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Abstract
Antideuteron and antihelium have been proposed as a detection channel for dark matter
annihilation and decay in the Milky Way due to the low expected astrophysical back-
ground. Today it is common to use a coalescence model on an event-by-event basis in
a Monte Carlo framework when estimating the antinucleus signal for both various dark
matter models and the astrophysical background. However, this model lacks a micro-
physical picture and has been shown to not fit recent production spectra of antideuterons
in proton-proton collisions well. Here we develop a new coalescence model for deuteron,
helium-3, tritium and their antinuclei based on the Wigner function representations of
the produced nuclei states. This approach includes both the size of the formation region,
which is process dependent, and momentum correlations in a semi-classical picture. The
model contains a single, universal parameter which is fixed by fitting the model to the
production spectra of antideuterons in proton-proton interactions. Using this value, the
model describes well the production of antideuteron in electron-positron annihilations and
antihelium-3 in proton-proton collisions. The new coalescence model is in turn applied on
the antideuteron and antihelium-3 production in dark matter annihilations and the sec-
ondary background in the Galaxy. The flux estimated using the new model differs at most
by a factor 2–3 compared to the old model, which is small compared to the uncertainties
related to the propagation through the Galaxy.
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Sammendrag
Antideuteron og antihelium er blitt foresl̊att som en deteksjonskanal for spalting og
annihilasjon av mørk materie i Melkeveien p̊a grunn av en forventet lav astrofysisk
bakgrunnstøy. I dag er det vanlig å bruke en standard partikkelvekstmodell per hen-
delse i en Monte Carlo simulering n̊ar antinukleussignalet fra b̊ade den mørke mate-
rien og bakgrunnsstøyen estimeres. Imidlertid mangler denne modellen et mikrofysisk
bilde og har vist seg å ikke beskrive de siste produksjonsspekterene av antideuteron i
proton-proton-kollisjoner godt. Her utvikler vi en ny partikkelvekstmodell for deuteron,
helium-3, tritium og deres antinukleuser som er basert p̊a å beskrive tilstanden til de
produserte nukleusene som Wigner-funksjoner. Denne tilnærmingen gjør det mulig å
inkludere b̊ade størrelsen p̊a formasjonsregionen, som er prosessavhengig, og impulskorre-
lasjoner i et semi-klassisk bilde. Modellen inneholder en enkelt universell parameter som
er fastsatt ved å tilpasse modellen til produksjonsspekterene av antideuteroner i proton-
proton-kollisjoner. Denne verdien beskriver deretter bra produksjonen av antideuteron i
elektron-positron-annihilasjoner og antihelium-3 i proton-proton-kollisjoner. Den nye par-
tikkelvekstmodellen blir deretter benyttet p̊a antideuteron- og antihelium-3-produksjon i
annihalasjon av mørk materie og sekundær bakgrunnsstøy i galaksen. Den nye modellen
gir p̊a det meste en faktor 2–3 høyere fluks sammenlignet med den gamle modellen, som ig-
jen er lite sammenlignet med usikkerhetene knyttet til nukleusenes forplantning gjennom
galaksen.
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Notation
Natural units with ~ = c = kB = 1 will be used throughout this thesis. Three-vectors are
denoted by boldface characters V = (Vx, Vy, Vz). Four-vectors are written with a Greek
index as V µ = (V 0,V ). Moreover, V ≡ |V |. The signature of the metric is chosen as
−2, such that the metric tensor in Minkowski space becomes ηµν = diag(1,−1,−1,−1).
Einstein’s summation convention is used when an index repeat. If not otherwise stated,
Greek indices (α, β, γ, ...) are used to index space-time, while Latin indices (i, j, k, ...)
are used to index Euclidean space. In other words, xixi ≡ x1x1 + x2x2 + x3x3 and
xαxα = x0x0 − xixi. If the limits of an integral are not given, then it is assumed that the
limits are set to infinity. For example,∫

f(Ω) ddΩ ≡
∫ ∞
−∞

f(Ω) ddΩ .



1 Introduction
Antideuteron and antihelium have been suggested as a promising detection channel for
dark matter (DM) due to the low expected astrophysical background [1]. The process of
computing the yields of these antinuclei in different DM models is usually split into three
parts. First, a Monte Carlo (MC) event generator is used to compute the antiprotons and
antineutrons resulting from DM annihilations or decays in the Milky Way. Next, a model
that describes the formation of antinuclei from the antinucleons is employed. Finally, the
antinucleus source spectrum is propagated through the Galaxy. The largest uncertainties
in this scheme are related to the propagation models, while the second largest are related
to the antideuteron formation model. Presently, the search for cosmic ray antinuclei is
performed by the AMS-02 experiment on board the International Space Station, while
the GAPS balloon experiment is expected to fly during the next solar minimum period
around 2020 or 2021 [2, 3]. The AMS-02 experiment launched in 2011 and is expected to
be in operation until 2024. No cosmic ray antideuterons have yet been observed. However,
AMS-02 has reported the detection of six possible antihelium-3 events in the momentum
range < 100 GeV, and even two possible antihelium-4 events [4].

The production of light clusters of (anti)nuclei like (anti)deuteron, (anti)helium-3 or
(anti)tritium is usually described by coalescence models [5, 6]. That is, the formation is
described by imposing a formation model on nucleons that have nearly completed their
formation. In e+e− and DM annihilations, one imposes typically the coalescence condition
in momentum space, requiring that any nucleons with a momentum difference ∆k in the
nucleon centre-of-momentum (CoM) frame less than some free parameter p0 merge. Due
to the lack of a microphysical understanding, p0 must be calibrated by experimental data.
Traditionally, the nucleon spectra were assumed to be uncorrelated and isotropic, in which
case the coalescence condition could be applied on the average nucleon spectra resulting
from a given process. However, this approximation does not hold in general [7]. When
estimating the antinuclei yield, it is therefore today common to employ the coalescence
condition on an event-by-event basis such that the nucleon correlations provided by MC
simulations are taken into account [8].

The existing per-event coalescence model is phenomenological, lacks an underlying mi-
crophysical picture and the numerical value of its free parameter varies considerably be-
tween different experiments. In this thesis, an alternative per-event coalescence model
for (anti)deuteron, (anti)tritium and (anti)helium-3 in phase space is therefore proposed.
The model is based on the Wigner function representation of the nucleons and nucleus,
which includes in a semi-classical treatment both the size of the formation region, which
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1 Introduction

depends on the given process, and momentum correlations. In other words, it includes
constraints on both space and momentum variables. The model contains a single, uni-
versal parameter that can be estimated from a microphysical picture. From the physical
interpretation of the parameters as the spatial distribution of the formation process, we
obtain σ(e+e−) = σ(pp)/

√
2 ' 5 GeV−1 ' 1 fm. This value agrees well with the fit by exper-

imental data on the production of antideuterons in pp-collisions at 0.9, 2.76 and 7 TeV [9].
Using this value, the model describes well the production of antihelium-3 in pp collisions
and antideuteron production in e+e− annihilations at the Z resonance [10, 11].

Next, the detection prospects of cosmic ray antideuteron and antihelium-3 are discussed
with a focus on the difference between the newly developed Wigner function based for-
mation model and the old coalescence model. Contributions to the antinuclei yield from
both the secondary background and DM annihilations are estimated. The propagation
through the Galaxy is taken into account using the two-zone propagation model. The
new Wigner function based coalescence model differs at most by a factor 2–3 compared
to the old coalescence model, which is a small difference compared to the uncertainties
related to the propagation through the Galaxy.

Thesis structure

This thesis consists of seven chapters including the introduction and conclusion. Below
we outline the structure of the thesis and the content of each chapter.

The next two chapters serve as a motivation as well as an introduction to cosmic ray
antinuclei and DM. In chapter 2, we discuss evidences for and general properties of DM
with focus on weakly interacting massive particles (WIMPs) as a DM candidate. This
will serve as a motivation for this work, as well as an introduction of DM properties that
will become important in later chapters. Chapter 3 is dedicated to the discussion of basic
properties of quantum chromodynamics (QCD) and MC event generators, which is the
main tool used when estimating the particle production in various high energy collisions.
In chapter 4, we discuss existing formation models for light nuclei and calibrate them to
experimental data. The main focus is on the coalescence condition evaluated per-event
within the MC. In chapter 5, we develop an alternative formation model and compare it
to the existing state of the art per-event coalescence model. In chapter 6, we estimate
the antideuteron and antihelium-3 flux on Earth from secondary production and WIMP
annihilations in the Galaxy, with a focus on the difference between the old and new
formation models. Finally, a conclusion is given in chapter 7.

In addition, this thesis includes three appendices. In appendix A, some important
properties and formula from special relativity are reviewed. In appendix B, we review
the subject of Wigner functions and Weyl transforms, stating amongst other the conven-
tions used. Lastly, the relevant cross section parametrisations used when discussing the
antinucleus propagation are listed in appendix C.

2



2 Dark matter and cosmology
One of the great unsolved puzzles in physics today is related to the existence of dark matter
(DM). Despite an enormous amount of evidence for its existence, its nature has yet to be
determined. This chapter is divided into five sections. In the first two sections, evidences
for DM on galactic and galactic cluster scales are discussed. Next, DM on cosmological
scales are discussed with focus on how DM fit into the standard cosmological picture
as a thermal relic. Finally, the last two sections considers possible DM candidates and
detection methods, with a focus on weakly interacting massive particles (WIMPs).

2.1 Dark matter in galaxies

2.1.1 Rotation curves
Arguably the most notable evidences for DM are related to measurements of the rotation
curve of spiral galaxies, defined as the orbital speed v(r) at a distance r from the galactic
centre. The difference between the mass implied by the rotation curve and the luminosity
serves as a strong evidence that most spiral galaxies are located in a large halo of DM
[12]. This will now be discussed further.

Assume that the matter in a spiral galaxy follow circular orbits. The centripetal acceler-
ation due to the circular motion at a distance r from the galactic centre is ar(r) = v(r)2/r.
The ordinary mass in spiral galaxies can be well approximated by a thin disk with a small
bulge around the galactic centre. It is common to assume that the mass distribution is
proportional to the luminosity, which typically decreases exponentially as L(r) = L0e

−r/D

with D ∼ 5 kpc in spiral galaxies [13]. Thus, at large distances from the galactic cen-
tre, the gravitational force can be approximated by that of a central point mass. In this
case, the acceleration due to Newtonian gravitation is ar(r) = GM(r)/r2, where M(r)
is the mass inside r and G is the gravitational constant. Equating the centripetal and
gravitational accelerations yields

v(r) =
√
GM(r)

r
. (2.1)

In other words, one expects that the rotation curve decreases as v(r) ∼ 1/
√
r in the outer

regions of the galaxies.

3



2 Dark matter and cosmology

The rotation curve can be determined by measuring the Doppler shift of spectral lines
from stars and gas at different distances from the centre of the galaxies [12, 13]. The gen-
eral result is that few spiral galaxies exhibit the 1/

√
r decline in their rotation velocities

as expected from the calculation above, which suggests that there are more matter in the
galaxies than just the visible matter. As an example, consider the rotation curve of the
Milky Way shown in figure 2.1. The rotation curve of the Milky Way is hard to measure
and there are large uncertainties at large r mainly due to poorly known distances. In
any case, the general behaviour is clear: at large distances, the rotation curve remains
more or less constant.1 In order to explain the discrepancy, one may include a spherically
symmetric mass distribution known as the dark halo, as shown in figure 2.1. This leads
to a lower bound on the DM density in the Galaxy of ΩDM & 0.1, where ΩX ≡ ρX/ρcrit
[14].

2.1.2 Density profiles
This thesis will focus on antinucleus production in DM annihilations. In order to estimate
the final flux at Earth, one must have a model for the distribution of the DM in the Galaxy.
We will consider three profiles often used in the literature: the isothermal, Navarro-Frenk-
White (NFW) and Einasto profiles.

Isothermal Profile

As discussed above, the rotation curve v(r) for most spiral galaxies remains constant at
large r. This can be explained by assuming that the galaxies are located in the centre of
a spherically symmetric mass distribution with a density profile ρ(r). The mass located
within a sphere of radius r is

M(r) =
∫ r

0
4πr2ρ dr . (2.2)

By using equation (2.1) and solving for ρ(r), one obtains the density profile

ρ(r) = v2

4πGr2 . (2.3)

Thus, the DM density must decrease as 1/r2 at large r to describe the behaviour of the
rotation curve. This is much slower than the visible matter, which roughly follow he
exponential decrease in luminosity.

The density profile in equation (2.3) is only suitable to describe the density in the
regions of constant rotation curve. Furthermore, the profile yields a constant rotation

1Measurements of objects that are not a part of the disk, such as globular clusters and dwarf galaxies,
show that v(r) remains constant until ∼ 100 kpc and then decreases until ∼ 300 kpc [12]. This is
quite impressive considering that the Andromeda Galaxy has a diameter of ∼ 20 kpc and is a distance
∼ 700 kpc from the Milky Way.
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2.1 Dark matter in galaxies
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Figure 2.1: Parametrisation of the Milky Way rotation curve by Sophue et al. (2009) [15]
at r . 20 kpc. The experimental data were measured using amongst other
HI, HII and CO tangent lines (see Refs. [12, 15] and references therein). The
total rotation curve (solid red) is decomposed into the contributions from the
bulge (green), disk (blue) and dark halo (black). The contribution from the
bulge and disk alone (dashed red) cannot explain the data at large r. Other
characteristics, such as the dip at ∼ 9 kpc, can be reproduced by considering
additional perturbations.

curve even for low r and has thus a mass singularity at r = 0. This problem can be fixed
by introducing a finite core radius a 6= 0 in such a way that ρ(r) is constant for r � a.
This leads to the so-called isothermal profile [16]

ρiso(r) = ρs
1 + (r/a)2 , (2.4)

where a and ρs are parameters that must be determined by experiments for each galaxy.

NFW profile

The DM density profile in a large mass range, from micro-halos to galaxy clusters, can
be approximated by the NFW profile

ρ(r) = ρs
(r/a)γ(1 + r/a)3−γ , (2.5)

5



2 Dark matter and cosmology

where γ = 1 [17, 18], which was empirically obtained using N -body simulations of galaxy
formation. Note that this profile behaves as ∼ r−1 for small r and ∼ r−3 for large r and
does not include the contribution from the baryonic feedback from stars. Thus, it does
not necessarily describe a dynamically relaxed system. Regardless, it is today one of the
most used DM density profiles.

Einasto profile

Newer and larger simulations reveals that most halos are significantly denser than the
best-fit NFW-profile, and that some halos follow the NFW profile well, while others
are better approximated by a steeper profile [18]. Improved fits require additional free
parameters, such as making γ in equation (2.5) a free parameter. Alternatively, one may
use the Einasto profile [18]

ρ(r) = ρs exp
{
− 2
α

[(
r

a

)α
− 1

]}
, (2.6)

where α is an additional free parameter, that been shown to describe N -body haloes even
better than the NFW profile.

Profile parameters

The profile parameters can be estimated using N -body simulations or by fitting the models
to experimental data. We will be using the parameters given by Ref. [19] and listed in
table 2.1. These parameters are found by fitting the profiles to the local DM density ρ� and
the total DM mass contained within a radius of 60 kpc. We follow Ref. [19] and assume
that ρ� = 0.3 GeV/cm3 and that the distance to the galactic centre is r� = 8.3 kpc. Note
that there are large uncertainties in these parameters. For example, ρ� is only determined
within a factor 2–3 [14].

Table 2.1: Best fit parameters for the NFW, Einasto and isothermal profiles, taken from
Ref. [19].

Profile a [kpc] ρs [GeV/cm3] α

NFW 24 0.18 -
Einasto 28 0.033 0.17
Isothermal 4.4 1.4 -

6



2.2 Dark matter in cluster of galaxies

2.2 Dark matter in cluster of galaxies
2.2.1 The virial theorem and the Coma Cluster
One of the first evidences for DM were put forward by the Swiss astronomer Fritz Zwicky
in 1933 after he estimated the mass of the Coma Cluster using the virial theorem. It
can be shown (see e.g. Ref. [20] for a simple proof) that the potential energy U of a
gravitationally bound and dynamically relaxed system can be written as

U = 1
2

N∑
i=1

N∑
j=1,j 6=i

G
mimj

|rj − ri|
= 1

2
d2

dt2
N∑
i=1

mir
2
i − 2T, (2.7)

where the sum runs over the particles in the system and T = ∑
imiv

2
i /2 is the total kinetic

energy. Time averaging over a sufficiently large time yields

〈U〉 = −2 〈T 〉 , (2.8)

which is the simplest form of the virial theorem for a gravitationally bound and dynam-
ically relaxed system. The gravitational potential energy of a system can in general be
written on the form

〈U〉 = −αGM
2

r
, (2.9)

where α = O(1) and r is a characteristic radius of the system. For a galaxy cluster it is
observed that α ≈ 0.4 and r = rh, where rh is the radius that contains half the total mass,
is a good choice [20]. Inserting equation (2.9) into the virial theorem (2.8) and solving
for M yields

M = 〈v
2〉 rh
αG

. (2.10)

We can now estimate the mass of the Coma cluster using the numerical values given
in Ref. [20]. The velocity dispersion along the line of sight is found, using redshift
measurements, to be 〈v2

r〉 ≈ 880 km/s. Assuming that the velocity dispersion is isotropic,
the mean square velocity is simply 〈v2〉 ≈ 3×880 km/s. Estimating the half-mass radius rh
of a galaxy cluster is quite difficult, but assuming that the mass-to-light ratio is constant
and that the cluster is spherical, it can be approximated using the luminous matter.
The observed distribution of the galaxies in the Coma Cluster indicates rh ≈ 1.5 Mpc.
The aforementioned numerical values inserted into equation (2.10) gives an estimated
mass MComa ≈ 2 × 1015M�. On the other hand, the mass of X-ray emitting gas is
estimated to be MComa,gas ≈ 2 × 1014M� while the mass of the stars is estimated to be
MComa,stars ≈ 3× 1013M�. This means that less than 2 % of the mass of the Coma cluster
comes from stars and about 10 % from observable intracluster gas, the rest being DM.
Note, however, that we cannot deduce from these estimates whether the DM is baryonic
or not.
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2 Dark matter and cosmology

2.2.2 Gravitational lensing and the Bullet Cluster
In the previous subsection we saw how the virial theorem could be used to estimate
the mass of a galactic cluster and how a potential discrepancy compared to the luminous
matter is an indication of the existence of DM. Another method to estimate the mass is by
using gravitational lensing. According to Einstein’s general theory of relativity (see section
2.3.1) the trajectory of photons is deflected by a point mass by an angle proportional to
the mass and inversely proportional to the impact parameter b [20]. Thus, by measuring
the angle of deflection of photons from distant objects, one can in principle estimate the
mass of galaxies and galactic clusters.

A more compelling evidence lies in the possibility of using gravitational lensing to
create a lensing map. The “Bullet Cluster” (1E0657-56) and more recently the lensing
cluster MACS J0025.4-1222, give an unique picture of the nature of DM [18]. These
clusters consist in fact of two clusters each that merged recently on cosmological time
scales. In both clusters, the gravitational lensing reveals two substructures that are offset
compared to the baryon distribution observed by X-ray, as shown in figure 2.2. In other
words, the baryonic mass decelerated in the collision, whereas most of the total mass
moved ballistically. This indicates both the existence of DM and that the DM is weakly
interacting.

Figure 2.2: Lensing mass (blue), X-ray map (pink) and optical map of the MACS J0025.4-
1222 cluster [21]. The image shows a system where two Galaxy clusters have
collided, creating a separation between the visible baryonic mass and the total
mass. Image credit: X-ray (NASA/CXC/Stanford/S. Allen); Optical/Lensing
(NASA/STScI/UC Santa Barbara/M. Bradac)
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2.3 Dark matter on cosmological scales

2.3 Dark matter on cosmological scales
The existence of DM has a profound impact on the evolution of Universe and cosmological
studies may thus impose constraints on possible DM candidates. An introduction to
cosmology is therefore called for. In this section, we will include an introduction to
the standard cosmological picture and discuss how WIMPs, which are the favoured DM
candidates, fits this picture as a thermal relic. In addition, we will discuss how the cosmic
microwave background (CMB) is used to estimate the non-baryonic DM content in the
Universe. Most of the content of this section is discussed in amongst other Refs. [14, 20,
22].

2.3.1 Curvature of space
The cosmological principle is a central concept of modern cosmological models. It states
that the Universe is homogeneous and isotropic on large scales at each moment of its
evolution. In other words, the observed general properties, such as energy density, are
the same for all observers in all directions. This does of course not hold for small scales,
say our Solar system or our Galaxy. Note that a space that is isotropic around two or
more points is also homogeneous, but a homogeneous space is not necessarily isotropic.
Observations of the CMB (see section 2.3.3) indicate that the Universe is perceived as
isotropic from Earth. Nothing indicates that the location of our Solar system and Galaxy
is special, and so the Universe must in fact be homogeneous and isotropic.

The homogeneity and isotropy of the Universe can be used to create a model that
describes the overall geometry and evolution of space. The homogeneous and isotropic
Universe can in polar coordinates be described by the line element

ds2 = dt2 − a2(t)
[

dr2

1− kr2 + r2
(
dθ2 + sin2 θ dφ2

)]
, (2.11)

where a(t) is the time dependent scale factor and k is the curvature parameter. This
metric is known as the Friedman-Robertson-Walker (FRW) model when a(t) is chosen
such that the metric obeys the Einstein equation. At any time t, the coordinate r can
be rescaled as R = a(t)r, which keeps the geometry intact. The normalisation a(t0) = 1,
where t0 is the present time, is often used. The distribution of galaxies must be smoothed
out in the FRW model, i.e. the velocity of individual galaxies must be zero.2 One can thus
choose a coordinate system in which each galaxy remains at the fixed position (ri, θi, φi) as
space expands and increases the distance between the galaxies. This is known as comoving
coordinates.

By rescaling the radial coordinate, the curvature parameter k can be chosen to take
only the three discrete values k = {0,+1,−1}, which corresponds to a flat, closed and

2The motion of individual galaxies can be diffusive and “random”, as this does not violate the homo-
geneity.
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2 Dark matter and cosmology

open universe, respectively. The space in a flat universe is Euclidean and is of infinite size,
a closed universe has a spherical geometry and is of finite size, while an open universe has
a hyperbolic geometry and is of infinite size.

