Anisotropies of High-Energy Cosmic Rays

Michael Kachelrieß

NTNU Trondheim

111

Contant 102 %

Introduction: CR spectrum

Michael Kachelrieß Anisotropies of Extragalactic CRs

Introduction: CR spectrum

Introduction: Why UHECR astronomy?

• astronomy with HE photons restricted to few Mpc:

Introduction: Why UHECR astronomy?

- astronomy with HE photons restricted to few Mpc:
- very small neutrino event numbers: \lesssim few/yr for AUGER

Michael Kachelrieß Anisotropies of Extragalactic CRs

Introduction: Why UHECR astronomy?

- astronomy with HE photons restricted to few Mpc:
- very small neutrino event numbers: \lesssim few/yr for AUGER

use larger statistics of UHECRs:

what can we learn from UHECRs in addition to spectrum?

(ロ) (同) (E) (E)

Outline: Possible anisotropies of extragalactic CRs:

Small-scale clustering

- $\bullet\,$ Small-scale $\sim\,$ angular resolution of experiments
- \Rightarrow CR from the same point sources
 - requires small qB/E and small n_s

(ロ) (同) (E) (E)

Outline: Possible anisotropies of extragalactic CRs:

Small-scale clustering

- $\bullet\,$ Small-scale $\sim\,$ angular resolution of experiments
- \Rightarrow CR from the same point sources
 - requires small qB/E and small n_s

Anisotropies on medium scales

- $\ell \sim 20\text{--}40 \text{ degrees}$
- reflects LSS of matter, modified by B
- requires $\lambda_{CR}(E) \lesssim \text{few} \times \lambda_{LSS}$
- favoured by large n_s

(ロ) (同) (三) (三)

Outline: Possible anisotropies of extragalactic CRs:

Small-scale clustering

- $\bullet\,$ Small-scale $\sim\,$ angular resolution of experiments
- \Rightarrow CR from the same point sources
 - requires small qB/E and small n_s

Anisotropies on medium scales

- $\ell \sim 20\text{--}40 \text{ degrees}$
- reflects LSS of matter, modified by B
- requires $\lambda_{CR}(E) \lesssim \text{few} \times \lambda_{LSS}$
- favoured by large n_s

Oipole anisotropy

- induced by motion of Sun relative to cosmological rest frame
- requires $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$

・ロン ・四マ ・ヨマ ・ ヨマ

Outline: Possible anisotropies of extragalactic CRs:

Small-scale clustering

- $\bullet\,$ Small-scale $\sim\,$ angular resolution of experiments
- \Rightarrow CR from the same point sources
 - requires small qB/E and small n_s

Anisotropies on medium scales

- $\ell \sim 20\text{--}40 \text{ degrees}$
- reflects LSS of matter, modified by B
- requires $\lambda_{CR}(E) \lesssim \text{few} \times \lambda_{LSS}$
- favoured by large n_s
- Oipole anisotropy
 - induced by motion of Sun relative to cosmological rest frame
 - requires $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$

Oipole anisotropy and diffuse γ-ray background

ロン (四) (目) (日)

Ideal world: no EGMF EGMF Chemical composition

Small-scale clustering and point sources:

Ideal world: no EGMF EGMF Chemical composition

Small-scale clustering and point sources:

• $E > 10^{20} \text{ eV}$ • $E = 4 - 10 \times 10^{19} \text{ eV}$

◆□→ ◆□→ ◆三→ ◆三→

• First step: assume ideal world:

- no EGMF, no GMF
- Small-scale clustering depends only on density n_s of sources

Ideal world: no EGMF EGMF Chemical composition

Small-scale clustering and point sources:

• $E > 10^{20} \text{ eV}$ • $E = 4 - 10 \times 10^{19} \text{ eV}$

() < </p>

• First step: assume ideal world:

- no EGMF, no GMF
- Small-scale clustering depends only on density n_s of sources
- Second step:
 - Effect of magnetic fields
 - Chemical composition

Ideal world: no EGMF EGMF Chemical composition

Small-scale clustering and point sources:

 As n_s decreases, sources become brighter for fixed flux ⇒ probability for clustering increases [Waxman, Fisher, Piran '96]

