb/A is a rather smooth function of A for A > 20, there several peaks visible for
small A: 4He, 12C, 14N, 20Ne, and 16O are energetically much more favourable than
their neighbouring elements. The bound states of nucleons in nuclei have a similar shell
structure as electrons in atoms. Nuclei with filled shells are especially stable, as noble
gases are especially stable atoms.

• Thus the fusion of four protons to 4He releases 26.2 MeV energy, a factor 107 more than
in our estimate for chemical reactions. Converting a solar mass into helium releases
M⊙/(4mp) × 26.2MeV ≈ 1.25 × 1052 erg and thus around 5% of the Sun have been
already converted into helium.

• As shown by the failure of using fusion for the energy production on Earth and longevity
of stars fusion is a non-trivial process.
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1.4 Nuclear processes in stars

Figure 1.3: The binding energy per nucleon Eb/A as function of the nucleon number A.

• All four interactions are involved in the energy release by nuclear fusion: The strong
interaction leads to the binding of nucleons in nuclei, the Coulomb repulsion has to be
overcome to combine them, and the weak interactions convert half of the protons into
neutrons. Finally, gravitation is responsible for the confinement of matter, heating it
up the proto-star to the “start temperature” and serving then as a heat regulator.

1.4.2 Thermonuclear reactions and Gamov peak

Coulomb barrier-classically Nuclear forces are strong but of short range. The simplest
model for the forces between two nuclei is therefore an attractive square potential well (Topf?)
with radius equal to the size of the nuclei plus the Coulomb force dominatng outside over the
strong force. Thus a nuclei should have classically the energy V ≈ Z1Z2e

2/rN to cross the
“Coulomb barrier” and to reach another nucleus of size rN . For a thermal plasma of particles
with reduced mass µ and charges Zie, this condition reads

1

2
µ〈v2〉 =

3

2
kT =

Z1Z2e
2

r
. (1.64)

Specifically, we obtain for protons with Z1 = Z2 = 1 and size rN ≈ 10−15 m that the temper-
ature should be above

T >∼
2e2

3kr0

≈ 1010 K . (1.65)

On the other hand, we have estimated the central temperature of the Sun as Tc ≈ 107 K.
Hence we should expect that only the tiny fraction of protons with v2 >∼ 1000〈v2〉 is able to
cross the Coulomb barrier.

15



1 Main sequence stars and their evolution

Gamov factor and tunneling Quantum mechanically, tunneling though the Coulomb barrier
is possible. The wave-function of a particle with E − V < 0 is non-zero, but exponentially
suppressed. In order to avoid a too strong suppression, we require that λ = h/p ≈ rN ,

h2

2µλ2
=

Z1Z2e
2

λ
. (1.66)

Inserting λ = h2/(2Z1Z2e
2µ) for rN in Eq. (1.65) gives

T >∼
4Z2

1Z2
2e4µ

3h2k
≈ 107K . (1.67)

Hence we expect that quantum effects lead to a not too strong suppression of fusion rates.

Next we want to make this statement more precise: We can estimate the tunneling proba-
bility using the WKB approximation as

P0 ∝ exp

(

−2

∫ r0

R
dr

√

2m

~2
[V (r) − E]

)

≡ exp(−I) . (1.68)

Here R is the range of the nuclear force, i.e. the point where the strong force becomes stronger
than the the Coulomb force, and r0 = 2µZ1Z2e

2/(~k)2 is the classical turning point, V (r0) =
E = (~k)2/(2m), for a particle with energy E and wave-vector k at infinity. The suppression
is smallest for s-wave scattering, when the cetrifugal barrier in the potential V is absent.
Then

I = 2k

∫ r0

R
dr

√
r0

R
− 1 (1.69)

and substitutumg ξ = (r/r0)
1/2, we obtain

I = 4kr0

∫ 1

√
R/r0

dξ
√

1 − ξ2 . (1.70)

We now use that R ≪ r0 to rewrite the integral first as
∫ 1

0
−
∫
√

R/r0

0 and then to expand the
second term,

I = 4kr0

{
∫ 1

0

dξ
√

1 − ξ2 −
∫

√
R/r0

0

dξ

(

1 − 1

2
ξ2 + . . .

)}

= 4kr0

{π

4
−
√

R/r0 + . . .
}

(1.71)
Thus luckily the leading term does not depend on poorly known details of nuclear physiscs
like the range R of the nuclear potential. Neglecting the subleading terms, we can write

I =
πZ1Z2e

2

~

√

2µ

E
≡ B/

√
E (1.72)

Reaction rates We introduced the interaction depth τ = nlσ as the probability that a
particle interacts travelling the distance l through targets with density n. The rate Γ of such
interactions, i.e. the number of reactions per time follows then with l = vt as Γ ≡ nσv, if
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Figure 1.4: Left: proton-proton chains Right: CNO cycle.

the particle moves with velocity v. Since the energies of the particles are not uniform, but
distributed according a non-relativistic Maxwell-Boltzmann distribution,

nvdv =
( m

2πkT

)3/2

exp

(

−mv2

2kT

)

4πv2dv ∝ e−E/kTE1/2dE , (1.73)

we should average over the distribution nv.
Cross section for strong interactions are of geometrical nature, σ(E) ≈ πλ2 and with

λ = h/p it follows σ(E) ∝ 1/E. Thus the rate is

Γ = 〈nσv〉 ∝
∫

dE σ(E)Ee−b/E1/2

e−E/kT =

∫

dE S(E)e−b/E1/2

e−E/kT . (1.74)

In the last step we introduced the so-called S-factor S(E) = Eσ(E) of the reaction. If the
cross-section behaves indeed as σ(E) ∝ 1/E, then S(E) is a slowly varying function The
reminder of the integrand is sharply peaked (“Gamov peak”) in the region around 10 keV.