The curvature of space-time is described by the Einstein equation,

Gµν = 8πGTµν + Λgµν , (2.12)

where Gµν = Rµν − gµνR/2 is the Einstein tensor, G is the Newtonian gravitational
constant, Tµν is the energy-momentum tensor and Λ is the cosmological constant. This
equation describes the relationship between the curvature of space-time and the energy-
momentum content. In other words, it describes how energy and momentum curve space-
time. It is common to assume that the content of the Universe is a perfect fluid. For a
specific frame the energy-momentum tensor for the perfect fluid is

Tµν = diag(P, ρ, ρ, ρ) = −Pgµν + (P + ρ)uµuν , (2.13)

where gµν is the metric described by equation (2.11), P is the isotropic pressure, ρ is the
energy density and uµ is the four-velocity (u = (1, 0, 0, 0) in comoving coordinates).

Inserting the FRW metric (2.11) and the energy-momentum tensor for a perfect fluid
(2.13) into the Einstein equation (2.12) leads to the Friedmann equations

H2 ≡
(
ȧ

a

)2
= 8π

3 Gρ− k

a2 + Λ
3 , (2.14)

and
ä

a
= Λ

3 −
4πG

3 (ρ+ 3P ), (2.15)

where we defined the Hubble parameter H(t) = ȧ(t)/a(t). These equations can be used
to describe the evolution of the Universe. At the present time, H0 = ȧ(t0)/a(t0), where
H0 = 100h km s−1Mpc−1 with h ' 0.678 is the Hubble constant.3 In other words, the
present day Universe is expanding.

2.3.2 Constituents of the Universe
When discussing the energy density contribution of different constituents of the Universe,
it is common to express it in terms of the relative fractions

Ωi ≡
ρi
ρc

= 8πG
3H2 ρi, (2.16)

where i can be mass (m), radiation (r) or vacuum (v). Here Ω ≡ Ωm + Ωr + Ωv =
1 corresponds to a flat universe, Ω < 1 corresponds to an open universe and Ω > 1

3Hubble’s law follows in the approximation of small redshift.

10



2.3 Dark matter on cosmological scales

corresponds to a closed universe. The energy density required to obtain a flat universe
(k = 0) is denoted by ρc and called the critical density. Current measurements indicates
in fact that the Universe is close to flat. Solving the Friedman equation (2.14) for ρ gives

ρc = 3H2

8πG. (2.17)

The effect on the evolution of the Universe from the different constituents can be found
using the useful equation

ρ̇(t) = −3H(ρ+ P ) (2.18)
which follows directly from equations (2.14) and (2.15). Alternatively, it can be derived
from the first law of thermodynamics in an adiabatic evolution of the Universe. Using
this equation, one can find the time dependence of the scale factor a(t). However, one
must first find the relation between the pressure P and energy density ρ of the different
constituents.

Matter Matter can be well approximated by a pressureless gas, P = 0. The energy
density ρm is thus just the rest energy of the matter. Note that relativistic matter, such
as relativistic neutrinos, are often included in the radiation content.

Radiation The energy density ρr and pressure Pr for a photon gas are related by (see
section 2.3.4)

Pr = 1
3ρr. (2.19)

Vacuum Finally, consider the effect of the cosmological constant Λ in the Einstein
equation (2.12). The cosmological constant Λ measures the curvature of an empty classical
space-time. Its effect is equivalent to a stress tensor TΛµν = Λgµν8πG, which contributes
to either expansion or contraction of the Universe. Thus Λ corresponds to a non-zero
energy density ρΛ ≡ Λ/8πG, often referred to as a vacuum energy density. Comparing
the energy-momentum tensor TΛµν to that of a perfect fluid (eq. (2.13)) yields

Pv = −ρv. (2.20)
Thus, a positive vacuum energy density implies a negative pressure which accelerates
the expansion of the Universe. This is known as dark energy. There is currently no
fundamental theory for the cosmological constant, and it is thus common to assume that
it is constant and positive, as indicated by present observations.

The evolution of the Universe can be found by using the general pressure and energy
density relation, P = wρ, in equation (2.18). The result is

ρ(t) ∝ a−3(1+w). (2.21)
Using then the Friedmann equation (2.14), gives the time dependence of the scale factor,

a(t) ∝ t2/(3+3w) =


t3/2 for matter (w = 0),
t1/2 for radiation (w = 1/3),
et for vacuum (w = −1).

(2.22)
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2 Dark matter and cosmology

In all three cases, the Universe expands without limit. In the early hot and dense Universe,
one can approximate the state as only consisting of relativistic matter. At later times, the
non-relativistic matter will dominate over the radiation. Eventually, the energy density
will be dominated by Λ. In the radiation and matter dominated universe, the Universe
starts from a singularity and a hot Big Bang. However, it is important to note that one
expects the classical gravity to break down when ρ ∼ M4

Pl. DM will contribute to the
energy content of the Universe, and has thus a large impact of its evolution. In addition,
DM is a crucial part of, amongst other, structure formation, but this will not be discussed
here.

2.3.3 Cosmic microwave background radiation
The total amount of DM in the Universe can be obtained by studying the observed CMB
anisotropies shown in figure 2.3. Until recombination, when the Universe was about
378,000 years old, the photons were strongly coupled to a sea of electrons and baryons
through scattering with the electrons. At some time however, the Universe was cold
enough to allow electrons and protons to combine and form atoms. This allowed the
photons to decouple and create a free stream of photons that constitutes the CMB one
observes at Earth today. The CMB is today well described by black-body radiation with
a temperature T0 = 2.73 K, but shows tiny temperature fluctuations corresponding to
small regions of different densities that evolved into the stars and galaxies we see today.

One can get a good deal of information about the early Universe by studying the
deviations from the Planckian spectrum. This is usually done by studying the temperature
anisotropies at or below the 10−6 level. The anisotropies are usually expressed as an
expansion of the CMB in spherical harmonics [14, 23]:

T (θ, φ) =
∑
lm

almYlm(θ, φ). (2.23)

The monopole term corresponds to the mean temperature T = 2.73 K. The largest
anisotropy is the dipole term l = 1, and is interpreted as being the Doppler boost of
the monopole. Hence, the dipole term becomes a frame dependent quantity that can
be used to determine the absolute rest frame of to the CMB. In the study of higher
order multipoles, the dipole contribution is usually removed, as is the case in figure 2.3.
By studying the higher order multipoles in certain cosmological models, it is possible
to constrain cosmological parameters. The current recommended values related to the
constituents of the Universe are Ωbh

2 = 0.02226 ± 0.00023 (baryonic matter density),
Ωch

2 = 0.1186± 0.0020 (cold non-baryonic matter), h = 0.678± 0.09, ΩΛ = 0.692± 0.12
(cosmological constant) and Ωtot = 1.0002 ± 0.0026 [14, 23]. Thus, the Universe is close
to flat and its energy content consists of about 69 % dark energy and 26 % DM in the
form of cold dark matter (CDM) (see section 2.3.4).
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2.3 Dark matter on cosmological scales

Figure 2.3: Temperature map of the CMB anisotropies from 2013 as observed by ESA’s
Planck mission [24]. The temperature fluctuations are indicated by colour
differences, with a temperature range of ±200µK. Image credit: ESA/Planck
Collaboration

Perhaps more important than the constraints on cosmological parameters, the CMB
has lead to new insights into the early Universe and structure formation. In addition,
it is perceived by many as the most important evidence for the existence of DM. These
features, together with the basic evolution described earlier and the thermal freeze-out
of DM described in the next subsection, constitute the basis for the standard model of
cosmology, ΛCDM.

2.3.4 Thermal history, thermal relics and the WIMP miracle

Now that the fundamental understanding of the evolution of the Universe and DM is set,
we can turn to the question of how there can be a non-zero abundance of DM at all. As
mentioned before, the main focus of this thesis will be on WIMPs as candidates for DM.
We will therefore now discuss how particle DM can fit into the standard cosmology as
a thermal relic, and how this favours WIMPs as DM candidates. That is, the WIMPs
were once in thermal equilibrium with Standard Model (SM) particles, but at some point
they went out of equilibrium to create the DM abundance we observe today. In the
previous subsections, the evolution of the Universe was assumed to be adiabatic. This is
a good approximation in most of the evolution. However, in order to explain the present
Universe, deviations must be taken into account. The discussions in this subsection follow
Refs. [18, 22, 25].
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2 Dark matter and cosmology

Equilibrium statistical physics

Before one starts discussing thermal relics, one should recall some basic equilibrium sta-
tistical physics. The one-particle distribution function of a free gas in kinetic equilibrium
is given by

f(p) = 1
exp[β(E − µ)]± 1 , (2.24)

where β = 1/T and µ is the chemical potential. This equation describes the expected
number of particles in a given energy state E =

√
m2 + p2. The lower sign (−) gives

the Bose-Einstein statistics for bosons, while the upper sign (+) gives the Fermi-Dirac
distribution for fermions. The number density n, energy density ρ and pressure P can be
written in terms of the one-particle distribution function f(p) as4

n = g
∫ d3p

(2π)3f(p), ρ = g
∫ d3p

(2π)3Ef(p), P = g
∫ d3p

(2π)3
p2

3Ef(p), (2.25)

where g accounts for the internal degrees of freedom. For example, g = 2 for photons
because they are massless spin-1 particles. In the non-relativistic limit T � m, this
reduces to the classical Maxwell-Boltzmann statistics,

n = g
(
mT

2π

)3/2
exp{−β(m− µ)}, (2.26)

which implies that the number of non-relativistic particles is exponentially suppressed for
a small chemical potential µ. In the relativistic limit T � m and T � µ, equation (2.25)
becomes

n = gT 3

2π2

∫ ∞
0

x2

ex ± 1 ∝ T 3, (2.27a)

ρ = 3P = gT 4

2π2

∫ ∞
0

dx x3

ex ± 1 ∝ T 4. (2.27b)

Since the non-relativistic species are suppressed, the pressure and energy density in the
Universe can be approximated by the relativistic species as

ρrad = 3Prad = π2

30g∗T
4, (2.28)

where g∗ = g∗(T ) is an effective relativistic degree of freedom.
From the second law of thermodynamics, T dS = dU + P dV and U ≡ ρV , one finds

dS = d[(ρ+ P )V/T ], implying that

S = ρ+ P

T
V. (2.29)

4The expression for the pressure can either be taken as a definition in itself, or be derived by considering
the usual definition of pressure as the momentum flux through a surface.
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2.3 Dark matter on cosmological scales

This has two important consequences. Firstly, using equation (2.28), one finds

s = 2π2

45 g∗sT
3, (2.30)

where now g∗s = g∗s(T ) is the effective degree of freedom for the entropy density. Secondly,
using the continuity equation (2.18) and equation (2.28), one can show that dS / dt = 0.
Thus, the entropy S is conserved in an early FRW universe. In fact, the baryon to photon
ratio η ≈ 6× 10−10 in our Universe is extremely small, implying that the entropy is still
approximately constant. Since both n and s scales as ∝ a−3, it convenient to consider the
time evolution of the parameter Y ≡ n/s.

Dark matter as thermal relics

As can be seen from equations (2.30) and (2.22), the temperature in the radiation dom-
inated period of the early Universe scales as T ∝ a−1 ∝ t−1/2. This large temperature
had several effects. Atoms, nuclei and even hadrons are dissolved in the epoch where the
temperature exceeds the corresponding binding energies, T & B. Furthermore, particles
with masses mX can be produced in interactions like Ȳ Y ↔ X̄X when T & 2(mX −mY ).
For DM particles, the interactions5

χχ̄↔ e+e−, µ+µ−, qq̄,W+W−, ZZ,HH, ..., (2.31)

would be efficient at temperatures T � mi (i = χ, e−, q, ...). It is thus often assumed that
the DM production and annihilation reactions were initially in equilibrium. The common
rate of production and annihilation at chemical equilibrium can be written as

Γann,eq = 〈σannv〉neq, (2.32)

where σann is the DM annihilation cross section, v is the relative velocity of the two DM
particles and neq is the DM number density. Assuming that the production and annihi-
lation processes remained in thermal equilibrium, the number of produced DM particles
decreased exponentially with decreasing temperature, as determined by the Maxwell-
Boltzmann distribution (2.26). Since the number density increases as n ∝ a−3 ∝ T 3 and
the expansion rate of the Universe increases as H = ȧa−1 ∝ T 2, most scattering rates
Γ = nσv increase faster than the expansion rate of the Universe for t → 0. The Gamov
criterion tells us that a reaction becomes ineffective if its rate Γ drops below the expan-
sion rate H. Thus, at some time, the DM particles went out of chemical equilibrium.6
This is known as chemical freeze-out, and may be an explanation of the abundance of

5The DM particles should be chargeless and cannot therefore interact with the photon.
6Alternatively, the interaction rate may drop below the expansion rate due to decreasing cross section,

but this will not be discussed.
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DM observed today. At a later time, energy transfer processes like χν → χν became
ineffective, taking the DM particles out of thermal equilibrium. This is known as kinetic
freeze-out. We will next consider the chemical freeze-out in more detail.

The evolution of the number density of a thermal relic, dNX /V = d(a3nX)/a3, in the
expanding Universe is determined by the interaction rate ΓnX = 〈σannv〉n2

X . At chemical
equilibrium, the evolution should be zero. These observations lead to the Boltzmann
equation (see [22] for a more thorough derivation)

1
a3

d
dt
(
a3nX

)
= −〈σannv〉

(
n2
X − n

eq
X

2
)
. (2.33)

Assume that the freeze-out occurs in the radiation dominated period of the Universe.
Then, equation (2.22) gives H = ȧ/a = 1/2t. Using the dimensionless variables x ≡ m/T
and Y ≡ n/s and the constant entropy, dS/dt = 0, one can recast the Boltzmann
equation (2.33) as

x

Yeq

dY
dx = −Γann,eq

H

( Y

Yeq

)2

− 1
 , (2.34)

which makes the previous intuitive Gamov criterion more clear: The relative change of the
comoving number density Y is determined by Γann,eq/H multiplied by the deviation from
equilibrium. When Γann,eq ∼ H, Y flattens out. That is, the reaction is no longer efficient
and the DM particles goes out of equilibrium. Equation (2.34) can now in principle be
solved numerically. Note, however, that the thermally averaged cross section 〈σv〉 depends
on the amplitudes |Afi|2 of the allowed DM processes and is thus model dependent. In any
case, one can gain more insight by considering approximate solutions in the two limiting
cases xf � 3 and xf � 3, known as hot dark matter (HDM) and CDM, respectively.
Here, xf refers to the temperature at which freeze-out occurs. Some typical evolutions of
Y (x) are plotted in figure 2.4 in the case xf � 3 with 〈σannv〉 = 3 × 10−26 cm3/s. From
this figure, it is clear that the thermal relics were once in equilibrium and at some point
they froze out such that their comoving number densities Y flattened out.

Hot dark matter

In the case of HDM, the freeze-out occurs while the particles are still relativistic. In this
case, Yeq = nX/s is constant. Thus, the limiting abundance at t → ∞ is given by the
equilibrium abundance at freeze-out, Y∞ ≡ Y (x→∞) = Yeq. Dividing (2.27a) by (2.30)
in the limit x� 3 yields

Y (x→∞) = Yeq(xf ) = 0.278 geff

g∗s(xf )
, (2.35)

where geff is the effective number of degrees of freedom of the DM particles and the only
temperature dependence is in g∗s. The entropy density in the present Universe, s0 can
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Figure 2.4: Illustration of the freeze-out process with 〈σannv〉 = 3× 10−26 cm3/s and DM
masses m =

{
10, 102, 103, 104} GeV.

be estimated using equation (2.30) with the current temperature of the CMB photons,
T0 ≈ 2.73 K, and the effective degrees of freedom of photons and neutrinos, g∗s,0 ≈ 3.9.7
This leads to s0 ≈ 2.9 × 103 cm−3. Particles with masses m � T0 ∼ 0.2 meV that
were relativistic at freeze-out will be non-relativistic today. Their energy density is thus
ρ0 = mn0 = ms0Y∞ and their abundance becomes

Ωh2 = ρ0

ρcr
= 7.6× 10−2 m

eV
geff

g∗s
. (2.36)

Thus, the abundance of possible HDM particles with m . 7 eV exceeds the observed
pressureless matter density of the Universe, Ωmh

2 = Ωch
2 + Ωbh

2 = 0.141, assuming a
spinless DM particle.

The lower bound on the sum of the neutrino masses is ∑νmν > 0.06 eV and at least
two of the neutrinos are non-relativistic today [14]. This makes the neutrinos suitable
candidates for HDM. Assuming that all three neutrino species are non-relativistic, equa-
tion (2.36) gives the upper bound Ωνh

2 . 0.006 for the contribution from the neutrinos
on the non-baryonic matter in the Universe. This indicates that most of the DM in the
Universe are dynamically cold.

7The neutrinos froze out early while still relativistic, creating a neutrino background that still should
be present. After the freeze-out of the electron and positron, the remaining pairs would translate
their entropy to the photon species through the annihilation process e+ + e− → γ + γ. This would
increase the photon entropy as s′γ = (7/8 + 7/8 + 1) = 11/4sγ , where the factor 7/8 comes from
the difference between fermions and bosons in equation (2.27). One can thus estimate the effective
relativistic degree of freedom today as g∗s,0 ' 2 + 3× 7

8 ×
4
11 × 2 ≈ 3.9, where the factor 2 comes from

the degrees of freedom of a Dirac fermion and 3 is the number of neutrino flavours.
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Cold dark matter

The freeze-out of CDM occurs while the particles are non-relativistic, implying that Yeq
decreases exponentially as equation (2.26). In this case, the main problem is to find the
freeze-out time xf . In the early radiation dominated era of the Universe, the two last
terms of the Friedmann equation (2.14) can be neglected since ρ ∝ a−4 (eq. (2.28)), such
that H ' 1.66√g∗T 2/MPl, where MPl is the Planck mass. Assuming that Y∞ ≈ Y (xf )
and that the annihilation cross section 〈σannv〉 = σ0 is constant, the Gamov criterion
H = Γann,eq = neq 〈σannv〉 yields

x
−1/2
f exf = 0.038 g

√
g∗
MPlmσ0 ≡ C. (2.37)

We will consider a Majorana fermion as DM candidate with g = 2. At large temperatures,
most of the particle species are relativistic and g∗ ∼ 102.8 Solving equation (2.37) numer-
ically for 〈σannv〉 = 3× 10−26 cm3/s and m = {10, 102, 103}GeV yields xf ≈ {23, 26, 29}.
In other words, the freeze-out temperature changes slowly for the relevant DM masses
with a typical value xf = 30. Using now equation (2.30) and the constant entropy, one
finds

n(xf )
n0

=
(
a(xf )
a0

)3

= g∗s,0T
3
0

g∗s,fT 3
f

, (2.38)

where a subscript ‘0’ refers to the quantities in the present Universe. In turn, with
g∗s,0 ≈ 3.9, g∗s,f ∼ g∗,f ∼ 100 and T0 = 2.73 K, we obtain

Ωch
2 = mn0

ρcr
∼ 10−28 cm3/s

σ0
xf . (2.39)

Thus, in order to reproduce the observed relic density Ωch
2 ≈ 0.1 indicated by the CMB,

one must choose σ0 ≈ 3 × 10−26 cm3/s, which is the canonical value often cited in the
literature. This cross section is typical for weakly interacting and massive particles. As
such, these types of CDM particles are named WIMPs. The coincidence between 〈σannv〉
and a typical weak scale interaction cross section in the SM is known as the WIMP
miracle. An upper limit m . 100 TeV can be set using partial wave unitarity [26, 27].

Finally, we note that 〈σannv〉 is highly model dependent. In the above, we assumed that
〈σannv〉 = σ(s)

ann +σ(l)
ann 〈v〉

2 + ..., including only the s-wave contribution. This is not always
the case, and the cross section may in some circumstances vary orders of magnitude due
to effects like Sommerfeld enhancement [28]. Furthermore, in the calculations above, we
assumed that a single DM particle reproduced the entire relic density. However, it is
in general possible to have more than one DM candidate. Other DM particles have in
general different production mechanisms.

8However, the solution is to a good approximation logarithmic, xf ≈ lnC, so the main conclusion
remains unchanged for most choices.
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2.4 Dark matter candidates

2.4 Dark matter candidates
There are clearly strong evidences for the existence of DM, but it is currently unknown
what it consists of. As seen in section 2.3.3, non-baryonic DM has a relic density Ωch

2 ≈
0.1 that cannot be explained by the SM. In this section we will therefore discuss a few
non-baryonic DM candidates, including the WIMPs already introduced.

Candidates for non-baryonic DM must satisfy three conditions. Firstly, they must be
stable on cosmological time scales in order to not have decayed by now. Secondly, they
must interact weakly with electromagnetic radiation in order to be considered as dark.
Lastly, they must have the correct relic density. Possible candidates for non-baryonic DM
includes axions, primordial black holes, sterile neutrinos and WIMPs. In addition, there
exist some alternative theories which evades the introduction of DM in the first place.
Each of these will now be discussed briefly.

Axions and the strong CP problem
Axions were first postulated as a solution to the strong CP problem in the SM. The
following is based on the discussions in Refs. [14, 18, 22]. The quantum chromodynamics
(QCD) Lagrangian includes a CP violating term Lθ = −θ̄(αs/8π) tr

{
F µνF̃µν

}
, where

θ̄ ∈ [0, 2π] is a free parameter and F µνa is the colour field strength tensor. Note that
we have neglected this term in the discussion of QCD in section 3.1 as it is a four-
divergence and does not contribute to perturbation theory. However, this term has non-
perturbative effects associated with the instanton solution to the Yang-Mills equations
and the axial anomaly in a Yang-Mills theory coupled to massive quarks. Remarkably,
measured limits on the neutron electric dipole moment have limited the CP violation
parameter to |θ̄| . 10−10, even though it would be otherwise perfectly fine to have |θ̄| =
O(1). This fine-tuning problem is known as the strong CP problem. One possible solution
is to introduce the spontaneously broken Peccei-Quinn U(1)PQ quasi-symmetry, which
must be a symmetry at the classical level and broken by the non-perturbative effects
associated with θ̄. The quasi-Goldstone boson associated with the spontaneously broken
symmetry is the axion. Due to the arbitrariness of this field, the parameter θ̄ is allowed
to relax to zero, thus solving the strong CP problem. The axions as DM candidates are
generally very light (∼ 0.1 meV) but can still contribute to the CDM abundance as they
are produced non-thermally.