・ロト ・回ト ・ヨト ・ヨト

Small-scale clustering and point sources:

- As n_s decreases, sources become brighter for fixed flux \Rightarrow probability for clustering increases. [Waxman, Fisher, Piran '96]
- Since $N_{\text{tot}} \gg N_{\text{cl}}$, most sources are not seen:

Michael Kachelrieß Anisotropies of Extragalactic CRs

Ideal world: no EGMF EGMF Chemical composition

Small-scale clustering and point sources:

- As n_s decreases, sources become brighter for fixed flux ⇒ probability for clustering increases. [Waxman, Fisher, Piran '96]
- Since $N_{\text{tot}} \gg N_{\text{cl}}$, most sources are not seen:

allows to estimate n_s

() < </p>

Ideal world: no EGMF EGMF Chemical composition

Statistical estimator for small-scale clustering:

• two-point autocorrelation function of the data, i.e.

$$w_1 = \sum_{i < j} \Theta(\ell_1 - \ell_{ij}),$$

where ℓ_{ij} is the angular distance of CRs i,j and ℓ_1 the bin size chosen

(日) (四) (三) (三) (三)

Statistical estimator for small-scale clustering:

• two-point autocorrelation function of the data, i.e.

$$w_1 = \sum_{i < j} \Theta(\ell_1 - \ell_{ij}),$$

where ℓ_{ij} is the angular distance of CRs i,j and ℓ_1 the bin size chosen

- compare to distribution $p(w_1: \vartheta)$ from simulations:
 - choose finite number of sources according density n_s
 - generate CRs according to $dN/dE \propto E^{-\alpha}$
 - propagate them
 - calculate w_1 for fixed n_s , α , ℓ_1 ...
 - determine consistent parameters

Ideal world: no EGMF EGMF Chemical composition

Small-scale clusters and density of sources:

[MK, D. Semikoz '04]

Michael Kachelrieß Anisotropies of Extragalactic CRs

Ideal world: no EGMF EGMF Chemical composition

Small-scale clusters: how many by chance?

[MK, D. Semikoz '04]

Michael Kachelrieß Anisotropies of Extragalactic CRs

Small-scale clusters—personel summary

- significant cross-correlation between HiRes and AGASA, if energies are rescaled
- no contradiction between AGASA and HiRes

・ロト ・ 同ト ・ ヨト ・ ヨト

Small-scale clusters—personel summary

- significant cross-correlation between HiRes and AGASA, if energies are rescaled
- no contradiction between AGASA and HiRes
- depends strongly on triplett

Small-scale clusters—personel summary

- significant cross-correlation between HiRes and AGASA, if energies are rescaled
- no contradiction between AGASA and HiRes
- depends strongly on triplett
- PAO: only search for local excess; different GMF

Small-scale clusters—personel summary

- significant cross-correlation between HiRes and AGASA, if energies are rescaled
- no contradiction between AGASA and HiRes
- depends strongly on triplett
- PAO: only search for local excess; different GMF
- correlation studies \leftrightarrow identify sources

Small-scale clusters—personel summary

- significant cross-correlation between HiRes and AGASA, if energies are rescaled
- no contradiction between AGASA and HiRes
- depends strongly on triplett
- PAO: only search for local excess; different GMF
- correlation studies \leftrightarrow identify sources
- crucial assumption: small EGMF and protons

Ideal world: no EGMF EGMF Chemical composition

Extragalactic magnetic field – simulation by SME:

 Small-scale clustering
 Ideal world: no EGMF

 Medium-scale anisotropies
 EGMF

 Dipole anisotropy
 Chemical composition

Extragalactic magnetic field – simulation by SME:

Ideal world: no EGMF EGMF Chemical composition

Extragalactic magnetic field – simulation DGST:

・ロト ・同ト ・ヨト ・ヨト

Ideal world: no EGMF EGMF Chemical composition

Extragalactic magnetic field – simulation DGST:

DGST: astronomy with UHE protons possible in large part of sky!

Ideal world: no EGMF EGMF Chemical composition

which simulation/conclusion is closer to reality?