1.5 Main nuclear burning reactions

1.5.1 Hydrogen burning: pp-chains and CNO-cycle

The pp-chains are shown in detail in in the left panel of Fig. 1.4. Its main chain uses three
steps:
Step 1: p + p → d + e+ + νe

Step 2: p + d →3 He + γ
Step 2: 3He +3 He →4 He + p + p

The CNO-cyle us shown in detail in in the right panel of Fig. 1.4. The small inlet compared
the temperature dependence of the pp-chain and the CNO-cycle: For solar temperatures, the
contribution of the pp-chains to the solar energy production is four order of magnitudes more
important then the CNO-cycle.

Radius-mass relation of MS stars Hydrogen is burned at nearly fixed temperature T . Via
the virial theorem, also the gravitational potential is nearly the same for all MS stars and
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1 Main sequence stars and their evolution

Figure 1.5: Burning Phases of a 15 M⊙ Star.

thus GM/R ≈ const. As a result, the radius of MS stars increases approximate linearly with
the stellar mass.

1.5.2 Later phases

The increasing Coulomb barrier for heavier nuclei means that the fusion of heavier nuclei
requires higher and higher temperatures. Therefore the different fusion phases – hydrogen,
helium, carbon,. . . burning – never coexist, but follow each-other. Since the temperatures
decreases outwards, fraction of the core participating in fusion becomes smaller in each new
burning phase, cf. Fig. 1.5.

• Hydrogen burning 4p+2e− →4He+2νe

– proceeds by pp chains and CNO cycle
– no heavier elements formed because no stable isotopes with mass number A = 8
– neutrinos from p → n conversion
– typical temperature 107 K (∼ 1 keV)

• Helium burning 4He+4He+4He ↔8Be+4He →12C

– triple alpha reaction builds up Be with concentration ∼ 109

12C+4He→16O
16O+4He→20Ne

– typical temperature 108 K (∼ 10 keV)

• Carbon burning

– many reactions like 12C+12C→20Ne+4He etc.
– typical temperature 109 K (∼ 100 keV)
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1.6 Solar neutrinos

1.6 Solar neutrinos

Solar neutrinos flux From L⊙ = 4 × 1033erg/s= 2 × 1039MeV/s and the energy release of
26.2 MeV per reaction, the minimal number of neutrinos produced is Ṅν = 2× 1038/s. As we
have seen, photon perform a random-walk. Neutrinos have much smaller interactions,

σνee = 10−43cm2 Eν

MeV
(1.75)

and thus they can escape from the Sun: The interaction depth for a neutrino in the Sun is
approximately

τ = σνeeneR⊙ = 10−9 . (1.76)

At Earth this corresponds to the flux of

φν =
Ṅν

4πD2
= 7 × 1010 1

cm2s
. (1.77)

(or directly via φν = 2S/(26.2MeV ) with Solar constant.)

Weak interactions in the Sun produce always electron neutrinos, i.e. p → n + e+νe, but
not p → n + µ+νµ or p → n + τ+ντ , because the energy released in nuclear reaction and the
temperature is too small too produce a µ or τ . Similarly, only νe neutrinos are detected in
radiochemical reactions via “inverse beta-decay”, while all type of neutrinos can be detected
in elastic scattering on electrons.

Solar neutrino experiments Radiochemical experiments detect neutrinos by “inverse beta-
decay” in suitable nuclei. The historically first isotope used was chlorine, νe+

37Cl →37 Ar+e−,
i.e. changing a neutron inside a 37Cl nuclei into a proton, thereby converting it into a 37Ar.
The disadvantage of this reaction is its high energy threshold, Eν ≥ 0.814MeV, only sensitive
to 9% of all solar neutrinos.

The experiment consists of 615 tons of C2Cl4 solutions in a mine 1500 m underground.
After exposure of a 2,3 months, a few Ar atoms are produced. They are chemically extracted
and counted by their subsequent decays (halftime 35 days). Starting from first data in 1968,
a deficit appeared relative to theoretical expected fluxes: only 30% of predicted event number
is measured! This deficit was dubbed “solar neutrino problem.” Finding the solution to this
problem required more than 30 years of intensive experimental and theoretical work.

Starting from 1991, 2 Gallium experiments νe +71 Ga →71 Ge + e− with threshold Eν ≥
233keV took data. They found 55% of the expected neutrino flux, corresponding to 9 atoms
of 71Ge in 30 tons of solution containing 12 tons 71Ga, after three weeks of run time.

What are plausible solutions to the solar neutrino problem?

• Experiments might be wrong (difficult chemistry, no calibration of Ar cross section,. . . )

• Nuclear physics (cross sections measured at higher energies are extrapolated to the
Gamov peak).

• Our model of the Sun (crucial Tc)

• Particle physics: does a νe survive the travel to the Earth?
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Figure 1.6: Left: The solar standard model predicts the neutrino flux and thus also the
number of events that should be measured. Right: Results of the SNO experiment.

As latter experiments showed concuclsively, the latter reason is the correct one: An energy-
dependent fraction of electron neutrinos is tranformed (“neutrino oscillations”) into a com-
bination of muon and tau neutrinos. The red band in the right panel of Fig. 1.6 shows the
flux of νe, measured in the SNO experiment by inverse-beta decay reactions. This flux is just
36% of the expected flux from the solar standard model. However, the experiment was able
to measure also the flux of νµ and ντ . Summing all three up, one obtains the value predicted
by the solar standard model. Hence neutrinos oscillate, changing their flavor.
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