Primordial black holes
There is currently little knowledge about DM beside its gravitational effects and that it
is dynamically “cold”. It is thus possible that the DM abundance does not consist of
ordinary elementary particles. In fact, it is conceivable, in some contrived cosmological
models that the DM abundance consists of a large quantity of black holes that are too
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massive to have evaporated by now [29]. These are known as primordial black holes, and
must have formed before the Big Bang nucleosynthesis when the baryons only constituted
a small part of the total energy density, in order to contribute to the non-baryonic DM
density. The interest for primordial black holes was revived after the recent detection of
gravitational waves by LIGO in 2016 [30]. However, astrophysical observations constrain
the possible masses of the black holes to, at best, a few narrow mass windows [31]. In
any case, it is possible that primordial black holes constitute only a minor part of the DM
abundance.

Sterile Neutrinos
In the SM, the neutrino masses were traditionally set to zero. Today, however, it an
experimental fact that the neutrinos have small non-zero masses. The neutrinos can be
given mass by adding a term from a higher dimensional operator suppressed by some un-
known scale to the Lagrangian. However, this makes the Lagrangian non-renormalisable.
Furthermore, under the SM gauge group SU(3)c × SU(2)L × U(1)Y, there is a clear mis-
match between the quark and lepton degrees of freedom: there exists only left-handed
neutrinos. These properties may indicate new unseen particles and unobserved physics.

The fermion masses of the active neutrinos in the SM can be generated by introducing
singlet Majorana fermions to the SM [18].9 That is, we introduce new right handed
neutrinos that only interact with the SM particles through a weak mixing with the SM
neutrinos if the SM neutrinos are Dirac fermions. The number of new neutrinos cannot
be deduced from symmetries, but is usually taken to be equal to the number of lepton
and quark generations. These are known as sterile singlet neutrinos and is a possible
DM candidate. Depending on the implementation of the sterile neutrinos, their masses
can range from M = 0 to M . 109 GeV [32]. However, due to the stability of the DM
particles, small masses and mixing angles are favoured.

Weakly interacting massive particles
WIMPs are, as the name suggests, a class massive hypothetical particles that has a cross
section around the weak scale. As was discussed in section 2.3.4, 〈σannv〉 ∼ 3×10−26 cm3/s
reproduces the correct relic density. Here we will discuss some possible WIMP candidates.

The SM of particle physics is by itself a complete quantum field theory that is able
to explain a variety of phenomena spanning over many orders of magnitude. As we
have seen, there are by now several experimental evidences that suggest the existence of
physics beyond the SM. This includes the existence of DM and dark energy, the strong
CP problem, “the hierarchy problem”, the non-zero neutrino masses and the baryon

9One may instead add no fermionic degrees of freedom, but this requires a Higgs triplet with weak
hypercharge 2.
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asymmetry. Thus, the SM should be viewed as an effective theory. Super symmetric
extensions to the SM are attractive as models beyond the SM as they attempt to address
the aforementioned observations, and at the same time addresses questions related to
e.g. grand unified theories. Supersymmetry (SUSY) is a generalisation of the space-time
symmetries of quantum field theory (QFT) and predicts that fermions may transform
into bosons, and bosons into fermions [14]. In other words, all fermions have a bosonic
counterpart, and vice versa. Many SUSY theories includes one or more charge neural
and stable particles that interacts only weakly with ordinary matter, thereby providing a
suitable DM candidate.

The lightest SUSY particle provides often a simple DM candidate [18]. For example,
in the Minimal Supersymmetric Standard Model, the four fermions corresponding to
the electroweak gauge bosons and the Higgs boson are known as neutralinos (see Refs.
[14, 18] for a short introduction). In this model, a B − L symmetry is imposed on the
Lagrangian, which leads to what is known as R-parity invariance. A particle with spin
s has R = (−1)3(B−L)+2s. Thus, all SM particles have even R-parity, while their SUSY
partners has an odd R-parity. This implies that the lightest SUSY particle is stable,
and cosmological constraints indicates that it should be electrically and colour neutral.
A neutralino as the lightest SUSY particle is the leading WIMP candidate. Due to the
free parameters of the model, it is possible to generate particles within a large mass and
interaction cross section ranges. This is why we in chapter 6 will assume that the DM
candidate is a weakly interacting Majorana fermion with a given set of masses, without
any references to specific models.

Alternative theories
Some alternative theories to DM exists, perhaps the most popular and simplest alternative
is the so-called modified Newtonian dynamics (MOND) paradigm, postulated by Milgrom
in 1983. Here we will review the basic assumptions and principles of the theory. More
comprehensive reviews can be found in Refs. [18, 33].

All of the arguments we have considered that are related to the existence of DM relies
on Newtonian or Einsteinian gravitation. It is thus important to ask if it is possible to
evade the introduction of DM in the first place by modifying the laws of gravitation. The
current laws of gravitation are well tested and describe well all observed systems up to the
scale of globular clusters. However, problem arises when trying to describe the motion
on galactic and intergalactic scales based on the observed matter. One natural solution
is to assume that our current understanding of gravity is flawed in the weak field limit.
The simplest solution is to assume that the acceleration a of a test particle due to a
gravitational potential ΦN is given by

µ

(
|a|
a0

)
a = −∇ΦN, (2.40)
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where µ(x) is a suitable interpolating function and a0 ∼ 10−8 cm/s2 is a typical accelera-
tion scale at which MOND becomes important. Milgrom postulated that µ(x� 1) = x.
Furthermore, one must require that µ(x � 1) = 1 in order to obtain the standard New-
tonian dynamics. One common choice is µ(x) = x/

√
1 + x2.

As an example, consider the constant rotation curves discussed in section 2.1.1. As
before, we start by noting that visible matter in a spiral galaxy follows approximately
circular orbits with velocity v(r), for which |a| = v2(r)/r. Thus, at sufficiently large r,
µ(|a|/a0 � 1) = |a|/a0. On the other hand, the gravitational force can be approximated
as |∇ΦN| ≈ GM/r2 at large r. Inserting everything into equation (2.40) yields

v = 4
√
GMa0. (2.41)

That is, at large r the rotation curve stays constant.
Note that equation (2.40) can be interpreted as reflecting modified inertia. That is,

it can be viewed as a modification of Newton’s second law, f = ma. In this picture,
however, MOND violates momentum conservation and should thus not be considered as
exact.10 Nevertheless, by choosing a suitable classical Lagrangian, momentum and energy
can be conserved by construction.

The MOND theories describes well a large number of observations on galactic scales, but
there are a few problems. First, the discussions above are non-relativistic and existing
attempts at embedding the same considerations into a relativistic theory requires the
introduction of additional degrees of freedom, such as additional fields. This introduces
an increased arbitrariness to the model. Second, the description of large scale structure
formations requires the existence of some additional matter in these theories as well.
Third, instances like the Bullet Cluster discussed in section 2.2.2 are hard to explain
using modified gravity where the gravitational lensing must follow the baryonic matter.

2.5 WIMP detection
Current evidences for DM all rely on its gravitational effect, but its nature is yet to be
determined. Here we will discuss different detection methods for WIMPs, but they are in
principle applicable to most particle DM. There are three different detection methods: in-
direct detection, direct detection and collider searches. Current constraints and detection
principles are reviewed in Refs. [14, 18].

Direct detection
Assuming that the dark halo consists of WIMPs, there will at any given moment be
a WIMP flux through Earth. From figure 2.1, one knows that the velocity of the
10In a two-body system with unequal masses m1 and m2, the quantity m1v1 +m2v2 does not vanish as

required by momentum conservation since µ(a2/a0) 6= µ(a1/a0).
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Sun around the Galactic centre is about v� ∼ 2 × 105 m/s. With a local DM den-
sity ρ� = 0.30 GeV/cm3, one finds that the flux through Earth is on the order of
105(100 GeV/mχ) cm−2s−1. Thus, there is a chance for a detectable elastic collision rate
between the WIMPs and SM particles on Earth. This is the main principle utilised in
direct detection experiments.

In direct DM detection methods one aims at detecting nuclear recoils caused by WIMPs.
The differential interaction rate R between a WIMP with mass mχ and a nucleus with
mass mN can be expressed as

dR
dER

= ρ�
mNmχ

∫ ∞
0

vf(v)dσχN
dER

dv , (2.42)

where ER is the recoil energy, v is the speed of the WIMP in the detector frame, f(v) is
the WIMP speed distribution in the detector frame and dσχN(v, ER)/dER is the WIMP-
nucleus differential cross section. The integration limits are usually taken to be between
the detector limit, vmin, and the Galaxy escape velocity, vesc. The speed distribution f(v)
is usually assumed to be Maxwellian, f(v) = exp{−v2/(2σ2}/

√
2πσ. All of the particle

physics inputs are encoded into the differential cross section, and must be determined by
the microphysics in a specific WIMP model. Note that the large uncertainty in ρ� directly
translates to an uncertainty in the rate. In any case, the velocity of the Earth relative to
the dark halo depends on the rotation of the Earth and the motion of the Earth about
the Sun. This may yield a characteristic time dependence on the interaction rate that
is independent of the uncertainties. The lack of detection of WIMPs has lead to strong
constraints on the WIMP-nucleus cross section, but is not particularly constraining for
the general WIMP class.

Indirect detection
The detection of secondary particles from DM annihilations or decays in the Galaxy may
offer a potential means of identifying the nature of DM. The secondary particle spectra
must have a distinct signature in order to be a suitable for indirect DM detection. Here
we will mention three possibilities: neutrinos, photons and antimatter.

The main advantage of using photons and neutrinos in DM searches is that they prop-
agate in straight lines, making it possible to retrace the source. DM may be captured in
celestial bodies, such as the Sun and dwarf galaxies when they travel through the dark
halo. This leads to an increased DM density with an increased annihilation rate. In
particular, WIMP annihilations in the Sun produces neutrinos which may leave the Sun
with minimal absorption. Recent developments in neutrino detectors, such as IceCube,
have made these a promising detection channel.

As the DM particles cannot interact directly with photons, photons will mainly be pro-
duced in a continuum energy spectrum created by mesons in the quark fragmentation for
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SM final states. Nevertheless, some higher order electroweak corrections may have some
interesting and characteristic properties. In the case of gamma-radiation, the “smoking
gun” process χχ̄ → 2γ offers a potential method of determining the DM mass, since the
two photons will be emitted back to back with an energy Eγ = mχ. Thus, one would
measure a characteristic peak at these energies, broadened slightly by a small Doppler
shift. The process χχ̄→ γZ can be used in the same manner. These processes occurs at
one-loop and are thus typically suppressed by a factor (α/π)2, except in a few special cases
such as Sommerfeld enhancement (See Ref. [28] for a short review and references). An-
other higher order effect is the possibility of internal Bremstrahlung photons for fermion
final states, which is only suppressed by a factor α/π.11

One of the main difficulties in using neutrinos and photons in indirect DM searches
is the enormous amount of both extragalactic and intergalactic background noise. The
use of charged antiparticles, such as positrons, antiprotons and light antinuclei, avoids
this problem due to the baryon asymmetry in the Universe. On the other hand, they are
affected by turbulent magnetic fields in the Galaxy making the source untraceable. In
chapter 6 we will study this for light antinuclei, and the process of deriving the expected
flux on Earth is quite similar for the other antiparticle species.

Presently, the search for antiproton and antinuclei is performed by the AMS-02 experi-
ment on board of the International Space Station, while the GAPS balloon experiment is
expected to fly during the next solar minimum in late 2020 or 2021 [2, 3]. The AMS-02
experiment launched in 2011 and is expected to be in operation until 2024. Previously, the
PAMELA experiment was collecting data for ten years from 2006 to 2016 [34]. The current
best measurements on intergalactic antimatter flux comes from the PAMELA experiment
and the AMS-02 experiment. No indubitable DM signals have yet been found, as the
measured antiproton and positron data are well described by secondary sources. That is,
they are produced by (mainly) proton and helium colliding with the helium and hydrogen
in the interstellar matter (ISM). However, there was a significant excess detected around
T ∼ 10–300 GeV in the PAMELA positron data that was later confirmed by AMS-02 [35].
This suggests a new astrophysical primary source, such as possible pulsars or supernova
remnants, or unknown contributions to the secondary propagation. A more intriguing
possibility is DM annihilations or decays. Unfortunately, this excess is not present in the
antiproton data, putting strong constraints on the possible DM candidates responsible for
the positron excess [36]. Recently, AMS-02 reported antiproton data that exhibits a small
excess around ∼ 100 GeV [37]. This is consistent with a DM signal with a mass ∼ 80 GeV
and an annihilation cross section near 〈σannv〉 ≈ 3 × 10−26 cm3/s [38]. Interestingly, this
is also compatible with a DM interpretation of a gamma-ray excess from the Galactic
centre [38]. It should be noted that these processes includes large sources of uncertainties
related to propagation, as will be discussed for light nuclei in chapter 6. The antimatter

11For example, a Majorana fermion annihilating into fermion final states suffers a helicity suppression
for an s-wave (L = 0) annihilation, which is avoided when a photon is added to one internal leg.
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data currently put constraints on DM masses . 50 GeV [38, 39], such as the possible
contributions to different annihilation channels.

Antideuteron and antihelium nuclei have been proposed as a detection channel for dark
matter annihilations and decays in the Milky Way, due to the low expected astrophysical
background. The dominant background source of antideuterons are cosmic ray protons
interacting with the interstellar medium. The high threshold energy for this reaction
channel (∼ 17mp) implies that the antideuterons produced by cosmic rays have relatively
large kinetic energies. This makes them ideal as a detection channel at low energies. The
suppression is even larger for helium-3 (∼ 31mp). Presently, no antideuteron events have
been reported. However, AMS-02 has reported the detection of six possible antihelium-
3 events in the momentum range < 100 GeV, and even two possible antihelium-4 events
[4].12 There have been a number of different attempts to explain this phenomenon, such as
DM [40] or even antimatter dominated regions of space [41]. As will be shown in chapter
4, the production of helium-3 should be highly suppressed compared to antideuterons.
Thus, they are hard to explain without the presence of antideuteron events. We will come
back to this in chapter 6.

Collider searches
The DM particles can be detected in a collider experiment in two ways: directly via missing
transverse momenta, or indirectly via virtual exchange of beyond the SM particles. The
main method is through missing transverse momenta: once produced it will leave the
detector without being detected.

Since the DM particle interacts only weakly with SM particles, the best hope may
be to detect an unstable particle that is a part of a more comprehensive particle zoo
including the DM particle. However, there is not yet any evidence for weak-scale SUSY
from analysed data from the Large Hadron Collider (LHC) [14].

The main advantage in collider searches is that they do not suffer from astrophysical
uncertainties. On the other hand, a collider can only hope to detect DM masses up to
a given threshold determined by the collision energies. In addition, one cannot know
whether the detected particle in fact constitutes the astrophysical DM.

12Note, however, that the AMS-02 collaboration has not yet any publications on the subject.

25





3 QCD and collider physics
The aim of this chapter is to describe processes like e+e− → q̄q → hadrons. These
processes will ultimately be considered using pre-existing Monte Carlo (MC) event gen-
erators. Nevertheless, it is instructive and important to understand the basic principles
utilised in order to, amongst other, discuss limitations and configure the programs cor-
rectly. The process can be split into three parts. The first part consist of using standard
perturbation theory on the process e+e− → q̄q known from perturbative QFT. The QCD
Lagrangian and the corresponding Feynman rules are described in section 3.1. Next, a
parton shower starts, in which a number of quarks and gluons are created in a QCD
Bremsstrahlung process. This is described in sections 3.4.1 and 3.4.2. Finally, due to
the properties of confinement and asymptotic freedom, discussed in 3.3, one must add a
hadronisation scheme to describe the production of hadrons from the sea of partons. This
is discussed in section 3.4.3. In addition, section 3.2 discusses approximate symmetries of
light quarks which will turn out to be important in the next chapter. Most of the content
of this chapter is obtained from Refs. [42, 43].

3.1 QCD Lagrangian
QCD is the theory that describes the strong interaction between quarks. It is described
mathematically by a non-Abelian SU(3) theory of colour charge with a classical La-
grangian

LQCD = −1
4F

A
µνF

Aµν +
∑

flavour
q̄a(iγµDµ −m)abqb, (3.1)

where the sum goes over the nf different quark flavours and the spinor indices (i, j, k) of
γµ and qa have been suppressed. The field strength tensor and the covariant derivative
are given by

FA
µν = ∂µA

A
ν − ∂νAAµ − gsfABCABµACν and Dµij = δij∂µ + igsTAijAAµ , (3.2)

respectively. Here AAµ are the gluon fields, gs is the gauge coupling, and fABC is the
structure constant of the SU(3) symmetry. The latter is defined through the commutator
relation between the generators TA as [TA, TB] = ifABCTC . The capital Latin indices run
over the eight colour degrees of freedom, while the quarks are in the triplet representation
of the colour charge (a = 1, 2, 3). The indices can be interpreted as if the quarks carry
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one colour charge (‘red’, ‘green’ or ‘blue’) each and the antiquarks carry corresponding
anticolour charge. Meanwhile, the gluons carry one colour and one anticolour, separated
into a colour singlet and a colour octet. The colour octet corresponds to the eight gen-
erators of SU(3), while the singlet state gluon does not exist.1 The quarks live in the
fundamental representation of SU(3) with generators tA. One choice of representation is
to use tA = λA/2, where λA are the Gell-Mann matrices. The gluons lives in the adjoint
representation (TA)BC = −ifABC .

The Lagrangian (3.1) is invariant under the SU(3) gauge symmetry

q → q = exp
{

igθATA
}
q (3.3)

and leads to the vertices and propagators shown in figure 3.1. Note that quarks, as
charged leptons, also couple to the photon and the Z boson in the SM. Moreover, the
Higgs mechanism in the electroweak theory will give mass to the quarks. However, the
Higgs effect only accounts for a small fraction of the total mass of the hadrons, but this
will not be discussed here. The SU(3) symmetry implies that no colour are physically
preferred.

By convention, the normalisation tr
{
tAtB

}
= TRδ

AB with TR = 1/2, is used. Two
important immediate consequences of an SU(N) symmetry and the chosen normalisation
are

∑
A

tAabt
A
bc = N2 − 1

2N δab ≡ CF δik, (3.4a)

tr
{
TCTD

}
=
∑
A,B

fABCfABD = NCAδ
CD ≡ CAδ

CD, (3.4b)

where tA and TA are the generators for the fundamental and adjoint representation,
respectively. In the case of SU(3), we have CF = 4/3 and CA = 3.

3.2 Light quark symmetries
There are several symmetries associated with the QCD Lagrangian. This includes the
imposed local gauge invariance that is responsible for renormalisability, as well as charge
conjugation, parity and time reversal invariance in agreement with experiments. In ad-
dition there are some approximate symmetries, such as isospin, that are related to the
quark generations and masses. These are important as they provide simple relations even
when perturbation theory is not applicable.

The two lightest quarks, the up quark with mass mu ' 2.3 MeV and down quark
with mass md ' 4.8 MeV, are much lighter than the charm (mc ' 1.3 GeV), strange

1The colour-singlet would interact with colourless states, but no long-range gluon interactions with
hadrons, which are colourless, have not been observed.
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C, γ

A, α

D, δ

B, β

−ig2
s

[
fEACfEBD

×(ηαβηγδ − ηαδηβγ) + c.p.
]

p

r

q
A, α

B, β

C, γ

−gsfABC [ηαβ(p−q)γ+c.p.]

b, i

A, α

c, j

−igs (γµ)ij
(
TA
)
ij

−iηαβδAB/ (p2 + iε) s

p
A, α B, β

iδab/(/p−m+ iε)ji

p
a, i b, j

Figure 3.1: Feynman rules for QCD in the Feynman gauge for gluons (curly lines) and
quarks (solid lines). The abbreviation c.p. refers to circular permutations of
the indices of the external legs.

(ms ' 95 MeV), top (mt ' 173 GeV) and bottom (mb ' 4.2 GeV) quarks. As we will see
shortly, this leads to an approximate invariance. In the limit of equal light quark masses,
mu = md ≡ mq, the part of the Lagrangian (3.1) including the u and d fields can be
written as

Lq = q̄(iγµDµ +M)q, (3.5)

where we introduced the notation q = (u d)T for the quark fields and Mij = mqδij is the
mass matrix. This Lagrangian is invariant under U(2) = U(1)⊗ SU(2) symmetry, where
U(1)V is the quark number symmetry originally present, while the SU(2)V symmetry is
the isospin symmetry. In analogy to spin S, the quarks can be assigned an isospin I, which
is a vector in an abstract isospin space. The up and down quarks are described as two
isospin states of the same particle by the ket vectors u = |1/2, 1/2〉 and d = |1/2,−1/2〉.
All other particles are assigned isospin zero for consistency.

The proton consists of two up-quarks and one down-quark, while the neutron consists of
one up-quark and two down-quarks. Naturally, the approximate isospin symmetry implies
that the proton and neutron can to a good approximation be regarded as two states of a
single particle called the nucleon. Historically, this was proposed by Heisenberg after the
discovery of the neutron in 1932 [44]. He observed that the neutron was nearly identical
to the proton apart from the charge: the neutron mass mn = 939.57 MeV is astoundingly
close to the proton mass mp = 938.27 MeV. As before, the proton and neutron can be
described by the ket vectors |1/2, 1/2〉 and |1/2,−1/2〉, respectively. Note again that
isospin is, opposed to spin, by no means an exact symmetry, but it describes well that
the neutron and proton are nearly indistinguishable by the strong force.
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Approximate symmetries are the origin of many of the characteristics one observes
in mesons and baryons. In the limit of massless up and down quarks, the approximate
isospin symmetry becomes even larger: a chiral SU(2) symmetry. However, this symmetry
is spontaneously broken into the SU(2)×U(1)V symmetry discussed above. The associated
Goldstone bosons are identified as the three pions π± and π0. Since this is only an approx-
imate symmetry, these are not massless as one would expect from a broken symmetry, but
are in fact much lighter than the other hadrons. In the same manner, the approximate
SU(3) symmetry of the up, down and strange quark leads to the octet and decuplet flavour
classification of the mesons and baryons, respectively. As before, in the limit when these
are massless, one obtains an SU(3) chiral symmetry that is spontaneously broken. The
associated Goldstone bosons corresponds to the octet π±, π0, K±, K0, K̄0 and η, which
incidentally are the lightest hadrons. For heavier quarks, there are other approximate
symmetries that can be exploited, but this will not be discussed here.