- many technical differences between the two simulations; two major conceptional ones:
 - Sigl, Miniato, Ensslin use an unconstrained simulation, putting observer * close to a cluster

イロト イヨト イヨト イヨト

Ideal world: no EGMF EGMF Chemical composition

which simulation/conclusion is closer to reality?

- many technical differences between the two simulations; two major conceptional ones:
 - Sigl, Miniato, Ensslin use an unconstrained simulation, putting observer * close to a cluster
 - Dolag, Grasso, Springel, Tkachev use a constrained simulation

which simulation/conclusion is closer to reality?

- many technical differences between the two simulations; two major conceptional ones:
 - Sigl, Miniato, Ensslin use an unconstrained simulation, putting observer * close to a cluster
 - Dolag, Grasso, Springel, Tkachev use a constrained simulation

- Dolag, Grasso, Springel, Tkachev inject protons uniformly on a sphere
- Sigl, Miniato, Ensslin inject protons following matter distribution

・ロ・ ・ 日・ ・ 日・ ・ 日・

which simulation/conclusion is closer to reality?

- many technical differences between the two simulations; two major conceptional ones:
 - Sigl, Miniato, Ensslin use an unconstrained simulation, putting observer * close to a cluster
 - Dolag, Grasso, Springel, Tkachev use a constrained simulation

- Dolag, Grasso, Springel, Tkachev inject protons uniformly on a sphere
- Sigl, Miniato, Ensslin inject protons following matter distribution

However: mechanism for generation of EGMF could be completely different!

() < </p>

Ideal world: no EGMF EGMF Chemical composition

Energy losses, the dip and the GZK cutoff

• at $E \sim 4 \times 10^{19}$ eV: $N + \gamma_{3K} \rightarrow \Delta \rightarrow N + \pi$ starts and reduces free mean path to ~ 20 Mpc

• pair production leeds to a dip at $\sim 10^{19} \ {\rm eV}$

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

Ideal world: no EGMF EGMF Chemical composition

Transition to extragalactic protons

dip suggests: primaries above 10¹⁸ eV are extragalactic protons

Michael Kachelrieß Anisotropies of Extragalactic CRs

◆□ → ◆□ → ◆ □ → ◆ □ → ·

Ideal world: no EGMF EGMF Chemical composition

Transition to extragalactic protons

Michael Kachelrieß Anisotropies of Extragalactic CRs

• lowering qB/E or increasing n_s , individual sources disappear

・ロン ・同と ・ヨン ・ヨン

- lowering qB/E or increasing n_s , individual sources disappear
- LSS of sources becomes visible

・ロン ・回と ・ヨン ・ヨン

- lowering qB/E or increasing n_s , individual sources disappear
- LSS of sources becomes visible

• lowering E even further, $\lambda_{\rm CR}(E)\gtrsim\lambda_{\rm LSS},$ LSS is be averaged out

・ロト ・同ト ・ヨト ・ヨト

- lowering qB/E or increasing n_s , individual sources disappear
- LSS of sources becomes visible

- lowering E even further, $\lambda_{\rm CR}(E)\gtrsim\lambda_{\rm LSS},$ LSS is be averaged out
- O(100) events needed to detect effect, energy range around $\gtrsim 4 \times 10^{19}$ eV [A. Cuoco et al. '05]

2. Medium-scale anisotropies in UHECRs:

Michael Kachelrieß An

Anisotropies of Extragalactic CRs

2. Medium-scale anisotropies in UHECRs:

[MK, D. Semikoz '05]

2. Medium-scale anisotropies in UHECRs:

[MK, D. Semikoz '05]

True effect?

• independent of energy, if artefact due to incorrect combination of experiments

True effect?

Anisotropies of Extragalactic CRs

True effect?

- independent of energy, if artefact due to incorrect combination of experiments
- $\Rightarrow\,$ signal disappears due to $\lambda_{CR}(E)\nearrow$ and $\delta_B\nearrow$

・ロト ・ 同ト ・ ヨト ・ ヨト

True effect?

- independent of energy, if artefact due to incorrect combination of experiments
- \Rightarrow signal disappears due to $\lambda_{CR}(E) \nearrow$ and $\delta_B \nearrow$
 - penalty factor for scan over angles: $\sim 6-30$

Effect of n > 2-autocorrelations?