3.3 Asymptotic freedom and the QCD scale
A quite distinct feature in QCD is known as asymptotic freedom. This describes how the
strong coupling constant decreases as the four momentum transfer Q increases. Thus,
quarks and gluons behaves as free particles at large energies, while they are confined
as hadrons at low energies, meaning that for sufficiently large momentum transfers, one
can perform ordinary perturbation theory. The running coupling is determined by the
renormalisation group equation

µ2∂αs
∂µ2 = β(αS) = −b0α

2
s − b1α

3
s − b2α

4
s + · · · , (3.6)

where αs = g2
S/4π is the strong coupling constant and µ is the renormalisation scale. It

can be noted that the coefficients b2, b3, ... are dependent on the renormalisation scheme.
For simplicity, we will only consider the one-loop β-function coefficient given by b0 =
(11CA− 2nf )/12π = (33− 2nf )/12π, where nf is the number of active quark flavours. In
the SM, nf ≤ 6 meaning that b0 > 0. Integrating equation (3.6) at one-loop from µ0 to
Q yields

αs(Q2) = αs(µ2
0)

1 + αs(µ2
0)b0 ln(Q2/µ2

0) . (3.7)

Evidently, αs decreases for increasing Q2/µ2
0.

In an alternative approach, a dimensionful parameter can be introduced directly into
the definition of the coupling constant αs. This parameter, denoted as ΛQCD, is defined
via the integral

ln Q2

Λ2
QCD

= −
∫ ∞
αs(Q2)

dx
β(x) , (3.8)
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That is, it is defined such that the coupling constant becomes strong close to Q2 =
O(Λ2

QCD). The QCD scale has a numerical value ΛQCD ∼ 200 MeV ∼ R−1
p (Rp being the

proton size), but the exact number depends on the chosen renormalisation scheme and
must be determined by experiments. For example, in the MS-scheme with three quark
flavours it is Λ(3)

MS ∼ (332 ± 17) MeV and with six Λ(6)
MS ∼ (89 ± 6) MeV [14]. At one-loop

(3.8) yields

αs(Q2) = 1
b ln

(
Q2/Λ2

QCD

) . (3.9)

Since perturbation theory rely on the assumption αs � 1, one must require that Q2 �
Λ2

QCD in order to use it. As we will see soon, the QCD scale is often used to represent the
scale at which hadronisation must occur.

3.4 Monte Carlo event generators
Even before the development of QCD, it was noticed that the hadrons behave at large mo-
mentum transfer as if they consist of a number of point-like massless particles. These were
called partons, and are today associated with the gluons and quarks. Due to asymptotic
freedom and confinement, we know that quarks cannot propagate freely on macroscopical
time and distance scales. Thus, after a process such as e+e− → q̄q, these free quarks must
produce other quarks and gluons in order to be able to hadronise. In this section, we will
first compute the amplitude for a parton branching before describing the evolution of a
parton shower and hadronisation.

3.4.1 Parton branching
Consider a time-like branching of a parton a into a pair bc as shown in figure 3.2. Let
kµi = (Ei,ki) be the four-momentum of parton i and t ≡ kµakaµ � {k

µ
b kbµ, k

µ
c kcµ} > 0 in

the small angle approximation θ = θb+θc � 1. Note that t is a measure of the virtuality of
the particle. In branching, the virtuality will decrease until one has to stop at t ∼ Λ2

QCD,
where non-perturbative effects become important. In a space-like branching, on the other
hand, the virtuality decreases from −t until it reaches a chosen cut-off scale −Q2. Let
z ≡ Eb/Ea = 1 − Ec/Ea be the energy fraction taken by parton b. The virtuality can
then be written as

t = 2EbEc(1− cos θ) ≈ z(1− z)E2
aθ

2, (3.10)

and thus, using conservation of transverse momentum (θbEb = θcEc), the opening angle
can be written as

θ = 1
Ea

√
t

z(1− z) = θb
1− z = θc

z
. (3.11)
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In order to continue, one has to fix the vertex type. As an example, we will consider
the three gluon vertex Vggg. By using the vertices introduced previously in figure 3.1, one
finds

Vggg = igfABCεαaε
β
b ε

γ
c [ηαβ(ka − kb)γ + ηβγ(kb − kc)α + ηγα(kc − ka)β] . (3.12)

The polarisation vectors can be fixed by assuming that the three gluons are approximately
on the mass shell, kµi kiµ ≈ 0, in which case the polarisation vectors can be chosen trans-
verse to the momenta, kµi εiµ = 0. It is convenient to split them into a part parallel to the
plane of branching (in the plane of figure 3.2), εin

i , and a part transverse to the plane of
branching, εout

i .

kµa

kµb

kµc

θb

θc

Figure 3.2: Setup for the branching of a parton in the plane of branching.

Assume that the amplitude after n splittings, An, is known. The goal is to compute
the amplitude after n+1 splittings. Using the gluon propagator ∝ 1/t between the graph
contained in An and the g → gg branching, one finds

|An+1|2 =
∣∣∣∣Vgggt An

∣∣∣∣2 ≈ 4g2

t
CAF (a, b, c; z)|An|2, (3.13)

where CA = 3 was defined in equation (3.4b) and the non-zero and allowed combinations
of polarisation vectors in the function F (εa, εb, εc; z) are

F (εin
a , ε

in
b , ε

in
c ; z) = 1− z

z
+ z

1− z + z(1− z) (3.14a)

F (εin
a , ε

out
b , εout

c ; z) = z(1− z) (3.14b)

F (εin
a , ε

in
b , ε

out
c ; z) = 1− z

z
(3.14c)

F (εout
a , εout

b , εin
c ; z) = z

1− z , (3.14d)

where the θ-dependences have been written in terms of z using equation (3.11). Note
that the contribution to the total amplitude near the poles at z = 0 (particle b is soft)
and z = 1 (particle c is soft) is always associated with the emission of a gluon with a
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polarisation in the plane of branching. The amplitude will thus dependent on the angle φ
between the polarisation εa and the plane. However, this contribution may be neglected as
it is small and fades out after several splittings. Averaging CAF (z) over the polarisations
yields the unpolarised splitting function

Pgg(z) = CA
1
2
∑
εa

∑
εb,εc

F (εa, εb, εc; z) = CA

[1− z
z

+ z

1− z + z(1− z)
]
. (3.15)

The unregularised splitting functions for the processes g → qq̄ and g → gq can be
derived in the same manner as above. The results are

Pqg(z) =
[
z2 + (1− z)2

]
and Pgq(z) = CF

1 + z2

1− z , (3.16)

where CF = 4/3 and TR = 1/2.
The final-state with n partons has a phase space dΦn ∝ d3ka//((2π)32Ea) and

should after the branching be replaced by the phase space dΦn+1 ∝ d3kb/((2π)32Eb) ×
d3kc//((2π)32Ec). Since kc = ka− kb and d3kc = d3ka for fixed kb, we obtain in the small
angle approximation, after the change of variables {Ec, θc} → {z, t},

dΦn+1 = dΦn
1

4(2π)3 dt dz dφ . (3.17)

The cross section is given by dσn ∝ |An|2 dΦn. Thus, performing the φ-integral yields

dσn+1

dσn
= dt

t
dz αs2πPi→j. (3.18)

This equation describes the probability density for an emission of an additional parton
with virtuality t and fractional energy z. In the considerations above, it was assumed
that the process was time-like, but the same results are obtained for a space-like process.

3.4.2 Evolution equation and Monte Carlo schemes
Consider now the effect of multiple branchings. The goal is to determine an equation that
describes how the number density fi(x, t) of partons of type i with a given energy fraction
x changes by the parton branching from t to t + δt. In a space-like process (tn+1 > tn
and xn+1 < xn), the quantity fi(x, t) represents the parton momentum distribution inside
the hadron probed by, for example, a photon at a scale q2 = −Q2. In a time-like process
(tn+1 < tn and xn+1 > xn), fi(x, t) represents the momentum distribution of produced
partons. The time-like process can, after the addition of a hadronisation model, be used
to study a process like e+e− → hadrons, or even the production of hadrons from DM
annihilations.
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For concreteness, consider a space-like evolution of a single type of branching, such
as multiple gluon emission from a space-like quark inside a hadron. At each branching,
the quark emits a virtual gluon, which eventually decreases its virtuality from −t0 to a
chosen scale −Q2. The change δf is given by the difference in the number of (x, t)-paths
entering and leaving the element (δx, δt) divided by δx, as indicated in figure 3.3. The
number of paths entering the element is found by integrating the branching probability
(3.18) multiplied by the parton density over all higher energy fractions x′ = x/z. This
yields

δfin(x, t) = δt

t

∫ 1

x
dx′ dz αs2πP (z)f(x′, t)δ(x− zx′) = δt

t

∫ 1

0

dz
z

αs
2πP (z)f(x/z, t), (3.19)

where the lower limit of the z integration could be extended from x to 0 since f(x/z) = 0
for z < x. The number leaving the element, δfout, is found in the same manner by
integrating instead over all lower energy fractions x′ = xz. The net change is in turn

δf(x, t) = δfin − δfout = δt

t

∫ 1

0
dz αs2πP (z)

[1
z
f(x/z, t)− f(x, t)

]
. (3.20)

The splitting functions (3.15) and (3.16) are known as unregularised splitting functions
due to the poles at z = 1 (and z = 0). These IR divergences can be taken care of by
introducing the “plus prescription”

∫ 1

0
dx g(x)

x− 1+
≡
∫ 1

0
dx g(x)− g(1)

x− 1 (3.21)

at x = 1 and compute the regularised splitting functions as P̂ (z) = P (z)+. The reg-
ularised splitting functions P̂ (z) are thus equal to the unregularised splitting functions
P (z) everywhere except at z = 1. With this prescription, the evolution equation may be
written as the differential equation

t
∂f(x, t)
∂t

= αs
2π

∫ 1

x

dz
z
P̂ (z)f(x/z, t), (3.22)

known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation. The gener-
alisation including several types of partons is found by including a sum over all different
parton distributions. The initial values of f at [x, 1] and a scale t0 must be fixed through
experimental data. These depend on the probed hadron, but are process independent.
For instance, one may determine fpi (x, t) for a proton from a mixture of pp and e−p col-
lisions, and in turn apply this to neutrino-nucleon scattering. The DGLAP equation is
the same in a time-like process, but the boundary conditions and evolution direction is
changed. In this case, the virtuality decreases until it reaches a chosen cut-off t0 ∼ ΛQCD,
at which non-perturbative effects becomes important.
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xn

tn tmax

1

Figure 3.3: The evolution of two possible paths (x, t). Both paths are entering and leaving
the element (δx, δt).

The DGLAP equation has a probabilistic interpretation, and can thus be solved using a
MC approach. This method is preferred since it is more flexible compared to a numerical
integration and allows the addition of hadronisation models and experimental cuts. A
MC scheme can be found by introducing the so-called Sudakov form factor,

∆(t) ≡ exp
{
−
∫ t

t0

dt′
t′

∫
dz αs2πP (z)

}
, (3.23)

to the evolution equation (3.20), which after integration can be written as

f(x, t) = ∆(t)f(x, 0) +
∫ t

0

dt′
t′

∆(t)
∆(t′)

∫ dz
z

αs
2πP (z)f(x/z, t′) (3.24)

The first term is the contribution from (t, x)-paths that do not branch between 0 and t.
The factor ∆(t) can thus be interpreted as the probability of evolving the system from 0
to t without branching. Likewise, the factor ∆(t)/∆(t′) represents the probability for a
parton to not branch. Due to the 1/t singularity, a cut-off t0 must be introduced. This IR
cut-off serves as a regulator to the splitting functions, zmin =

√
t0/t and zmin = 1−

√
t0/t,

and boundary to the non-perturbative regime at t0 � ΛQCD. Furthermore, the different
branches can be taken into account by summing over all possible splitting functions, in
which case the Sudakov form factor (3.23) becomes

∆i(t) ≡ exp

−∑
j

∫
t0

dt′
t

∫ zmax

zmin

αs
2πPji(z)

. (3.25)

Everything is now set to create a simple MC scheme. Consider a time-like cascade. For
each step (tn, xn)→ (tn+1, xn+1), the equation

r = ∆(tn)
∆(tn+1) (3.26)
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is solved for tn+1, where the quantity r is a random number chosen from an uniform
distribution r ∈ [0, 1]. If tn+1 is smaller than the cut-off t0 the cascade stops. Otherwise,
the branching type and energy fraction z = xn+1/xn must be determined according to the
probability distribution αsPij(z) (eqs. (3.16) and (3.15)). This process is continued until
the cascade stops.

The discussions in this section have described the development of a simple MC scheme
that computes a parton shower without any angular ordering. However, the angular dis-
tribution of the final product is often needed. This can be found by considering coherence
effects, which effectively replaces the propagator factor dt /t by dζ /ζ, where ζ ≈ 1− cos θ
is the new evolution variable. The azimuthal angle φ should in general take into account
the polarisation corrections discussed earlier.

3.4.3 Hadronisation models
The result after a time-like parton shower is a set of partons with virtualities around the
chosen cut-off t0. At this point one reaches a long distance and low momentum transfer
regime where non-perturbative effects becomes important. The most important effect is
hadronisation, which at present cannot be deduced from first principles and a phenomeno-
logical model must thus be employed. Here, we will discuss the main assumptions and
properties in some models.

Consider first a pure phenomenological model. Let a set of fragmentation functions
fhi (z, t0) describe the probability that a that a parton i with an energy E creates a
hadron h with an energy zE. The functions fhi (z, t0) can in principle be determined from
experiments. Let Di(x,

√
s, t0) denote the parton spectra obtained after a perturbative

time-like parton shower from t ∼
√
s to t0. The hadron spectra, Dh(x,

√
s), can in this

case be found by multiplying the parton spectra Di by the fragmentation functions fhi
under the constraint x = x′/z, analogous to (3.19). The result is

Dh(x,
√
s) =

∑
i=q,g

∫ 1

x

dz
z
Di(x/z,

√
s, t0)fhi (z, t0). (3.27)

This is a simple example of a so-called independent hadronisation. As an alternative, one
can develop models that capture basic properties of QCD, such as asymptotic freedom
and confinement. Two examples of such classes of models are cluster hadronisation and
string hadronisation.

Cluster hadronisation is based on the idea of pre-confinement. That is, it is assumed
that the parton spectra after the shower are distributed in colour-singlet clusters of par-
tons. These clusters will in turn decay into observed hadrons. Note, however, that the
state after the parton shower consists mostly of gluons. Perhaps the simplest method of
creating such colour-singlet clusters is to force a splitting g → qq̄ as an intermediate step.

String hadronisation often refer to the Lund model, but is in truth a class of models with
the same starting point. The potential between an oppositely coloured quark-antiquark
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pair is assumed to attractive. Lattice QCD calculations indicates that V (r) ≈ κr at large
distances. Thus, the force lines due to colour confinement are concentrated in narrow
tubes that can be viewed as a string with a tension κ that pulls the pair together. The
string models use this string to describe the hadronisation process. Consider as an example
the simple process e+e− → qq̄. If other interactions are neglected, the distance between
the quark-antiquark pair will oscillate harmonically. However, what occurs instead is
that a new quark-antiquark pair is created such that two colour-singlet states (qq̄)(qq̄) are
formed.

Both the cluster and string hadronisation are theoretically well motivated, but includes
a large number of assumptions and parameters needed to model the final momentum
distributions of the produced mesons and baryons. The models must thus be calibrated
to experimental data. At the end, it is difficult to determine which model is the best one.

3.4.4 Event generators
In this thesis we will be using an event generator to model the antiproton and antineutron
spectra resulting from particle collisions. These nucleons will in turn be used to study the
formation of antideuteron, antitritium and antihelium-3. This chapter has described the
main principles utilised when estimating the particle production in a particle collision,
and we are now ready to give a general overview of the calculations performed by the
event generator. As an example, consider an e−e+ collision at the Z resonance with a
hadronic decay. A simplistic overview of this process is shown in figure 3.4. The initial
process e+e− → Z → qq̄ is computed using perturbative QFT to a fixed order, and the
relative cross sections for the possible output particles q = {u, d, c, s, b} are computed.2
In each event, the event generator picks out the output particles based on the relative
cross sections in a MC fashion. The event generator performs next a time-like parton
showering as described in section 3.4.2. Finally, a hadronisation scheme is performed on
the final partons. At the end, one can add decay of short-lived particles.

There exists a vast number of MC event generator, each with its own special area of
expertise. We will be using Pythia 8 [45, 46], which is specialised to lepton-lepton, hadron-
hadron and hadron-lepton collisions at energies 10 GeV .

√
s . 100 TeV. Pythia includes

the branchings q → qg, g → gg, g → qq, q → qγ and l → lγ, where l is a lepton. Loop
calculations are usually performed to leading order with higher order corrections provided
by initial state showering. Hadrons, for example, can be viewed as a cloud of partons such
that a hadron-hadron collision is influenced by multiple scatterings between the partons
in the parton clouds. This hard process is described by a space-like showering. In turn,
a time-like showering follows, as described above. Similarly, a lepton may be viewed as
if it is surrounded by photons and partons. In any case, the process e+e− → Z/γ∗ → qq̄
is in Pythia also implemented with second order loop calculations including QCD matrix

2The top quark has a mass that is much larger than mZ , and does not contribute.
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Figure 3.4: A simplistic overview of one event of the process e+e− → Z → qq̄ → hadrons
in a MC event generator.

elements. Finally, the hadronisation scheme in Pythia is based on string fragmentation.
Note that there are three characteristic time and distance scales in the process XY →

hadrons [47]. The annihilation during the hard process occurs on the time-scale tann ∼
1/
√
s. Thus, this time is suppressed at large energies

√
s � Λ2

QCD. Thereafter the
process proceeds with parton branchings with characteristic momentum transfers |q2| �
ΛQCD and stops when the virtuality is t ∼ few × ΛQCD. Therefore, the longitudinal
proper distance scales are smaller than Λ−1

QCD. This means that the longest time and
distance scales are related to the hadronisation process, which occurs on the order Lhad ∼
RhadEhad/mhad = γRhad, where Rhad is the hadronic size.
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4 Coalescence

The standard (anti)nucleus formation model used when computing cosmic ray (anti)nuclei
yields is the so-called coalescence model, first proposed by Schwarzschild and Zupančič in
1962 [5]. In the coalescence model, all nucleons within a sphere of radius p0 in momentum
space coalesce and form a nucleus. The nuclei are thus formed from a set of nucleons that
have nearly completed their formation. Traditionally, the production of nuclei with mass
number A and electronic charge Z is parametrised by

EA
d3NA

dP 3
A

= BA

(
Ep

d3Np

dP 3
p

)Z (
En

d3Nn

dP 3
n

)A−Z ∣∣∣∣∣∣
Pp=Pn=PA/A

, (4.1)

where Ei d3Ni/dP 3
i denotes the invariant yield and BA is known as the coalescence pa-

rameter [5, 6]. The physical interpretation of BA is debated. For example, in e+e− and
DM annihilations, and pp collisions one typically imposes the coalescence condition in
momentum space, requiring that the momentum difference between two nucleons in their
centre-of-momentum (CoM) frame is less than a given value p0, known as the coalescence
momentum. It is assumed that all microphysics, such as spin and isospin, is contained
in p0. In the approximation of isotropic nucleon yields, the coalescence momentum is
connected to BA by

BA = A

(
4π
3

p3
0

mN

)A−1

. (4.2)

This will be called the spectral model in this text and will be discussed further in section
4.1.1. The coalescence scheme can be improved by including two-particle correlations
provided by a MC event generator on an event-by-event basis. This will be called the MC
approach and will be discussed in section 4.1.2. Due to the lack of a microphysical picture,
the parameter p0 is a free parameter that must be calibrated by experimental data, as
will be done in section 4.2 with emphasis on the MC approach. Some alternatives to the
coalescence model will be discussed in section 4.1.3.

Note that the discussions of the formation models in principle apply equally well to
particles as to antiparticles, and the prescription ‘anti’ is thus dropped.
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4.1 Existing coalescence models

4.1.1 Spectral model
Consider the coalescence of a proton and a neutron with four momenta kµp and kµn, respec-
tively, into a deuteron with four momentum kµd = kµp + kµn. Due to the low binding energy
of the deuteron, Eb = 2.2 MeV, the deuteron can be assumed to be at rest in the CoM
frame of the nucleons, which we will call the deuteron (or nucleus) frame. The CoM frame
of the incident particles in the particle beam will be called the lab frame. Furthermore,
energy and momentum conservation is assumed, although there is in reality some excess
energy due to the binding energy of the deuteron that is carried away by e.g. a photon. It
is convenient to further assume that md = 2mp = 2mn. The spectral model in the context
of cosmic ray antinuclei is discussed in e.g. Refs. [1, 7, 48, 49] and references therein.

In the coalescence model, the probability that a given proton and neutron pair coalesces
is given by the probability that the neutron is within a distance p0 of the proton in the
deuteron frame. The parameter p0 is generally small and the particles are thus assumed
to be in the same Lorentz frame. However, the Lorentz transformation between the lab
frame and the CoM frame cannot be neglected and will be treated later. Let d3Ni/dk3 be
the non-relativistic number density of nucleon i in the deuteron frame. When assuming
that the proton and neutron momenta are uncorrelated, the deuteron spectrum can be
written as

d3Nd

dk3
d

= d3Np

dk3
p

∫
d3k

d3Nn

dk3
n

Θ
(
k2 < p2

0

)
= 4πp3

0
3

d3Np

dk3
p

d3Nn

dk3
n

.

(4.3)

In the second step it was further assumed that the number density of the neutron around
the proton is spherically symmetric and that it is approximately constant. The latter is
true since p0 in general is small.

In order to compare to experiments, the expression (4.3) must be transformed to the
lab frame. This can be achieved by considering the Lorentz invariant quantity d3k /E.
According to equation (A.12), one finds

d3k′ = E

E ′
d3k = γ

1 + vkx√
m2
i + k2

 dkx , (4.4)

where v < 1 is the velocity of the deuteron in the lab frame. The second term in the
parentheses can be neglected since only nucleons with a small momentum in the deuteron
frame will coalesce.1 The relation between the number densities in CoM and lab systems

1The term is always smaller than p0/
√
p2

0 +m2
i ∼ 0.1 since kx ≤ p0 ∼ 0.1 GeV� mp.
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becomes (
d3Ni

dk3
i

)
k=0

= γi

(
d3Ni

dk′i3

)
k′i

, (4.5)

where γi is the Lorentz factor of the deuteron frame relative to the lab frame. Each of
the three number densities in equation (4.3) will thus receive a factor γ. By dropping the
primes, one arrives at the expression

d3Nd

dk3
d

= 1
8

4πp3
0

3 γ

(
d3Np

dk3
p

)
kp= kd

2

(
d3Nn

dk3
n

)
kn= kd

2

, (4.6)

where the momenta ki and the densities d3Ni/dk3
i are given in the lab frame. The extra

factor 1/8 is added so that p0 is interpreted as the momentum difference of the nucleons.
By comparing with equation (4.1) with A = 2 and Z = 1, one obtains the coalescence
parameter (4.2). The generalisation to larger nuclei is straight forward.

It is often convenient to express the coalescence model in terms of an expression of
the energy spectrum. This can be achieved by using the assumption that the spectra are
isotropic, (

d3Ni

dk3
i

)
ki

= 1
4πk2

i

(
dNi

dki

)
ki=|ki|

. (4.7)

We will be expressing the energy spectrum in terms of the kinetic energy T = E − m.
The previously used approximations mp = mn = 2md and kp̄ = kn̄ = kd̄/2 imply
Tn = Tp = Td/2. By expressing the Lorentz factor γ by the kinetic energy T , equation
(4.6) can be written as

dNd

dTd
= p3

0
4md

1√
T 2
d + 2mdTd

(
dNn

dTp

)
Tp= Td

2

(
dNn

dTn

)
Tn= Td

2

, (4.8)

which is the final expression for the deuteron energy spectrum.
The spectral model is expected to be inaccurate and qualitatively wrong for several

reasons [7]. Consider for example the W+W− annihilation channel of a DM particle
χ. If the mass of the DM particle mχ increases, the boost of the W±, and thereby
the antideuterons, will increase. The final particles will thus be concentrated in two
jets in opposite directions, making the final energy spectrum highly non-spherical. The
isotropy approximation is therefore expected to be invalid. Moreover, the particles will
be concentrated in QCD jets, increasing the probability that a given pair coalesce. The
approximation of uncorrelated nucleons may also over-estimate the deuteron production
by neglecting the anti-correlation between the protons and neutrons. For example, a
proton that originates from W+ and a neutron from W− may coalesce in the spectral
model, but this process should be highly suppressed. Lastly, one can note that that
deuterons should only form if there are at least one proton and one neutron in the final
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state. At low beam energies, this leads to a reduced available phase space volume that
can be taken into account by introducing an energy dependent correlation factor Rn [50].
In this text, we will only consider experiments with

√
s & 70 GeV and Rn can thus be

neglected. In order to take the aforementioned effects into account, coalescence should be
checked per-event within the MC.

4.1.2 Monte Carlo approach
In the MC coalescence approach, first used by Kadastik et al. in 2010 [7], the coalescence
condition is checked per-event within the MC. As before, we start by considering the
coalescence of deuterons. In this approach, a proton and neutron merge if their relative
momentum difference is less than p0 in the deuteron frame.2 All pairs fulfilling this
condition will thus form a deuteron with energy Ed = Ep + En and momentum kd =
kn + kn. Let from now on the subscript ‘d’ indicate that the quantity is evaluated in
the deuteron frame. This frame is characterised by kp,d = −kn,d, which implies that the
coalescence condition can be expressed as

∆k = 2|kp,d| = 2
√
E2
p,d −m2

p < p0. (4.9)

In the event generator Pythia 8, all output quantities are given in the lab frame, and in
order to evaluate the coalescence condition (4.9), the quantities must be transformed to
the deuteron frame. One method to achieve this is to re-express the coalescence condition
in terms of a Lorentz invariant quantity. We will be using the Mandelstam variable
s = (Ep +En)2 − (pp + pn)2 defined in equation (A.10). The energy of the proton in the
deuteron frame can thus be expressed in terms of s as (see equation (A.11))

Ep,d =
s+m2

p −m2
n

2
√
s

. (4.10)

In essence, the coalescence condition can be evaluated by computing s in the lab frame
and then using equation (4.10) and (4.9). In each event there is a chance that there is
more than one proton-neutron pair that fulfils the coalescence criteria. However, this can
in most cases be neglected.

There are three main problems with the MC approach: it is phenomenological, clas-
sical and includes only the separation of the nucleons in momentum space. Most event
generators, such as Pythia 8 used here, do not model the space-time structure result-
ing from the showering and hadronisation. Nonetheless, in 2013 Ibarra and Wild [51]
noted that the spatial separation should also be taken into account: the nuclear forces
and interactions that are responsible for the binding of the deuteron have a range in the

2Alternatively, one may require that the invariant momentum difference is less than p0. These methods
is equivalent in the limit of equal nucleon masses mp = mn.
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order of a few femtometre, while weakly decaying particles may have microscopic decay
lengths. The nucleons produced from weakly decaying particles will therefore be too far
from the primary interaction to be able to coalesce with nucleons produced in the hadro-
nisation process or from other weak decays. They therefore excluded decaying particles
with proper lifetimes τ < 1 mm, which in consequence neglected the contribution from
antinucleons produced in weak decays such as from Λ̄+ and Σ̄±. Fornengo et al. [52]
implemented as an alternative the condition that only nucleons produced within a spatial
region ∆r < 2 fm of the primary interaction would be able to coalesce, which in principle
is a more physically correct approach.3 However, the difference between the two models is
small [8]. In Pythia 8 the treatment by Ibarra and Wild is nearly equivalent to excluding
nucleons from decays with a non-zero decay length as only non-zero lifetimes that are
relevant for displaced vertices in collider experiments are stored in the event table. In
other words, there is only a small difference in requiring τ = 0 mm instead of τ < 1 mm
in Pythia 8. This treatment will be adopted in the computations in this thesis.

There are two obvious methods to generalise the per-event coalescence model to helium-
3 and tritium. One can require that each of the relative momenta lie within a sphere with
radius p0 in momentum space, or require that the absolute momentum difference between
each particle pair is less than p0 [53, 54]. The latter will be used here.

4.1.3 Alternative models
In heavy ion collisions the coalescence parameter BA in equation (4.1) is usually defined
in terms of the emission region V of hadrons from the expanding clouds of partons, giving
BA ∝ V A−1. Reference [55] developed a model which describes the coalescence parameter
in terms of a dynamical interaction volume parametrisation that can be fixed using the
same hadronic emission volume which is probed by Bose-Einstein two-particle correlation
spectrometry.4 This treatment has recently been used to study cosmic ray antideuterons
in order to obtain a process dependent coalescence parameter in pp collisions [56]. As
will be seen in the next section, the coalescence momentum p0 (and thus also BA) still
depends on amongst other the hadronisation model and beam energy

√
s, implying that

this model still should be tuned for each analysis. Recently, p0 has been fitted to data
on antideuteron production from proton-nucleus collisions using an empirically energy
dependent parametrisation in order to reproduce the large differences in p0 [57]. One can
note that this has not been discussed for e+e− annihilations, which one expects to be
more similar to DM annihilations.

Few per-event alternatives to the coalescence model exist. Dal and Raklev [58] pro-
posed a model where a deuteron is produced by a nucleon pair N̄1N̄2 with an invariant

3This condition can be implemented by neglecting the decay of particles with a momentum large enough
that it would travel a distance of 2 fm before decaying.

4The model is based on a quantum mechanical density matrix approach with the same starting point
as we use when developing a new per-event coalescence model in the next chapter.
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4 Coalescence

momentum difference ∆k in a stochastic process N̄1N̄2 → d̄X. The probability that a
process occurs is assumed to be proportional to the normalised cross section of the pro-
cess, P (N̄1N̄2) = σN̄1N̄2→d̄X(∆k)/σ0, where σ0 is set as a free parameter. At low ∆k the
relevant process is the radiative capture p̄n̄ → d̄γ, which is approximately the same as
the slow nucleon capture process p̄n̄ → d̄∗ considered in the coalescence model. In this
alternative model, however, the antideuterons are mainly produced in resonant processes
around the delta-resonance at ∆k ∼ 1 GeV. The authors noticed amongst other a signif-
icantly improved fit to the pp collision data from the ALICE experiment [9] discussed in
section 4.2.2.

4.2 Calibration of the coalescence momentum
In order to get consistent results and check the consistency of different models, we calibrate
p0 to existing experiments for Pythia 8 rather than quoting an existing result. This will
also help in the comparison with the development of a new model, which is the main focus
of this thesis.

The coalescence model has one free parameter, the coalescence momentum p0, which
needs to be calibrated to existing experimental data due to the lack of a microscopic
understanding of the model. In order for the coalescence model to be predictive, p0
should be independent of the reaction type and CoM energy

√
s. However, different data

sets give different values for p0. A value between 133 to 236 MeV is often quoted in
the literature for Pythia [8, 51]. Moreover, different event generators, such as Herwig++,
Pythia 6 and Pythia 8, gives different results [59, 60]. Here we will also show that different
versions of Pythia 8 may yield different results.

The coalescence parameter should be the same for nuclei and antinuclei. In fact, data
from the ALICE collaboration indicates that the deuteron and antideuteron data yields
consistent calibration [58]. Thus, existing and new data on deuteron production can be
used to calibrate the coalescence models. Nevertheless, we will only consider the pro-
duction of antinuclei, which removes possible background noise and secondary remnants.
Furthermore, we will only consider e+e− annihilations and pp collisions, which are the
two most important astrophysical processes related to cosmic ray antideuteron and anti-
helium. The former is expected to be similar to DM annihilations, while the latter gives
the main contributions to the secondary antiparticle fluxes. This will be discussed in
chapter 6.

4.2.1 Electron-positron annihilation
The ALEPH experiment at the Large Electron-Positron Collider measured the deuteron
and antideuteron production in e+e− collisions at the Z resonance. The production rate
of antideuterons was measured to be (5.9± 1.8± 0.5)× 10−6 per hadronic Z decay in the
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4.2 Calibration of the coalescence momentum

Table 4.1: The calibrated values of p0 to the ALEPH experiment for the spectral model
and the Monte Carlo approach with and without the spatial cut-off ∆τ = 0.
The statistical and systematic errors in the experimental data were added in
quadrature.

Model / p0 [MeV] Pythia 8.186 Pythia 8.230

MC 164+16
−19 177+17

−22

MC∆τ 196+19
−24 214+21

−26

Spectral 127+15
−12 132+16

−13

Table 4.2: Calibration comparison to other authors using Pythia.

Reference (Pythia version) MC MC∆τ Spectral

Delahaye and Grefe [49] (6.4) 173+18
−19 MeV 203+20

−25 MeV 141+14
−16 MeV

Fornengo et al. [49, 52] (6.4) 180± 18 MeV 195± 22 MeV 143 MeV
Kadastik et al. [7] (8.1) 162± 17 MeV - -
Ibarra and Wild [51] (8.1) - 192± 30 -

antideuteron momentum range from 0.62 to 1.03 GeV and a production angle θ satisfying
| cos θ| < 0.95 [10]. The first uncertainty is the statistical and the second is the systematic,
which we add in quadrature.

In order to calibrate p0 to this experiment, the e+e− collisions at Z resonance with
hadronic decay was reproduced in Pythia 8.230 and Pythia 8.186. About 107 events were
used in the spectral model, while 109 events were used in the MC approach. The final
results for p0 are listed in table 4.1 with and without the spatial cut-off ∆τ = 0. A short
list of the p0 values from other papers are shown in table 4.2 for comparison, which in
all cases are different from the result obtained here. However, note that there are no
values for exactly the same version of Pythia and “spatial cut-off” which may explain the
discrepancy. Note also that there is a significant difference in p0 between Pythia 8.230
and 8.186 which is likely due to calibration and updated experimental values in the event
generator. From now on, only the MC approach will be used.

In a similar experiment performed by the OPAL collaboration [11] at the Large
Electron-Positron Collider, no antideuteron events were detected. Reference [58] notes
that this has previously been neglected in the calibration, but should also be considered.
The measurements was performed in the antideuteron momentum range 0.35 to 1.1 GeV
with an estimated detection efficiency ε = 0.234, which includes the angular acceptance.
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4 Coalescence

The expected number of detected events is

Nd̄ = εNevnd̄,MC, (4.11)

where Nev = 1.64×106 is the number of events accepted by the OPAL analysis and nd̄,MC
is the MC prediction on the number of antideuterons per event. We now follow Ref. [58]
and assume a Poissonian uncertainty σ =

√
Nd̄ for the expected number of events. The

χ2 is in this case given by

χ2
OPAL = (Nobs −Nd̄)2

σ2 = Nd̄. (4.12)

By performing a combined χ2 analysis, we obtain p0 = 201 MeV and χ2/(N − 1) = 3.16
with Pythia 8.230, and p0 = 184 MeV and χ2/(N − 1) = 3.20 with Pythia 8.186. The
latter is consistent with the result in Ref. [58]. From now on, only Pythia 8.230 and the
MC approach will be used.

4.2.2 Proton-proton collision
The ALICE collaboration at LHC measured the invariant differential yields of deuterons
and antideuterons in inelastic proton-proton collisions at centre of mass energies

√
s = 0.9,

2.76 and 7 TeV in the transverse momentum range 0.8 < pT < 3 GeV and rapidity |y| < 0.5
[9].5 Furthermore, the antihelium-3 yield was given for

√
s = 7 TeV. The results were

represented as the invariant differential yield

E
d3n

dp3 = 1
Ninel

1
2πpT

d2N

dpT dy , (4.13)

where E is the energy of the (anti)nucleus, Ninel is the number of inelastic events, N is
the number of (anti)nucleus events and n ≡ N/Ninel. The experiment included a trigger
(V0) consisting of two hodoscopes of 32 scintillators that covered the pseudo-rapidity
ranges 2.8 < η < 5.1 and −3.7 < η < −1.7 used to select non-diffractive (ND) inelastic
events. An event was triggered by requiring a hit (charged particle) on either side of the
V0 trigger.

Pythia 8 can generate inelastic events consisting of single-diffractive, double-diffractive
(DD) and ND events. The minimum bias events selected by the V0 trigger will in prac-
tice also include events that Pythia considers as single-diffractive and DD events. The
corresponding trigger efficiencies for the V0 trigger are summarised in table 4.3 with and
without the lifetime cut-off ∆τ = 0, from which one can deduce that the ND events gener-
ate more than one order of magnitude more triggered events than the DD and ND events.

5Note that a pseudo-rapidity cut |η| < 0.8 was required in the data selection to avoid edge effects, but
the data outside |η| < 0.8 and inside |y| < 0.5 were extrapolated using a MC simulation.
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4.2 Calibration of the coalescence momentum

Table 4.3: Estimated trigger efficiency of the trigger V0 for all types of inelastic events
produced by Pythia 8.230. The values were estimated using eight runs of 107

inelastic events for each τmax and
√
s setting. The uncertainties are given as

the standard deviations resulting from these runs. The last three rows states
the fractions of the different types of inelastic events that occur when inelastic
events are produced (relative cross sections).

√
s / % ND DD SD inel.

0.9 TeV 97.2± 0.0 35.6± 0.1 22.9± 0.1 75.2± 0.0
τmax = 0 2.76 TeV 98.3± 0.0 34.8± 0.0 29.2± 0.0 78.1± 0.0

7 TeV 98.8± 0.0 36.0± 0.1 33.4± 0.0 80.3± 0.0

0.9 TeV 97.8± 0.0 36.9± 0.0 23.5± 0.0 75.8± 0.0
No τmax limit 2.76 TeV 98.7± 0.0 35.9± 0.0 29.7± 0.0 78.6± 0.0

7 TeV 99.0± 0.0 37.0± 0.0 33.8± 0.0 80.7± 0.0

0.9 TeV 68.5± 0.0 11.1± 0.0 20.4± 0.0 100
Relative cross sections 2.76 TeV 69.8± 0.0 11.4± 0.0 18.8± 0.0 100

7 TeV 71.3± 0.0 11.4± 0.0 17.3± 0.0 100

One may thus assume that the deuteron spectrum is governed by the deuterons produced
in ND events, produce pure ND events and then scale the result according to the trigger
efficiencies. This was done by Ref. [58]. From table 4.3, one finds that the final scaling
factors for

√
s = 0.9, 2.76 and 7 TeV are 0.877, 0.879 and 0.885, respectively.6 However,

in order to minimise the uncertainty and reproduce possible phase space distributions
related to the trigger, we will generate inelastic events and check the trigger conditions
per event.7

The result of a χ2-fit of the coalescence model with the MC approach to the ALICE
experiment is listed in table 4.4. In each run, O(108) events where used and all proton-
neutron pairs that fulfilled the coalescence condition were stored. Double counting was
only a concern in 0.61%, 0.94% and 1.36% of the events with a produced deuteron for

√
s =

0.9, 2.76 and 7 TeV, respectively, and can thus be neglected. The fits to the antideuteron
data are shown in figure 4.1. The helium-3 spectrum is plotted in the next chapter.

The p0 value is consistent between the different energies, but the fits to the experimental
data are not very good. There may be two reasons for this. Firstly, the coalescence model

6Note that this differs from the given factors in Ref. [58], since there the trigger efficiencies for Pythia
6 and PHOJET from Ref. [61] are used to estimate the trigger efficiencies for Pythia 8.

7We performed the simulations using the scaling method as well. Using this method p0 = 185, 179 and
178 MeV for

√
s = 0.9, 2.76 and 7 TeV, respectively.
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4 Coalescence

Table 4.4: Results for the p0 calibration to the ALICE experiment.

Experiment p0 [MeV] χ2/(N − 1)

d̄;
√
s = 0.9 TeV 181 7.26/2

d̄;
√
s = 2.76 TeV 174 45.0/6

d̄;
√
s = 7 TeV 176 177/19

d̄; combined 176 229/29
3H̄e;

√
s = 7 TeV 179 1.2/2

may be inaccurate. In the next chapter we will develop a new coalescence model that may
improve this. Secondly, this discrepancy may be due to the event generator. In particular,
one cannot expect that the fit to the nucleus data is better than the corresponding fit
to the nucleon data. In figure 4.2 the combined proton and antiproton yield from pp
collisions at

√
s = 7 TeV estimated by Pythia 8 is compared with the measured spectrum

by ALICE [62]. As can be seen from the plot, there is a large discrepancy at small and
large pT , but fits quite good in the relevant region 1 GeV . pT . 3 GeV. Finally, we
note that the value of p0 for antihelium-3 is likely close to the value for antideuteron by
accident, because it depends on how the coalescence model is generalised to larger nuclei,
there are large experimental uncertainties and the model is phenomenological.
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Figure 4.1: Antideuteron spectra from the ALICE experiment and best fit for the coales-
cence model. The experimental error-bars states the systematic and statistical
added in quadrature. The data is multiplied by a constant factor in order to
make the figure clearer.
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Figure 4.2: Combined antiproton and proton production spectrum from pp collisions as
measured by the ALICE experiment (blue dots) and as estimated by Pythia
8.230 (orange line).
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5 Developing a new coalescence model
The main focus of this thesis is to study the coalescence of antiprotons and antineutrons
into antideuteron, antitritium and antihelium-3 in the context of indirect DM searches.
The current state-of-the-art MC approach of the coalescence model, described in the pre-
vious chapter, is a classical and phenomenological model that only includes constraints on
the momentum variables. In contrast, in nuclear collisions one often includes constraints
on the spatial emission volume of the event instead. It is therefore desirable to derive
a quantum mechanical formation model with a clear microphysical picture that includes
constraints on both momentum and space variables.

Here we develop a new coalescence model based on the Wigner function representations
of the produced antinuclei states, which allows us to include both the size of the formation
region and momentum correlations in a semi-classical picture.1 The formation region is
process dependent, while the momentum correlations can be obtained from the MC event
generator. The final model contains one free parameter that will be estimated using a
microphysical picture for different processes, and calibrated by the experimental data
considered in the previous chapter. In the following lab frame refers to the CoM frame
of the original particle beam, while deuteron (nucleus) frame refers to the frame in which
the final deuteron (nucleus) is at rest.

The main results of this chapter have been published in Ref. [63].

5.1 Wigner function based deuteron formation model
First we develop the new Wigner function based model for the case of deuteron production.
The generalisation to helium-3 and tritium is straight forward, and is discussed in the next
section. The derivation of the model rely on the fact that the binding energy of the nuclei
is small (B ≈ 2.2 MeV for deuteron), such that a nucleus is formed through the nucleon
capture process n1 + ... + nn → N∗ with kµn1 + ... + kµnn

= kµN , and that the excitation
energy is later released by the emission of a photon.2

1A short introduction to Wigner functions with the conventions for the normalisation used here is given
in appendix B.

2One way of checking that this is a valid approximation is to use a different form of the four-momentum
of the deuterons such as pµd =

(√
m2
d + [pp + pn]2,pp + pn

)
. Both this and letting the excess energy

be carried away by a photon has a minute effect on the final results.
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5 Developing a new coalescence model

5.1.1 Derivation
The derivation between equations (5.2) and (5.5) is inspired by the discussions by Scheibl
and Heinz [55] on the analytical treatment of the coalescence of two and three nucleon
clusters in heavy ion collisions. One main difference is that we here use the two-particle
Wigner functions, such that two-particle correlations are considered. From there we make
an ansatz on the Wigner function of the nucleons, enabling the derivation of a per-event
coalescence model. Due to the low binding energy of the deuteron, only nucleon pairs
with a low relative momentum will coalesce. The relative motion of the two nucleons
and the coalescence into deuteron can therefore be treated non-relativistically. However,
Lorentz transformation between the deuteron frame and the lab frame should in general
be taken into account, but this issue is postponed until section 5.1.3.

Consider a system of particles consisting of Np protons and Nn neutrons. The number
of deuterons with momentum P d can be found by projecting the deuteron density matrix
ρd onto the two-nucleon density matrix ρnucl,

d3Nd

dP 3
d

= tr{ρdρnucl}. (5.1)

As will be discussed in section 5.1.2, the deuteron is only manifested in nature as an isospin
singlet, and its density matrix therefore has to describe a pure state, ρd = |φd〉 〈φd|.
The Wigner functions of the nucleons will be assumed to not contain any dynamical
correlations with respect to isospin and spin, and the coalescence into all possible spin and
isospin states will be considered by adding a statistical factor S. This will be discussed
in section 5.1.2. Thus, the two-nucleon state can be written as the pure state ρnucl =
|ψpψn〉 〈ψpψn| with the normalisation 〈ψnψp|ψpψn〉 = NpNn. For the moment, we neglect
possible double counting, but will later be included in section 5.1.5.