• within $\ell \leq 30^{\circ}$ number of CRs $\gg 2 \Rightarrow$ higher-order correlations become important

(日)(同)(日)(日)(日)(日)

Effect of n > 2-autocorrelations?

Michael Kachelrieß Anisotropies of Extragalactic CRs

Effect of n > 2-autocorrelations?

- within $\ell \lesssim 30^{\circ}$ number of CRs $\gg 2 \Rightarrow$ higher-order correlations become important
- \Rightarrow analysis to be done. . .

(日)(同)(日)(日)(日)(日)

3. Cosmological Compton-Getting effect:

[MK, Serpico '06]

• Solar System is moving with $v \approx 368$ km/s relative to CMB

() < </p>

3. Cosmological Compton-Getting effect:

[MK, Serpico '06]

- Solar System is moving with $v \approx 368$ km/s relative to CMB
- UHECR sources are on average at rest

・ロン ・同と ・ヨン ・ヨン

3. Cosmological Compton-Getting effect:

[MK, Serpico '06]

- Solar System is moving with $v \approx 368$ km/s relative to CMB
- UHECR sources are on average at rest

 \Rightarrow dipole anisotropy also visible in UHECR flux $I(E) = E^2 f(p)$,

$$A_{\rm CCG} \equiv \frac{I_{\rm max} - I_{\rm min}}{I_{\rm max} + I_{\rm min}} = \left(2 - \frac{d\ln I}{d\ln E}\right) v \approx 0.6\% \,.$$

・ロン ・同 と ・ヨン ・ヨン

Cosmological Compton-Getting effect: Properties

• amplitude independent of primary charge and energy

・ロン ・四 ・ ・ ヨン ・ ヨン

- amplitude independent of primary charge and energy
- GMF shifts dipole vector by $\delta \sim 20^\circ \times 10^{19} {\rm eV}(Q/E)$

・ロン ・同と ・ヨン ・ヨン

- amplitude independent of primary charge and energy
- GMF shifts dipole vector by $\delta \sim 20^\circ \times 10^{19} {\rm eV}(Q/E)$
- comparison of δ at 2 energies gives (average) primary charge

イロン イヨン イヨン イヨン

- amplitude independent of primary charge and energy
- GMF shifts dipole vector by $\delta \sim 20^\circ \times 10^{19} {\rm eV}(Q/E)$
- comparison of δ at 2 energies gives (average) primary charge
- upper energ range depends on loss horizon λ_{CR}

イロト イポト イヨト イヨト

- amplitude independent of primary charge and energy
- GMF shifts dipole vector by $\delta \sim 20^\circ \times 10^{19} {\rm eV}(Q/E)$
- comparison of δ at 2 energies gives (average) primary charge
- upper energ range depends on loss horizon λ_{CR}
- lower on transition energy E_{tr} to galactic CRs

イロン イヨン イヨン ・

- amplitude independent of primary charge and energy
- GMF shifts dipole vector by $\delta \sim 20^\circ \times 10^{19} {\rm eV}(Q/E)$
- comparison of δ at 2 energies gives (average) primary charge
- upper energ range depends on loss horizon λ_{CR}
- lower on transition energy $E_{\rm tr}$ to galactic CRs
- error of amplitude A(l = 1) for N events,

$$\sigma_A = \sqrt{\frac{3}{N}} \left[1 + 0.6 \sin^3(\delta) \right],$$

[Mollerach, Roulet '05]

イロト イポト イヨト イヨト 三連

• diffuse extragalactic γ-ray background is calorimeter for el-mag. HE energy injection

・ロン ・同と ・ヨン ・ヨン

- diffuse extragalactic γ-ray background is calorimeter for el-mag. HE energy injection
 - constraint for UHECR and HE neutrino models

- diffuse extragalactic γ-ray background is calorimeter for el-mag. HE energy injection
 - constraint for UHECR and HE neutrino models
 - background for DM annihilations in Milkyway

- diffuse extragalactic γ-ray background is calorimeter for el-mag. HE energy injection
 - constraint for UHECR and HE neutrino models
 - background for DM annihilations in Milkyway
- CCG effect allows to disentangle extragalactic and isotropic galactic γ-rays