The trace in equation (5.1) can be evaluated in the position representation |x′1x′2〉,
where the two indices refer to the two nucleons in the initial state. Let for example x1
refer to the proton and x2 refer to the neutron. By choosing to evaluate the trace in this
representation and inserting the unity operator 11 =

∫
d3x |x〉 〈x| in equation (5.1), we

obtain3

d3Nd

dP 3
d

=S
∫

d3x1 d3x2 d3x′1 d3x′2 〈x′1,x′2|φd〉

× 〈φd|x1x2〉 〈x1x2|ψpψn〉 〈ψpψn|x1x2〉

≡ S
∫

d3x1 d3x2 d3x′1 d3x′2 φ
∗
d(x1,x2)φd(x′1,x′2)

×
〈
ψ†n(x′2)ψ†p(x′1)ψp(x1)ψn(x2)

〉
,

(5.2)

3Scheibl and Heinz [55] has an extra combinatoric factor 1/2! which comes from the fermion many
particle wave function since they consider the proton and neutron as indistinguishable. The result
will be the same when adding the statistical factor S.
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5.1 Wigner function based deuteron formation model

where φd(x1,x2) and ψi(x) are the wave functions of the deuteron and nucleon i, respec-
tively.

The deuteron is observed by the detector as a free momentum eigenstate, and the
deuteron wave function can thus be written as

φd(x1,x2) = (2π)−3/2 exp
{

iP d ·
x1 + x2

2

}
ϕd(x1 − x2), (5.3)

where the plane wave accounts for the CoM motion and ϕd(x1 −x2) is the internal wave
function. The two-nucleon density matrix can be written as

〈
ψ†(x′2)ψ†(x′1)ψ(x1)ψ(x2)

〉
=
∫ d3pp

(2π)3
d3pn
(2π)3Wnp

(
pp,pn,

x1 + x′1
2 ,

x2 + x′2
2

)
× exp{ipn · (x2 − x′2)} exp{ipn · (x1 − x′1)},

(5.4)

where pp and pn are the momentum of the proton and neutron, respectively.
The integral in equation (5.2) can now be simplified by introducing the coordinates

rp = (x1 +x′1)/2, rn = (x2 +x′2)/2, ξ = x1−x′1−(x2−x′2) and ρ = (x1−x′1 +x2−x′2)/2,
q = (pp − pn)/2. The position vectors ri are the classical positions of the proton (i = p)
and neutron (i = n) and will in turn be expressed by the relative position r = rp−rn and
the deuteron position rd = (rp+rn)/2. The momentum vector q is the momentum of the
nucleons in the deuteron frame. The corresponding Jacobian determinant is unity and the
change of basis is thus trivial: d3x1 d3x2 d3x′1 d3x′2 = d3rp d3rn d3ξ d3ρ = d3r d3rd d3ξ d3ρ.
The ρ integral leads to a δ-function accounting for the momentum conservation P d =
p1 + p2. With these new coordinates, equation (5.2) becomes

d3Nd

dP 3
d

= S

(2π)3

∫
d3rd

∫ d3q d3r

(2π)3 D(r, q)Wnp

(
pp,pn, rp, rn

)
(5.5)

where
D(r, q) =

∫
d3ξ e−q·ξϕd(r + ξ/2)ϕ∗d(r − ξ/2) (5.6)

is the Wigner function of the internal deuteron wave function.
The next task is to choose ansatz for the Wigner function, Wnp, and the internal

deuteron wave function, ϕd, such that equation (5.5) can be evaluated within the MC.
Using a Gaussian ansatz for the deuteron wave function,

ϕd(r) =
(
πd2

)−3/4
exp

{
− r2

2d2

}
, (5.7)

the deuteron Wigner function (5.6) becomes

D(r, q) = 8e−r2/d2e−q2d2
. (5.8)

53



5 Developing a new coalescence model

The momentum distribution Gnp(pp,pn), which also includes relevant momentum corre-
lations, can be obtained from the MC simulations. On the other hand, it can also be
obtained from the two-particle Wigner function as∫

d3rp d3rn f
W
np (pn,pp, rn, rp) = NpNn|ψnp(pn,pp)|2 ≡ Gnp(pn,pp), (5.9)

where ψpn(pn,pp) is the two-nucleon wave function in momentum space. Thus, it is
convenient to assume a factorised form of the momentum and coordinate dependencies,

Wnp(pn,pp, rn, rp) = Hnp(rn, rp)Gnp(pn,pp). (5.10)

Note that this implies a transition from a full quantum mechanical treatment to a semi-
classical picture. In turn, we neglect the spatial correlations between the nucleons,
Hnp(rn, rp) = h(rn)h(rp), and choose a Gaussian ansatz for h(r),

h(r) =
(
2πσ2

)−3/2
exp

{
− r2

2σ2

}
. (5.11)

The interpretation of ansatz (5.7) is that the deuteron wave function is approximated
as a Gaussian. This choice will be improved in section 5.1.6. The internal deuteron
wave function reproduces the measured rms charge radius of rrms = 1.89 fm [64] with
d = 3.2 fm.4 The interpretation of the spatial part of the nucleon Wigner functions (eq.
(5.11)) includes the spatial distribution of the original particle reaction. This will be
discussed in section 5.1.4.

If equations (5.8), (5.10) and (5.11) are inserted into equation (5.5), and the resulting
Gaussian integrals are evaluated, the result becomes

d3Nd

dP 3
d

= 8S ζ

(2π)3

∫ d3q

(2π)3 e−q2d2
Gnp(P d + q,P d − q), (5.12)

where

ζ ≡
(

d2

d2 + 4σ2

)3/2

≤ 1 (5.13)

is a factor that depends on the spatial spread of the nucleons and on the spatial extension
of the deuteron wave function. Thus, we see that the coalescence probability is suppressed
by both the spatial distribution through ζ and in momentum space by a Gaussian for large
q2d2.

4Note that the parameter r in the deuteron wave function describes the diameter and not the radius,
such that rrms =

∫
d3r(r/2)2|ϕ(r)|2.
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5.1 Wigner function based deuteron formation model

5.1.2 Spin and isospin factor
The proton and neutron form experimentally only one bound state: the deuteron. In this
section, the statistical factor S will be derived. The nucleons are fermions and carries
a total spin s = 1/2 and the spin in z-direction sz can either be ‘up’ (1/2) or ‘down’
(−1/2). The spin basis of the nucleons can thus be expressed as the ket vectors |1/2, 1/2〉
and |1/2,−1/2〉. By using quantum mechanical addition of angular momentum one can
show that the deuteron can be in four different spin states: one of the three spin triplet
states5

|1 1〉 =
∣∣∣12 1

2

〉 ∣∣∣12 1
2

〉
, (5.14a)

|1 0〉 = 1√
2
(∣∣∣12 1

2

〉 ∣∣∣12 − 1
2

〉
+
∣∣∣12 − 1

2

〉 ∣∣∣12 1
2

〉)
(5.14b)

|1 − 1〉 =
∣∣∣12 − 1

2

〉 ∣∣∣12 − 1
2

〉
(5.14c)

or the isosinglet state

|0 0〉 = 1√
2
(∣∣∣12 1

2

〉 ∣∣∣12 − 1
2

〉
−
∣∣∣12 − 1

2

〉 ∣∣∣12 1
2

〉)
. (5.14d)

The spin formalism can also be applied to the isospin quantum number discussed in
section 3.2. The deuteron can thus be in four isospin states given by equation (5.14).

We can now compute the statistical isospin and spin factor by assuming that isospin
is conserved. The Wigner-functions of the deuteron and nucleons used in last section
did not contain any dynamical correlations regarding spin and isospin. We will follow
Ref. [65] and use the statistical assumption that all deuteron states that are allowed
from the Pauli exclusion principle have an equal weight. Moreover, it is assumed that
the coalescence probability of the nucleons into a state of given total isospin is equal.
Note, however, that there is no bound state of two protons or two neutrons [44]. Due to
the SU(2) symmetry of the isospin, the last isotriplet (5.14b) cannot occur either. Thus,
the deuteron has to be an isosinglet. This isosinglet state has four possible spin states.
However, when regarding the proton and neutron as different states of the nucleon, the
wave function has to be antisymmetric in the exchange of the particles. The symmetric
spin singlet is thus expected to be suppressed. In total, the deuteron has in our statistical
approximation NS = 3 possible spin and isospin states. The initial state on the other
hand consists of one proton and one neutron, each of which has 2 possible spin states.6
In addition, the statistical approximation assigns equal weight to the isospin singlet and

5A discussion of this can be found in most introductory text books on quantum mechanics or particle
physics, such as Ref. [44].

6In the MC we distinguish between protons and neutrons. We therefore only consider initial states
which contain one proton and one neutron.
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5 Developing a new coalescence model

the second isospin triplet, where only the singlet can occur. The final statistical factor
thus becomes

S(d) = NS(d)× 1
22 ×

1
2 = 3

8 . (5.15)

5.1.3 Lorentz transformation

In the derivation of equation (5.12) all quantities and wave functions were evaluated
in the rest frame of the deuteron. However, since current MC event generators do not
model the space-time structure of the cascade, we want the spatial factor ζ to capture
the hadronisation size ΛQCD ∼ 200 MeV. One can achieve this by defining the Wigner
functions of the nucleons (5.11) in the lab frame. It is thus natural that the size parameter
σ is defined relative to the beam. In this section, the same derivation as before will be
performed including the Lorentz transformation between the lab frame and the deuteron
frame.7 The important difference lies in which frame the different quantities are defined
in equation (5.5). The right hand side of the equation can be evaluated in the deuteron
frame. In this case, the integrations are performed in the deuteron frame. The Wigner
function of the deuteron is defined in the deuteron frame, while the nucleon Wigner
functions is defined in the lab frame. In summary, the evaluation of D(r, q) remains
unchanged and the arguments of Hnp must be given in the lab frame. The momentum
distribution Gnp(pn,pp) is simply evaluated in the deuteron frame by performing a Lorentz
transformation of q within the MC and then normalising in the deuteron frame. Two
different cases will be considered. In the first case, we consider σ as being independent
of the beam direction, while in the second we split σ into a part parallel, σ‖, and a part
perpendicular, σ⊥, to the original particle beam.

Parameter independent of beam direction

Assume first that σ is independent of the beam. Let rµd = (td, rd), rν = (0, r) and
pµi = ([m2 + qi

2]1/2, qi) (with qp = q, qn = −q) be the space-time coordinate of the
deuteron, the relative space-time coordinate of the nucleons and the four-momentum
of nucleon i in the deuteron frame, respectively. Furthermore, let rµd

′, rν ′ and pµi
′ be

the corresponding coordinates in the lab-frame. Only the components parallel to the
direction of the deuteron momentum in the lab frame P d will be influenced by the change
of frame, and the spatial coordinates are thus split into a component parallel to P d, xP d‖,
and two components perpendicular to P d, xP d⊥. The multiplication of the h-functions
gives a factor in the exponent on the form r2

p + r2
n = (4r2

d + r2)/2. The relevant Lorentz

7A list of useful formula from special relativity used in this chapter can be found in appendix A.
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transformations are thus

r′
µ =

(
vγrP d‖, γrP d‖, rP d⊥

)
, (5.16a)

r′d
µ =

(
γ
(
tf + vr

P d‖
d

)
, γ
(
r
P d‖
d + vtf

)
, rP d⊥

d

)
, (5.16b)

where tf is the deuteron freeze-out time. This leads to

r′
2 = rP d⊥2 + γ2rP d‖2, (5.17a)

r′d
2 = rP d⊥

d

2 + γ2
(
r
P d‖
d + vtd

)2
. (5.17b)

Equation (5.5) with the ansatz’ (5.7) to (5.11) and the coordinate transformation (5.17)
gives

d3Nd

dP 3
d

= 8S|N |2
∫ d3rd d3r d3q

(2π)6 Gnp(pn,pp)

× exp

−r
2

d2 − q
2d2 −

rP d⊥
d

2 + γ2
(
r
P d‖
d + vtd

)2

σ2 − rP d⊥2 + γ2rP d‖2

4σ2

,
(5.18)

where |N |2 is fixed by the normalisation condition of the Wigner function.
The Wigner function must be normalised such that Gnp(pn,pp) can be interpreted as

the probability distribution in momentum space in the deuteron frame. In other words,
we require that

Gnp(pn,pp) = |N |2
∫

d3rp d3rnWnp(pn,pp, r′n, r′p)

= |N |2
∫

d3r d3rdGnp(pn,pp) exp

−
rP d⊥
d

2 + γ2
(
r
P d‖
d + vtd

)2

σ2 − rP d⊥2 + γ2rP d‖2

4σ2

,
(5.19)

where r′i is the position of the nucleons in the lab frame. The rd integral in (5.18)
is cancelled by |N |2 and the only thing left to consider is therefore the r-integrals. The
differential is split as d3r = drP d‖ d2rP d⊥, and the corresponding integrands are Gaussians
and thus trivial to evaluate. The final result can be written on the same form as equation
(5.12) with

ζ = d2

d2 + 4σ2

√√√√ d2

d2 + 4σ2/γ2 . (5.20)

One can thus see that the effect of the Lorentz transformation in this case is the same
as a Lorentz contraction of the size parameter σ in the direction parallel to the deuteron
momentum. Equation (5.20) reduces to (5.13) in the limit of low deuteron velocities.
This is expected to be a good approximation at low transverse momenta to the more
complicated case discussed next.
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5 Developing a new coalescence model

Parameter dependent on beam direction

Consider now the case where the size parameter σ is split as σ⊥ 6= σ‖. The general
procedure is similar as in the previous case, but is more technically difficult since σ⊥ and
σ‖ are defined relative to the original particle beam, as shown in figure 5.1. The ansatz
for h(r) should therefore in this case be

h(r) ∝ exp
− r2

‖

2σ2
‖
− r2

⊥
2σ2
⊥

 , (5.21)

where the subscripts indicates whether the quantity is defined perpendicular or parallel to
the particle beam. Furthermore, the components of ri⊥ and ri‖ parallel to the deuteron
momentum will be affected by the transformation between the Lorentz frames, while the
components perpendicular to the deuteron momentum will not. This means that we also
have to split both ri⊥ and ri‖ into components parallel and perpendicular to P d.

The product of the two h-functions will now contain terms proportional to r2
p‖+r2

n‖ and
r2
p⊥ + r2

n⊥ in the exponent. The parallel term can be written as r2
p‖ + r2

n‖ = (4r2
d‖ + r2

‖)/2
and similar for the perpendicular term. As in the previous case, the rd-integral will be
cancelled by the rd-integral in the normalisation of the Wigner function and can therefore
be disregarded. Inserting equation (5.21) into equation (5.2) and disregarding the rd-
integral yields

d3Nd

dP 3
d

=3S|N |2
∫ d3r d3q

(2π)6 Gnp(pn,pp) exp

−r2

d2 − q
2d2 − 1

4σ2
‖
r′‖

2 − 1
4σ2
⊥
r′⊥

2

, (5.22)

where |N |2 is fixed by the normalisation condition

Gnp(pn,pp) = |N |2
∫

d3r Gnp(pn,pp) exp

−rP d⊥′2 + γ2rP d‖′
2

4σ2

, (5.23)

and the primed coordinates are defined in the lab frame. By considering the setup in
figure 5.1 and using the transformation (5.16b) one obtains

rP d⊥
⊥

′ = r′⊥ cos(θ) = rP d⊥
⊥ , (5.24a)

r
P d‖
⊥
′
= r′⊥ sin(θ) = γr

P d‖
⊥ , (5.24b)

rP d⊥
‖

′ = r′‖ sin(θ) = rP d⊥
‖ , (5.24c)

r
P d‖
‖
′
= r′‖ cos(θ) = γr

P d‖
‖ , (5.24d)

where θ and the primed quantities are defined in the lab-frame. This leads in turn to

r′⊥
2 = rP d⊥

⊥
2 + γ2r

P d‖
⊥

2
, (5.25a)

r′‖
2 = rP d⊥

‖
2 + γ2r

P d‖
‖

2
. (5.25b)
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P d

θ ẑri‖, σ‖

ri⊥, σ⊥

Figure 5.1: The size parameter σ is split into a part parallel to the beam (z-axis), σ‖, and a
part perpendicular to the beam, σ⊥. Only the components of r⊥ and r‖ parallel
to the deuteron momentum P d is affected by the Lorentz transformation. This
transformation will lead to different effective transformation of σ‖ and σ⊥ that
depends on the angle θ between the beam and P d.

As before, the differential for the r-integral can be split as d3r = drP d‖ d2rP d⊥, and when
the transformations (5.24) and (5.25) are inserted, the integrands becomes Gaussians. The
final result can again be written as equation (5.12), but this time with the spatial factor

ζ = d2

d2 + 4σ̃2
⊥

√√√√ d2

d2 + 4σ̃2
‖
, (5.26)

where the effective transformation of the size parameters, σ̃⊥ and σ̃‖, are given by

σ̃‖ = σ‖√
sin2 θ + γ2 cos2 θ

, (5.27a)

σ̃⊥ = σ⊥√
cos2 θ + γ2 sin2 θ

. (5.27b)

This reduces to (5.20) in the limit θ → 0, which is the same limit as a small trans-
verse momentum, and corresponds to a case where only σ‖ is affected by the Lorentz
transformation.

Lorentz transformation back to the lab frame

The right hand side of equation (5.5) in the discussions above was evaluated in deuteron
frame. The only things left to consider is the transformation back to the lab frame. After
evaluation, the only variable left that is not Lorentz invariant is P d on the left hand side.
Consider a coordinate system in which the x-axis points along P d. Only the x-component
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of the momentum is affected. From the Lorentz invariant quantity dP x
d /E we obtain

dP x
d = dP x

d
′ E
′

E
= 1
γ

dP x
d
′ (5.28)

where the primed quantities are in the lab frame. In conclusion, the right hand of side
equation (5.12) must thus be multiplied by a factor 1/γ.

5.1.4 Parameter estimation and interpretation
The σ⊥ and σ‖ parameters can have two different interpretation: in the CoM frame they
describe the nucleon radius, while in the lab frame they describe the characteristic spread
of the hadronisation. In this subsection, we will use these interpretations to estimate the
parameters σ‖ and σ⊥ in different scattering processes. Due to the simplifications used in
the derivation of the model, uncertainties in the event generator and the simplifications
used in this section, the final model has some degree of freedom that must be tuned to
experimental data. Nevertheless, we can get an estimate the expected parameters for
different processes.

Consider first the case of e+e− annihilation into nucleons in the CoM frame of the
collision. Let the z-axis be directed along the direction of the outgoing quark and anti-
quark from the hard process e+e− → q̄q and consider first the spread in the longitudinal
direction. The coalescence process will involve nucleons that have nearly completed their
formation, and the process will thus proceed on distance scales comparable to the hadroni-
sation length Lhad ∼ γRhad from non-perturbative QCD, as discussed in section 3.4.4. For
protons and neutrons Rhad = Rp ∼ 1 fm. Boosting to the rest-frame of the deuteron should
compensate the gamma factor. Thus, one will expect that σ‖ ∼ Rhad ∼ 1 fm ≈ 5 GeV−1.
On the other hand, the characteristic spread of the nucleon in the transverse direction is
related to ΛQCD via the uncertainty relation. That is, the spread in the transverse direction
is due to the random walk behaviour of previous generations of parton branchings that
each contributes by the inverse of the transverse momentum of the parton, ∆bi ∼ 1/p⊥.
As in the longitudinal case, the main contribution is from non-perturbative physics with
p⊥ ∼ ΛQCD. This yields σ⊥ ∼ ΛQCD, which is on the same order of magnitude as σ‖. We
therefore let σ⊥ = σ‖ ≡ σ to minimise the number of free parameters. Since the bulk
of produced deuterons has a relatively small transverse momentum, one may expect that
the Lorentz transformation to the deuteron frame has only a small effect on σ⊥. A setup
taking this boost into account will improve the fit to experimental data at large pT , and
be discussed below.

Now we turn to hadron-hadron collisions. In this case, the scattering process is influ-
enced strongly by multiple scatterings. That is, the nucleons involved in the coalescence
process can in general originate from different non-perturbative parton-parton interac-
tions. This induces an additional geometrical contribution from the parton clouds to
the spread that will lower the probability of coalescence. Starting with the longitudinal
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spread, it is important to include the effect of different Lorentz contractions of the parton
clouds for fast and slow partons. The partons in for example the projectile hadron in the
lab frame are distributed over the longitudinal distance L ∼ Rp/γ ≈ Rpe

−y, where y is
the rapidity of the beam in the lab frame. This Lorentz contraction is again compensated
by the transformation to the deuteron frame.8 Hence, the resulting geometrical contri-
bution from the extension of the parton cloud to σ‖ is σ‖(geom) ∼ Rp ∼ 1 fm for proton
proton collisions. The final spread in the longitudinal direction is obtained by summing
the contributions in quadrature,

σ2
‖ = σ2

‖(e±) + σ2
‖(geom). (5.29)

Finally, we must the geometrical contribution to σ⊥, which will be done using the simple
geometrical picture in figure 5.2. Naively, one would expect that the final contribution
depends on the impact parameter, but as we will see, this is fortunately not the case.
The geometrical contribution will be defined as the spread of the overlapping region (O)
of the parton clouds,

σ2
⊥(geom) = 〈r2

1〉O − 〈r1〉2O. (5.30)
The expectation value 〈A〉O will be defined as

〈A〉 =
∫

d2r1 d2r2Aρ1(r1)ρ2(r2)wint(|b− r1 − r2|)∫
d2r1 d2r2 ρ1(r1)ρ2(r2)wint(|b− r1 − r2|)

, (5.31)

where b is the impact parameter of the collision, ρi(ri) is the parton density distribution
of hadron i in the transverse direction, and wint is the probability for a parton-parton
interaction. For simplicity, the radius of the parton-parton interactions is neglected such
that

wint(|b− r1 − r2|) = δ(2)(b− r1 − r2). (5.32)
Moreover, the density distributions are approximated as the Gaussians

ρi = 1/(2πσ2
⊥) exp

{
−r2/2R2

i

}
, (5.33)

where Ri is the transverse radius of hadron i, and must be chosen such that it reproduces
the correct rms radius. With the chosen simplifications and geometrical picture, one
obtains

σ2
⊥(geom) = 2R2

1R
2
2

R2
1 +R2

2
. (5.34)

Notice that the dependence on the impact parameter has vanished. In the particular case
of pp collisions, equation (5.34) becomes σ⊥(geom) ∼ Rp. Again, the contributions can be
added in quadrature.