イロン イヨン イヨン ・

- diffuse extragalactic γ-ray background is calorimeter for el-mag. HE energy injection
 - constraint for UHECR and HE neutrino models
 - background for DM annihilations in Milkyway
- CCG effect allows to disentangle extragalactic and isotropic galactic γ-rays
- EGRET bound $I_{\gamma} \lesssim 1.4 \times 10^{-6} (E/{\rm GeV})^{-2.1} {\rm cm}^{-2} {\rm sr}^{-1} {\rm GeV}^{-1}$

・ロト ・回 ト ・ヨト ・ヨト - 三

- diffuse extragalactic γ-ray background is calorimeter for el-mag. HE energy injection
 - constraint for UHECR and HE neutrino models
 - background for DM annihilations in Milkyway
- CCG effect allows to disentangle extragalactic and isotropic galactic γ-rays
- EGRET bound $I_{\gamma} \lesssim 1.4 \times 10^{-6} (E/{\rm GeV})^{-2.1} {\rm cm}^{-2} {\rm sr}^{-1} {\rm GeV}^{-1}$
- corresponds $N_{\gamma}(>GeV) \approx 10^6 (t/yr)$

・ロト ・回 ト ・ヨト ・ヨト - 三

- diffuse extragalactic γ-ray background is calorimeter for el-mag. HE energy injection
 - constraint for UHECR and HE neutrino models
 - background for DM annihilations in Milkyway
- CCG effect allows to disentangle extragalactic and isotropic galactic γ-rays
- EGRET bound $I_{\gamma} \lesssim 1.4 \times 10^{-6} (E/{\rm GeV})^{-2.1} {\rm cm}^{-2} {\rm sr}^{-1} {\rm GeV}^{-1}$
- corresponds $N_{\gamma}(>GeV) \approx 10^6 (t/yr)$
- if extragal., 3σ detection within one year

・ロト ・同ト ・ヨト ・ヨト

Summary: the overall picture

• $E \leq E_{tr}$: galactic CG effect plus anisotropies (diffusion \rightarrow rectilinear propagation)

<ロ> <同> <同> <巨> <巨> <

Summary: the overall picture

- $E \lesssim E_{\rm tr}$: galactic CG effect plus anisotropies (diffusion \rightarrow rectilinear propagation)
- $E \gtrsim E_{\rm tr}$: extragalactic cosmic rays:
 - $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$: cosmological CG effect leads to 0.6% dipole anisotropy

・ロン ・同と ・ヨン ・ヨン

Summary: the overall picture

- $E \lesssim E_{\rm tr}$: galactic CG effect plus anisotropies (diffusion \rightarrow rectilinear propagation)
- $E \gtrsim E_{\rm tr}$: extragalactic cosmic rays:
 - $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$: cosmological CG effect leads to 0.6% dipole anisotropy
 - $\lambda_{CR}(E) \lesssim \lambda_{LSS}$: imprint of LSS as anisotropies on medium scales

・ロン ・同と ・ヨン ・ヨン

Summary: the overall picture

- $E \leq E_{tr}$: galactic CG effect plus anisotropies (diffusion \rightarrow rectilinear propagation)
- $E \gtrsim E_{\rm tr}$: extragalactic cosmic rays:
 - $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$: cosmological CG effect leads to 0.6% dipole anisotropy
 - $\lambda_{CR}(E) \lesssim \lambda_{LSS}$: imprint of LSS as anisotropies on medium scales
 - for small enough qE/B and n_s (or large L), point sources detectable

(□) (□) (□) (□)

Summary: the overall picture

- $E \leq E_{tr}$: galactic CG effect plus anisotropies (diffusion \rightarrow rectilinear propagation)
- $E \gtrsim E_{\rm tr}$: extragalactic cosmic rays:
 - $\lambda_{\it CR}(E)\gtrsim\lambda_{\it LSS}$: cosmological CG effect leads to 0.6% dipole anisotropy
 - $\lambda_{CR}(E) \lesssim \lambda_{LSS}$: imprint of LSS as anisotropies on medium scales
 - for small enough qE/B and n_s (or large L), point sources detectable
- CG effect allows GLAST to determine diffuse extragal. γ-ray background