8This argument is a bit superficial, but remember it’s only an estimate of the parameters. The gamma-
factor in the Lorentz contraction of the parton cloud is not the same as for the boost to the deuteron
frame, but one can think of the geometrical spread as the spread in the partons that at the end will
constitute the nucleons and the deuteron.
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Figure 5.2: Schematics of the parton clouds of two interacting hadrons.

In conclusion, we have shown that σ‖ ∼ σ⊥ and

σ2 = σ2
(e±) + σ2

(geom) ≈ 2σ2
(e±) ∼ 2(5 GeV−1)2. (5.35)

This describes both a relationship between the coalescence probability in e+e− annihila-
tions and pp collisions, as well as the expected numerical value of the parameters.

Finally, in an alternative setup we define the parameter σ⊥ in the lab frame in order
to improve the fit to experimental data at large pT , as discussed above. From equation
(5.26) it is clear that we obtain

ζ = d2

d2 + 4σ̃2
⊥

√√√√ d2

d2 + 4σ‖
, (5.36)

where σ̃⊥ is given by equation (5.27b). In other words, the nucleon Wigner function is
defined in the lab frame, but the resulting Lorentz transformation in the direction parallel
to the particle beam is approximately cancelled by the transformation of the hadronisation
size.

For completeness, consider now the geometrical contribution in hadron-nucleus colli-
sions. The geometrical contribution in the longitudinal direction is σ‖(geom) ∼ RPb. The
parton distribution in the nuclear target N is dominated by the nuclear wave function.
For a sufficiently heavy nucleus, such as lead, the density may be approximated as con-
stant for b < RN . This heavy nucleus approximation yields σ2

⊥(geom) ' =2R2
h. Thus, the

universality of equation (5.35) is lost.

5.1.5 Model and numerical procedure
Everything is now set to write down a new coalescence model that is evaluated per-event
within the MC. The final result from the previous sections, including the statistical factor
S = 3/8, is that the deuteron yield in the lab frame can be written as

d3Nd

dP 3
d

= 1
γ

3ζ
(2π)3

∫ d3q

(2π)3 e−q2d2
Gnp(q,−q), (5.37)
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where d = 3.2 fm. The integral must be evaluated in the deuteron frame and the mo-
mentum distributions Gnp(q,−q) is obtained from the event generator. Several different
spatial distribution factors ζ have been considered: a simple constant (eq. (5.13)), one
including boost in the direction of the deuteron momentum (eq. (5.20)), one including a
general boost (eq. (5.26)), and finally one including a general boost and account for the
boost of the hadronisation size (eq. (5.36)).

The physical interpretation of the quantity q is the momentum of the nucleons in the
deuteron frame. In the coalescence model discussed in section 4.1.2 all proton-neutron
pairs with 2q < p0 forms a deuteron. The new model is, opposed to the old model,
probabilistic. The probability that a given proton and neutron coalesce is proportional to
exp(−q2d2). This can be taken into account by adding weights to the binning procedure
when computing the energy spectrum. In this case, all of the information that can be
extracted from each event is used. The weights become apparent when (5.37) is written
on the discrete form

∆Nd

∆P x
d ∆P y

d ∆P z
d

= 3ζ
γ

∑
q

e−q2d2∆Np(q)∆Nn(q). (5.38)

Thus, the weight from a proton-neutron pair,

w = 3ζe−q2d2
, (5.39)

must be used as weight in the binning procedure when computing the deuteron yield.
Note that the gamma-factor is not needed since we perform the binning in the lab frame,
but q is still defined in the deuteron frame.

At this point, one must take some care about potential multiple counting, since there
is a possibility of having more than one proton-neutron pair being able to coalesce. In
this case, one should in principle use the projection of the deuteron density matrix onto
an n-nucleon state as starting point (see e.g. Ref. [65]). However, it should be sufficient
to only consider one pair at a time and set the weights accordingly. Assume that for a
given event the final state contains Np protons and Nn neutrons. Denoting the coalescence
probability, equation (5.39), of a given proton-neutron pair ij as wij, the average number
of deuterons produced can be written as

Nd =
Np∑
i=1

Nn∑
j=1

wij −
1
2

Np∑
i=1

Np∑
k 6=i

Nn∑
j=1

wij wkj −
1
2

Np∑
i=1

Nn∑
j=1

Nn∑
l 6=j

wij wil − . . .

'
Np∑
i=1

Nn∑
j=1

wij

1− 1
2

Np∑
k 6=i

wkj −
1
2

Nn∑
l 6=j

wil

 , (5.40)

where in the second line triple and higher counts could be neglected due to the smallness
of the coalescence probabilities. Thus, a proton-neutron pair ij should contribute with a
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weight

Ωij = wij

1− 1
2

Np∑
k 6=i

wkj −
1
2

Nn∑
l 6=j

wil

 , (5.41)

where ωij is given by equation (5.39).9

5.1.6 Improving the deuteron wave function
In the above treatment a Gaussian with the correct rrms-value was used as an ansatz
for the deuteron wave function. However, it would be favourable to instead use a wave
function that gives physically a better picture of the deuteron. One possibility is to use
the Hulthen wave function,

φd(r) =

√√√√ αβ(α + β)
2π(α− β)2

e−αr − e−βr
r

, (5.42)

with α = 0.23 fm−1 and β = 1.61 fm−1, which gives a good description of the deuteron
ground state [55, 64]. Unfortunately, this requires a more complicated numerical treat-
ment.

To obtain a better description of the deuteron, and at the same time keep the problem
analytical solvable, one can use the sum of two Gaussians as the deuteron probability
distribution,

|ϕd(r)|2 = π−3/2
[

∆
d3

1
e−r2/d2

1 + 1−∆
d3

2
e−r2/d2

2

]
, (5.43)

which must be fitted to the Hulthen wave function (5.42) in order to fix ∆, d1 and d2.
The probability distribution (5.43) can be obtained from the wave function

ϕd(r) = π−3/4
(

i
√

∆
d3

1
e−r2/2d2

1 +
√

1−∆
d3

2
e−r2/2d2

2

)
. (5.44)

Inserting this into the definition of the deuteron Wigner function (5.7) yields

D(r, q) = 8
[
∆e−r2/d2

1e−q2d2
1 + (1−∆)e−r2/d2

2e−q2d2
2
]
− A(r, q), (5.45)

where

A(r, q) = 16

√√√√∆(1−∆)
d3

2d
3
1

exp
{(
−a+ b2

a

)
r2 − q2

a

}
sin

(
2b
a
r · q

)
, (5.46)

9We have performed the fits both with and without the double counting, and it turns out that double
counting can be neglected in all cases due to the Gaussian suppression of large q. The largest contri-
bution to the double counting occurs with the two-Gaussian ϕ0-fit deuteron wave function discussed
in the next subsection.
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with a = 1/2d2
1 + 1/2d2

2 and b = 1/2d2
1 − 1/2d2

2.10 Since the nucleon Wigner functions
are symmetric, the cross term do not contribute when performing the r-integration in
equation (5.5). The weights in the binning procedure in the two-Gaussian case are thus

w = 3
(
ζ1∆e−q2d2

1 + ζ2[1−∆]e−q2d2
2
)
, (5.47)

where ζi is given by equation (5.13).
Two possible methods are to fit to either |ϕd(0)|2, 〈r〉 and 〈r2〉, or 〈r〉, 〈r2〉 and 〈r3〉.

The first method will be called ϕ0-fit and the second r3-fit. The ϕ0-fit yields ∆ = 0.581
d1 = 3.979 fm and d2 = 0.890 fm, while the r3-fit yields ∆ = 0.247, d1 = 5.343 fm and
d2 = 1.810 fm. These are plotted in figure 5.3 together with the probability distributions
from the one-Gaussian (5.7) and Hulthen (5.42) wave functions. From the plot, one can see
that the two-Gaussian case reproduces the Hulthen probability distribution better than
the one-Gaussian case. In particular, the Hulthen wave function is more peaked around
r = 0 than the Gaussian wave function. The ϕ0-fit reproduces visually the behaviour
around r = 0 best and may therefore be expected to give the best fit to experiments later
on. The average of the two probability distributions will give even better visual fit to the
Hulthen wave function, and will also be considered.

The weighted q2 distribution with the one-Gaussian weight and two-Gaussian weights
resulting from pp collisions at

√
s = 7 TeV is shown in figure 5.4. The distribution

resulting from the old coalescence model is plotted for comparison. From the plot, one
can see that the effect of adding a Gaussian that describes the peak at r = 0 in the
probability distribution leads to an increased contribution from large q.

Note that the original approximation that the two nucleons and deuteron are in the
same Lorentz frame does not hold for large q. In these cases, a relativistic derivation
is needed. However, one can treat problem by adding a cut-off as done here. In the
simulations that will be performed in section 5.3, all pairs with q < 0.25 GeV is stored for
the one-Gaussian case and q < 0.5 GeV for the two-Gaussian cases.

5.2 Coalescence of helium-3 and tritium

5.2.1 Derivation
The case of the helium-3 nucleus and tritium are similar to the case of deuteron, but the
derivation is more cumbersome. The Coulomb interaction between the two protons in the
helium nucleus is neglected such that the model for helium-3 and tritium becomes the
same. This assumption is supported by ALICE experiment, which found a comparable
10If one does not include the imaginary unit for one of the Gaussians in (5.44), the cross term becomes

symmetric. Reference [65] discusses this for the sum of 15 Gaussians. This is the reason why we only
include two Gaussians.
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Figure 5.3: Comparison between the different ansatz used on the deuteron wave function.

yield of helium-3 and tritium nuclei in pp collisions. The binding energies of the two nuclei
are still considered low (∼ 8 MeV), and the same approximations as in the deuteron case
still apply.

The number of helium nuclei with momentum P He is found by projecting the helium
state onto the tree-nucleon state, which gives an expression identical to equation (5.1). As
in the deuteron case, the nucleus wave function is factorised into a plane wave describing
the CoM motion with momentum P He and an internal wave function:

φHe(x1,x2,x3) = (2π)−3/2 exp [iP He · (x1 + x2 + x3)/3]ϕ(x1,x2,x3). (5.48)

It is convenient to introduce the CoM coordinates11

λ = (x1 + x2 − 2x3)/
√

6, (5.49a)
ρ = (x1 − x2)/

√
2, (5.49b)

R = (x1 + x2 + x3)/3, (5.49c)

with x2
1 +x2

2 +x2
3 = 3R2 + ρ2 +λ2, ρ2 +λ2 = (x1−x2)2 + (x1−x3)2 + (x3−x2)2 and

d3r1 d3r2 d3r3 = 33/2 d3R d3ρ d3λ with ri ≡ (xi + x′i)/2. The internal wave function is as
before approximated by a Gaussian in the relative coordinates as

ϕ(x1,x2,x3) = (3π2d4)−3/4 exp
(
−ρ

2 + λ2

2b2

)
, (5.50)

11This choice was motivated by discussions in [55] regarding a the coalescence of helium-3 in heavy ion
collisions.
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Figure 5.4: Weighted q distribution for the considered models. The simulation is run with
the
√
s = 7 TeV ALICE setup with the parameter σ = 7 GeV−1 and a constant

ζ. For the old model, p0 = 0.2 GeV is used. The distribution from the old
model is multiplied by a factor 0.3 to make the figure clearer.

with b being the size parameter of the nucleus, which incidentally is identical to the rms
radius of the nucleus,

rrms =
∫

33/2d3ρ d3λ
ρ2 + λ2

3 |ϕ(x1,x2,x3)|2 = b2. (5.51)

The 3He and 3H nuclei have rms radii 1.96 fm and 1.76 fm, respectively [66].
Performing the same steps as in equations (5.2) and (5.4), the momentum spectrum of

the produced nuclei spectrum can be written as

d3NHe

dP 3
He

= S

(2π)3

∫
33d3Rd3ρd3λ d3R′ d3ρ′ d3λ′ (2π)−3 e−iPHe·(R−R′) ϕHe(ρ,λ)∗ ϕHe(ρ′,λ′)

×
∫ d3p1

(2π)3
d3p2

(2π)3
d3p3

(2π)3 eip1·(x1−x′1)+ip2·(x2−x′2)+ip3·(x3−x′3)

× WN1N1N3

(
p1,p2,p3,

x1 + x′1
2 ,

x2 + x′2
2 ,

x3 + x′3
2

)
,

(5.52)
where S is the statistical factor accounting for different isospin and spin state, pi is the
momentum of nucleon i and WN1N1N3 is the Wigner function of the three nucleon state.
Once again, we approximate WN1N1N3 by the product of the momentum and coordinate
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5 Developing a new coalescence model

distributions of the nucleons, and neglect the correlations between the coordinate distri-
butions which we approximate as Gaussians. That is,

WN1N2N3(p1,p2,p3, r1, r2, r3) = GN1N2N3(p1,p2,p3)
3∏
i=1

h(ri), (5.53)

where h(r) is given by equation (5.11).
The integral in equation (5.52) is cumbersome, but can be evaluated straight forwardly

using the coordinates (5.49). The CoM coordinates in the exponent due to the three
h-functions are completely decoupled.12 The integrals over R and R′ then lead to a factor
8−1(2π)3(8πσ2/3)3/2 and a δ-function which takes care of momentum conservation. The
p1-integral then becomes trivial and the rest of the integrals can be evaluated as Gaussians.
At the end, P He is set to zero as the expression is to be evaluated in the nucleus frame.
The result is

d3NHe

dP 3
He

= 64sζ
(2π)3

∫ d3p1

(2π)3
d3p2

(2π)3GN1N2N3(p1,p2,p3)e−b2P 2
, (5.54)

where

ζ =
(

2b2

2b2 + 4σ2

)3

(5.55)

is a spatial factor and

P 2 = 1
3
[
(p1 − p2)2 + (p2 − p3)2 + (p2 − p3)2

]
= 2

3
[
p2

2 + p2
3 + p1 · p2

]
(5.56)

is a measure of the momentum difference of the nucleons. The generalisation to a two-
Gaussian wave function can in principle be achieved using the same procedure as in the
deuteron case, but a “Hulthen wave function” for Helium-3 does not exist.

5.2.2 Spin and isospin factor
Consider first the general case of a system of A nucleons and charge Z coalescing into
a nucleus with the same charge. The initial state has 2A possible spin states and the
final nucleus has

(
A
Z

)
different isospin multiplets. Each possible isospin multiplet for the

nucleus contains only one state with the correct number of protons and neutrons. Thus,
in our statistical approximation, the weight to each multiplet is equal. The final statistical
factor becomes

S = NS(
A
Z

)
2A
, (5.57)

where NS is the total number of possible stable spin and isospin states of the nucleus.
12The exponent becomes ((λ+ λ′)2 + (ρ+ ρ′)2 + 3(R+R′)2)/8σ2.
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5.2 Coalescence of helium-3 and tritium

The nucleus consisting of three nucleons (tritium or 3He) has 6 possible spin states
separated into the symmetric quadruplet∣∣∣32 3

2

〉
=↑↑↑, (5.58a)∣∣∣32 1

2

〉
= 1√

3 (↑↑↓ + ↑↓↑ + ↓↑↑) , (5.58b)∣∣∣32 − 1
2

〉
= 1√

3 (↑↓↓ + ↓↑↓ + ↓↓↑) , (5.58c)∣∣∣32 − 3
2

〉
=↓↓↓, (5.58d)

and the doublet ∣∣∣12 1
2

〉
=
√

2
3 ↑↑↓ −

√
1
6 (↑↓↑ + ↓↑↑) , (5.58e)∣∣∣12 − 1

2

〉
= 1√

6 (↑↓↓ + ↓↑↓)−
√

2
3 ↓↓↑, (5.58f)

(5.58g)

where ↑≡ |1/2 1/2〉 and ↓≡ |1/2 − 1/2〉. The states consisting of only protons and
neutrons are not stable and located in the quadruplet. There are thus only two isospin
states in the final three-nucleon state, one for helium-3 and one for tritium. The total
wave function must be antisymmetric in the exchange of two particles, and the spin state
must thus be in the doublet,13 leading to NS = 2. The final statistical factor becomes

S(t) = S(3He) = 1
12 . (5.59)

5.2.3 Lorentz transformation
The procedure for finding the correct Lorentz transformation is similar to the deuteron
case. Here we will only summarise the main steps and then state the result. The nucleon
Wigner function is chosen to be evaluated in the lab frame such that the spatial distri-
bution represents the hadronisation size. In the most general case, σ⊥ 6= σ‖, the Lorentz
transformation can be written as

XP d⊥
⊥

′ = X ′⊥ cos(θ) = XP d⊥
⊥ , (5.60a)

X
P d‖
⊥

′
= X ′⊥ sin(θ) = γ

(
X
P d‖
⊥ + vtf

)
, (5.60b)

XP d⊥
‖

′ = X ′‖ sin(θ) = XP d⊥
‖ , (5.60c)

X
P d‖
‖

′
= X ′‖ cos(θ) = γ

(
X
P d‖
‖ + vtf

)
, (5.60d)

13Consider the tritium. The isodoublet is antisymmetric in the exchange of a proton and a neutron and
symmetric in the exchange of the neutrons. The spin of the two neutrons has to be different, while
the spin of the proton is equal to one of the neutrons. Thus, the spin state is antisymmetric in the
exchange of two neutrons.
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5 Developing a new coalescence model

for a parameter X, in the same manner as in section 5.1.3. The size parameters are
ultimately changed to (5.26) and the freeze-out time tf drops out. There are all together
six perpendicular and three parallel Gaussian integrals that must be evaluated. The result
can be written on the same form as equation (5.54), but with

ζ =
(

b2

b2 + 2σ̃2
⊥

)2
b2

b2 + 2σ̃2
‖
, (5.61)

where σ̃⊥ and σ̃‖ are defined in the same way as in the deuteron case (eq. (5.27) in
the most general case). This implies that ζ(b) = ζd(d = 2b)2, where ζd is the spatial
distribution factor obtained for deuteron. The transformation back to the lab frame is
identical to the deuteron case in section 5.1.3.

5.2.4 Model and numerical procedure
The final coalescence model for tritium and helium-3 can be written as

d3NHe

dP 3
He

= 1
γ

64
12ζ

∫ d3p1 d3p2

(2π)9 GN1N2N3(p1,p2,p3)e−b2P 2
, (5.62)

where P 2 is given by (5.56), the spatial factor ζ is given by (5.61). The numerical proce-
dure is identical to that in section 5.1.5 with the only change that the weight is slightly
different. In addition, P 2 is now defined in the CoM frame of a three particle state.
Hence, one must use the general Lorentz transformation (A.4) to compute it. One may
argue that it is sufficient to calculate the momentum differences between nucleons in P 2

in the rest frames of the corresponding nucleon pairs since those practically coincide with
the rest frame of the nucleus.14 The latter method will be used in the simulations in this
thesis.

5.3 Comparison with experimental data
We will now compare the model to the experimental data from the ALICE [9], ALEPH
[10] and OPAL [11] experiments considered in section 4.2. For concreteness, we restrict the
considered spatial distribution factors ζ to the simplest case (eq. (5.13)), most physically
favoured case (eq. (5.36)), and something in between (eq. (5.20)). These will be called
constant, beam independent and beam dependent, respectively.

A χ2-fit of the considered models has been performed on the experimental data. The
best-fit values, their 1σ errors and the reduced χ2 of the various fits are listed in table
14Remember that we have previously used the assumption the the nucleons and nucleus are the same

Lorentz frame due to the low binding energy of the nucleus. These methods are equivalent within this
approximation.
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5.3 Comparison with experimental data

5.1. Note that the χ2 for ALEPH is not defined since the experiment only consists of one
data point, and that the yield in the one-Gaussian case was too low to be able to recreate
the ALEPH and OPAL experiments. At the best fit σ = 0, the yield was 0.53 standard
deviations off. Furthermore, only the one-Gaussian case is defined for helium-3.

The best combined fits to the ALICE antideuteron data are plotted in figure 5.5 for
the constant and beam dependent ζ, and the one-Gaussian and two-Gaussian ϕ0-fit wave
functions. Only the constant and beam dependent ζ-factor, and the one-Gaussian and
two-Gaussian φ0-fit wave functions are included. The difference between the two-Gaussian
wave functions (φ0-fit, r3-fit and average) is small. The result for the old coalescence
model is also plotted for comparison. One can note that the constant models and the
one-Gaussian models are visually quite similar to the old model, while the two-Gaussian
beam dependent model has a significantly improved fit.

The χ2 values obtained when the combined best fit to the antideuteron data are used
on the helium-3 and e+e− data are listed in table 5.2. Since the goodness-of-fit parameter
is small for the e+e− data, one can conclude that a single universe parameter σ can
consistently describe the two data sets. The large χ2 value for helium-3 can be explained
by the choice of wave functions, but it will be interesting to check it by future antihelium
data with smaller uncertainties. The fit to the antihelium-3 data is plotted in figure 5.6
for its best fit parameters, as well as the best fit parameters from the combined ALICE
antideuteron data with the two-Gaussian ϕ0-fit.

Due to the number of bins and small uncertainties, the ALICE antideuteron data will
now be used to give a set of suggested parameters. As clear from table 5.1 and figure 5.5,
the two-Gaussian probability distributions give notably better fits than the one-Gaussian
probability distribution. The beam independent ζ leads in turn to a significantly better fit.
Furthermore, the goodness-of-fit parameter χ2 is acceptable when these parameters are
used on the other data sets, as indicated in table 5.2. Of the two-Gaussian wave functions,
the ϕ0-fit is the simplest and has the best fit. We will thus use this when discussing the
antideuteron flux in the next chapter. In summary, one should use the model with the
two-Gaussian ϕ0-fit wave function and beam independent ζ with σ(pp) = 7.6 GeV−1 for pp
collisions and σ(e+e−)σ(pp)/

√
2 = 5.4 GeV−1 for e+e− collisions for Pythia 8.230.

The parameters should in principle be the same for helium-3 and tritium if an exact wave
function was chosen. Thus, one may either use the parameters from the two-Gaussian ϕ0-
fit or rely on the single experiment and use σ = 4.5 GeV−1 for pp collisions and 3.2 GeV−1

for e+e− collisions. As seen from table 5.1, the fit to the antihelium data is somewhere
in between the two-Gaussian and one-Gaussian fits, as one may expect by the choice of
wave functions.
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5 Developing a new coalescence model

Table 5.1: Fit results of all ζ-factors and antideuteron probability distributions to the
ALICE experiment at

√
s = 0.9, 2.76 and 7 TeV, the combined ALICE an-

tideuteron data, the ALICE helium-3 data, the ALEPH experiment and the
combined ALEPH and OPAL experiments.

Experiment one-Gaussian two-G., ϕ0-fit two-G., r3-fit two-G., avg.
σ [ 1

GeV ] χ2

N−1 σ [ 1
GeV ] χ2

N−1 σ [ 1
GeV ] χ2

N−1 σ [ 1
GeV ] χ2

N−1

Constant ζ

0.9 TeV 3.5± 0.7 7.5/2 6.2± 0.3 6.0/2 6.6± 0.3 7.1/2 6.4± 0.3 6.6/2
2.76 TeV 4.3± 0.3 44/6 6.6± 0.1 32/6 7.0± 0.2 40/6 6.8± 0.4 36/6
7 TeV 4.1± 0.2 182/19 6.6± 0.1 133/19 6.8± 0.1 168/19 6.7± 0.1 151/19
combined 4.1± 0.1 235/29 6.6± 0.1 172/29 6.9± 0.1 216/29 6.7± 0.1 194/29
helium-3 4.5± 0.9 1.7/2 - - - - - -
ALEPH 0+2.3

−0 - 5.0+0.9
−0.6 - 5.0+1.2

−0.9 - 5.0+1.1
−0.7 -

+OPAL 0+4.4
−0 3.2/1 5.5+1.3

−1.1 3.2/1 5.6+1.6
−1.5 3.2/1 5.5+1.5

−1.2 3.2/1

Beam independent ζ

0.9 TeV 3.7± 0.8 7.2/2 6.6± 0.3 4.3/2 7.0± 0.4 5.6/2 6.8± 0.3 5.0/2
2.76 TeV 4.7± 0.3 40/6 7.1± 0.1 19/6 7.5± 0.2 28/6 7.3± 0.3 24/6
7 TeV 4.4± 0.2 165/19 7.1± 0.1 69/19 7.4± 0.1 107/19 7.3± 0.1 87/19
combined 4.4± 0.1 213/29 7.1± 0.1 94/29 7.4± 0.1 142/29 7.2± 0.1 118/29
helium-3 4.8± 0.9 1.4/2 - - - - - -
ALEPH 0+2.4

−0 - 5.2+1.0
−0.6 - 5.2+1.3

−0.9 - 5.2+1.1
−0.7 -

+OPAL 0+4.5
−0 3.2/1 5.7+1.4

−1.1 3.2/1 5.8+1.7
−1.5 3.2/1 5.7+1.5

−1.3 3.2/1

Beam dependent ζ

0.9 TeV 3.9± 0.8 6.7/2 6.9± 0.3 2.6/2 7.2± 0.5 3.7/2 7.0± 0.3 3.3/2
2.76 TeV 4.9± 0.3 35/6 7.5± 0.1 8.6/6 7.8± 0.3 16/6 7.7± 0.2 12/6
7 TeV 4.7± 0.2 143/19 7.6± 0.1 29/19 7.8± 0.1 55/19 7.7± 0.1 40/19
combined 4.7± 0.4 186/29 7.6± 0.1 45/29 7.8± 0.1 78/29 7.7± 0.1 59/29
helium-3 5.2± 1.0 1.1/2 - - - - - -
ALEPH 0+2.4

−0 - 5.3+1.0
−0.6 - 5.2+1.3

−0.9 - 5.3+1.1
−0.7 -

+OPAL 0+4.6
−0 3.2/1 5.8+1.4

−1.1 3.2/1 5.9+1.7
−1.5 3.2/1 5.8+1.6

−1.3 3.2/1
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Figure 5.5: Best combined fits to the ALICE antideuteron data for the considered models.
The data and fits are multiplied by a constant factor to make the figure clearer.

Table 5.2: Goodness-of-fit parameter χ2 obtained when the best combined fit parameters
from the ALICE antideuteron data are used on the helium-3, ALEPH and OPAL
data.

ζ experiment / χ2 one-G. two-G. φ0-fit two-G. r3-fit two-G. avg.

Helium-3 1.9 5.7 6.4 6.0
Const. ALEPH 1.3 0.36 0.093 0.12

ALEPH + OPAL 3.5 4.5 3.9 4.0

Helium-3 1.6 5.8 6.4 6.1
Beam indep. ALEPH 1.4 0.078 0.009 0.008

ALEPH + OPAL 3.6 3.9 3.587 3.6

Helium-3 1.3 6.0 6.4 6.2
Beam dep. ALEPH 1.5 0.018 0.014 0.026

ALEPH + OPAL 3.6 3.3 3.4 3.3
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Figure 5.6: Best fits to the ALICE antihelium data for the one-Gaussian models. The best
fits using the parameters obtained from the best combined fit to the ALICE
antideuteron data is also plotted.
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6 Computing the antideuteron and
antihelium spectra

Antideuteron and antihelium-3 may be created in DM annihilations or decays in the
Galaxy. In this chapter, we will compute the antideuteron and antihelium-3 source spectra
from DM annihilations for some benchmark cases and use the two-zone propagation model
to estimate the resulting flux on Earth. The background of secondary nuclei will also
be estimated. The uncertainties due to the different DM distributions and propagation
models have been extensively detailed in the literature (see e.g. Refs. [48, 49, 52, 60]).
We will thus focus on the the detection prospects and uncertainties related to the new
model developed in the previous chapter, as well as the difference between the old and
new per-event coalescence models.

WIMP annihilations are similar to the e+e− annihilation process. For the old coa-
lescence model we therefore use the calibration to the ALEPH data to describe the an-
tideuteron formation in WIMP annihilations. However, due to the lack of a microphysical
understanding of p0, we must use the value obtained in the fit to the ALICE helium-3 data
to describe the formation of helium-3 and tritium. For the new models, we use instead
the best fit to the ALICE pp data rescaled by a factor 1/

√
2. The background is mainly

dominated by the production from collisions of cosmic ray protons hitting the protons
(hydrogen) in the Galactic disk. Thus, when computing the secondary flux we use the
best fit to the ALICE data in all cases.

6.1 Source spectra

6.1.1 Primaries
The DM annihilations will lead to injection spectra dNN̄/dT of antideuteron, antihelium-
3 and antitritium. It is common to consider a set of benchmark channels and masses. A
specific DM model can then be considered by weighting the different channels according
to the theoretical branching ratios of the model. We will consider a fermionic Majorana
particle with mass mχ annihilating into the colour neutral state b̄b and the state W+W−.
These annihilation channels serve as benchmarks for other heavy quarks and bosons,
respectively. The annihilation process is modelled in Pythia 8.230 by creating a “blob” of
energy with

√
s = 2mχ and only one possible decay channel at a time. The masses mχ =
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6 Computing the antideuteron and antihelium spectra

{100, 1000}GeV will be considered. About 109 events will be used in the antideuteron
production and 1010 in the antihelium production.

It was previously common to assume that the Coulomb repulsion of the antiprotons
suppresses the antitritium production [8]. However, as seen the two previous chapters,
the ALICE experiment found comparable antihelium-3 and antitritium yields. As the an-
titritiums produced in the DM annihilations have a short lifetime (∼ 12.5 years) compared
to the proper propagation time (∼ 1 Myr), it will decay to antihelium-3 before reaching
Earth. Thus, we will consider the combined antitritium and antihelium-3 source spectra
as the source of antihelium-3.

The injection spectra for the considered benchmark cases and the different considered
coalescence models are shown in figure 6.1 for antideuteron and in figure 6.2 for antihelium-
3. Consider first the antideuteron injection spectra. The source spectra using the old
model are in accordance to the results in existing works, such as Refs. [51, 52]. We note
that the new models with constant ζ and the old model yields similar spectra that differ
only by a small factor that may be explained by the difference in the calibration procedure.
In particular, the one-Gaussian model has a similar shape as the old model, but with a
smaller flux. The reason is, as noted in the previous chapter, that the model does not yield
a flux that is large enough to reproduce the ALEPH data which the old model is calibrated
by. Furthermore, the spectra obtained using the two-Gaussian beam dependent ζ differ
significantly from the old model: there is a larger flux at large energies (T & 0.1 GeV/2)
and a smaller flux at small energies (T . 0.1 GeV/2). Lastly, we note that even the cases
with constant ζ lead to a lower energy spectra at low energies T . 0.1 GeV/n, n being
the number of nucleons in the nuclei (n = 2 for antideuteron). From now on, we will only
consider the two-Gaussian wave function when discussing the antideuteron production.

The same characteristics as in the antideuteron case can be seen in the antihelium-3
injection spectra as well, but the results are not as clear due to the small amount of
statistics. Here another advantage of the new model is apparent: it require less statistics.
In the helium-3 injection spectra, the new and old models are used on the same data set,
yet the new models yield smoother spectra. One can further note that the flux using the
old model is smaller than the new models. This is due to the calibration of the models:
both the old and new models were calibrated to the antihelium-3 data from ALICE,
but the free parameter in the new model, σ, was rescaled by 1/

√
2 as expected from its

microphysical picture.
The primary source can in turn be written as [67]

Q(r, T ) = 1
2
ρ2(r)
m2
χ

∑
i

〈σv〉i
dN i

N̄

dTN̄
, (6.1)

where the sum goes over the possible annihilation channels, ρ is the DM distribution
discussed in section 2.1.2 and 〈σv〉i is the thermally averaged annihilation cross section
for the given channel. We will consider a single annihilation channel at a time and assume
〈σv〉 = 3× 10−26 cm3/s as motivated by the discussions in section 2.3.4.
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Figure 6.1: The injection spectra for the benchmark channels χχ→W+W− and χχ→ b̄b
and the DM masses mχ = {100, 1000}GeV for the considered models.

6.1.2 Secondaries
There will be some astrophysical background of antideuteron and antihelium-3 resulting
from mainly cosmic ray proton and helium colliding with mainly the hydrogen and helium
in the Galactic disk. This is known as secondary production. The source term of secondary
antinuclei can be written as [50]

Qsec(TN̄ , r) =
∑

i∈{p,He,p̄}

∑
j∈{p,He}

4πnj(r)
∫ ∞
T

(i,j)
min

dTi
dσi,j(Ti, TN̄)

dTN̄
Φi(Ti, r), (6.2)

where nj(r) is the density of particle j in the Galactic disk, Tmin is the threshold energy
for the production of the antinucleus, dσi,j(Ti, TN̄)/dTN̄ is the differential cross section
for the process ij → N̄X when N̄ has the kinetic energy TN̄ , and Φi(Ti, r) is the primary
flux of the incident particle.

Secondary antideuterons have been extensively detailed in Refs. [50, 68] for the spectral
model and in Ref. [69] for the MC approach. The source spectrum is dominated by the
process pp → N̄X, except from a small part of the low energy tail which is governed
by incident antiprotons due to the reduced threshold energy for antideuteron production.
Reactions involving helium tribute on average ∼ 30 %. Thus, since the main focus of this
chapter is the difference in the detection prospects of the different coalescence models, we
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Figure 6.2: The injection spectra for the benchmark channels χχ→W+W− and χχ→ b̄b
and the DM masses mχ = {100, 1000}GeV for the considered models.

approximate the secondary source spectrum by the pp contribution,

Qsec(T, r) = 4πnp(r)
∫ ∞
Tmin

dT ′
dσpp→N̄X(T ′, TN̄)

dTN̄
Φp(T ′). (6.3)

The secondary antideuteron and antihelium-3 spectra will be computed by producing
fixed target inelastic pp collisions in Pythia 8.230. The differential cross section will be
approximated as

dσpp(Tp, TN̄)
dTN̄

= σpp,inel
dNN̄(Tp, TN̄)

dTN̄
, (6.4)

where σpp,inel(Tp) is the inelastic pp cross section estimated by Pythia 8. The primary
proton flux can be parametrised by [70]

Φp(T ) =
(

T

T + b

)c (
A1T

−γ1 + A2T
−γ2
)
, (6.5)

with A1 = 53488 (m2s sr GeV/n)−1, A2 = 3294 (m2s sr GeV/n)−1, b = 2.40 GeV/n, c =
2.588, γ1 = 3.168 and γ2 = 2.576, which is found by fitting the parametrisation to the
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6.1 Source spectra

newest cosmic ray proton data from AMS-02.1 The parametrisation holds for T > 10 GeV
where the effect from Solar modulation is small. Furthermore, we assume that np(r) =
1 cm−3 in the disk (which we will later assume to have a half-height h = 100 pc). We
follow Ref. [69] and compute dσpp/dT with incident kinetic energy Tp in 53 logarithmic
bins from 25 to 104 GeV.2 The resulting secondary antideuteron and antihelium-3 spectra
for the different considered coalescence models are shown in figure 6.3. The result for
antideuteron is in accordance with the results by Ref. [69] for the old coalescence model.
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Figure 6.3: Secondary source spectrum of antideuteron (left) and antihelium-3 (right) from
incident protons colliding with the hydrogen in the ISM.

6.1.3 Tertiaries

In addition to the secondary and primary source, there will be a contribution from pri-
maries and secondaries colliding inelastically with the ISM. This is known as a tertiary
source and will lead to a redistribution of the energy that replenishes the low energy part
of the spectra. For the primary antideuterons and antihelium-3, this can be neglected
[51, 53]. For the secondary species, this effect is notable but small [50]. We will therefore
neglect the tertiary contribution in the current analysis.

1It was previously common to use a single exponential Φ ∝ E−γ with γ ' 2.7, but the PAMELA
experiment observed a stiffening of the proton flux around ∼ 200 GeV which was later confirmed by
AMS-02.

2The integral is solved using the Simpson method with variable step length, and the trapezoid method
is in turn used to check that the error related to the integration is small.
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6 Computing the antideuteron and antihelium spectra

6.2 Propagation through the Galaxy
6.2.1 Two-zone propagation model
Charged particles propagating through the Milky Way are affected by magnetic fields
which ultimately leads to a random walk behaviour that can be described by a diffusion
equation. The two zone propagation model is a standard tool to approximate the prop-
agation of a charged particle in the Galaxy and has been discussed in more detail in e.g.
Refs. [1, 52, 68]. Here we will only highlight the main features of the model. In order
to improve the results, one may instead use a more sophisticated complete numerical
treatment using for example the GALPROP code [71].

In the two-zone propagation model, the Galaxy is divided into two zones: a cylinder
of radius R and a large thin disk. The cylinder has a half-height L out of the Galactic
disk on either side, while the disk has a half-height h � L. Therefore one can assume
that the ISM is concentrated at z = 0, where z denotes the vertical distance from the
Galactic plane. The two parameters R and h are set to R = 20 kpc and h = 100 pc.
The propagation of the charged particles is assumed to be confined to the cylinder, and
the disk is the place the cosmic ray interacts with the ISM. In this model, the diffusion
equation can be written in cylindrical coordinates as

−∇ [K(r, z, E)∇nN̄(r, z, E)] + ∂

∂z
[sign(z)VcnN̄(r, z, E)]

+2hδ(z)ΓN̄annnN̄(r, z, E) = qN̄(r, z, E),
(6.6)

where nN̄ is the antinucleus number density at energy E, qN̄ is the source term, K is the
diffusion coefficient, Vc is the convection velocity, ΓN̄ann is the annihilation rate with inter-
stellar gas, and r denotes the distance from the Galactic centre along the Galactic plane.
In equation (6.6), both re-acceleration and energy losses have been neglected, as they
have been show to have little impact on the final primary spectrum [67]. Note, however,
that energy loss yields a non-negligible contribution to the low-energy tail (. few GeV)
on the background spectra (secondary and tertiary). Since this is already detailed in Ref.
[69] and since the main focus of this chapter is on the difference between the old and
new coalescence models, we will neglect energy losses even for the secondary flux. The
annihilation rate of an antinucleus N̄ can be approximated by

ΓN̄ann = (nH + 43/2nHe)vN̄σann
N̄p , (6.7)

where nH = 1 cm−3 and nHe = 0.07nH is the interstellar densities of hydrogen and helium
in the Galactic disk, 43/2 is a geometrical factor accounting for cross section difference
between helium and hydrogen, vN̄ is the antinucleus velocity and σann

N̄p
is the annihilation

cross section of the pN̄ collision. We estimate the annihilation cross section as σann
N̄p

(T ) =
σtot
N̄p

(T ) − σel
N̄p

(T ) − σnon-ann
N̄p

(T ). The different terms and the parametrisations used are
described in appendix C.
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6.2 Propagation through the Galaxy

Table 6.1: Benchmark parameters for the two-zone propagation model.

Model L [kpc] δ K0 [kpc2/Myr] Vc [km/s]

max 15 0.46 0.0765 5
med 4 0.7 0.0112 12
min 1 0.85 0.0016 13.5

Diffusion arises due to interaction between the charged particles and the highly turbu-
lent magnetic field. The diffusion coefficient is poorly known, and it is therefore common
to assume the standard rigidity dependent form

K(E) = βK0Rδ, (6.8)

where K0 and δ are free parameters of the model and are assumed to be the same in the
entire Galaxy. The convective wind is assumed to be constant and directed away from
the Galactic plane.

The final model only depends on four parameters:3 L,K0, δ and Vc. These parameters
have been constrained using a cosmic ray boron-to-carbon ratio study [72, 73], in which
many sets of parameters were accepted. In table 6.1 the three benchmark parameter sets
‘min’, ‘med’ and ‘max’ are listed. These corresponds to the minimum flux compatible
with the data, the best fit to the data and the maximum flux compatible with the data,
respectively. However, note that the three parameter sets do not represent the entire
uncertainty range [49], and that additional multichannel analyses have constrained the
parameters further. For example, an analysis of cosmic ray electron and positron spectra
and of the diffuse synchrotron emission of the Galaxy added the constraint L & 2 kpc [74].
Furthermore, measurements from AMS-02 on the boron-to-carbon ratio indicate that δ ≈
1/3 [75], which in turn suggests that ‘min’ and ‘med’ parameters are physically unfavoured,
although it is important to keep in mind that the exact value is model dependent. In
any case, the given parameters serve as benchmarks that can be used to compare with
existing works.

The diffusion equation (6.6) can be solved semi-analytically using the aforementioned
assumptions and approximations using cylindrical coordinates and an expansion in Bessel
functions [67].4 The total flux from the primary species at the position of the Sun (r = r�)
from annihilating Majorana DM particles can be expressed as

ΦN̄(T, r�) = vN̄
4π

(
ρ�
MDM

)2
RN̄(T )1

2 〈σv〉
dNd̄

dE , (6.9)

3Note that the model in Ref. [68] have an additional parameter Va called the Alfvénic speed. This leads
to a re-acceleration in the thin disk, but this can be neglected. See Ref. [52] for more information.

4When energy loss and tertiaries are taken into account, one must solve the diffusion equation numeri-
cally using for example the method detailed in Ref. [76].
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6 Computing the antideuteron and antihelium spectra

where vN̄ is the antinucleus speed and 〈σv〉 is the annihilation cross section for the process.
All of the astrophysical information is encoded in RN̄(T ). The propagation function
RN̄(T ) is independent on the source spectrum and the DM mass, and one therefore only
need to evaluate it once. It is given by

RN̄(T ) =
∞∑
i=1

J0

(
ζi
r�
R

)
exp

(
−VcL2K

)
yi(L)

Ai sinh(SiL/2) , (6.10)

where Jn is the nth order Bessel function, and

Qi(z) = 2
[J1(ζi)R]2

∫ R

0
dr rJ0

(
ζir

R

)(
ρ(r, z)
ρ�

)2

, (6.11)

yi(z) = 2
∫ z

0
dz′ exp

(
Vc
2K (z − z′)

)
sinh

(
Si
2 (z − z′)

)
Qi (z′) , (6.12)

Si =
√
V 2
c

K2 + 4 ζ
2
i

R2 , (6.13)

Ai = 2hΓN̄ann + Vc +KSi coth
(
SiL

2

)
. (6.14)

The expression for the propagation of the secondary flux is similar, but is simpler since
the source contains the factor n(r) ∝ 2hδ(z).

6.2.2 Numerical evaluation of the propagation function
We evaluate the propagation function for antideuteron and antihelium for the three bench-
mark parameter sets ‘min’, ‘med’ and ‘max’ in table 6.1 and the three DM distributions
isothermal, Einasto and NFW considered in section 2.1.2. The propagation function R(T )
is hard to evaluate numerically for two main reasons. Firstly, the hyperbolic functions
diverges. Secondly, the sum converges only slowly and the evaluation time of each new
term increases fast. These problems can be treated by combining the exponentials and
the hyperbolic functions, and choosing the convergence conditions wisely. When R(T )
as a function of the number of included terms, Ri(T ), is plotted, one notices that the
sum has a damped oscillating behaviour with a period of five terms. The average of
the last five Ri(T ) evaluations converges far faster than Ri(T ). We thus require that∑i+5
i Ri(T )/5 < ε.5 We use ε = 10−4 for the sum and use an adaptive integration method

with an absolute and relative tolerance less than 10−7 to evaluate the integrals.6

5With this condition, the evaluation of R(0.1 GeV) with the NFW distribution and the ‘min’ parameter
set — which is the considered function evaluation that converges most slowly — uses about 3000
steps and 45 CPU minutes with ε = 10−4. The evaluation of the next term increases fast, and so
this evaluation becomes undoable both due to time constraints and floating point errors if a standard
stopping criterion, such as |Ri+1 −Ri| < ε, is used.

6The function QAG from QuadPack [77] is used.
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6.2 Propagation through the Galaxy

The final propagation functions for primary antideuteron and antihelium-3 are shown
in figure 6.4. As can be seen from the figure, the uncertainty related to the different
distribution profiles is smaller than for the different parameters. The propagation function
for the secondary species is similar, but does not depend on the DM distribution. In
addition, the difference between the parameters sets is, as we will see later, small.
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Figure 6.4: The primary antideuteron and antihelium-3 propagation functions R(T ) for
the considered DM distribution profiles and propagation parameters.

6.2.3 Solar modulation
When the antideuterons approaches the Solar system, they will start to be modulated
by the Solar magnetic field. One should therefore consider the propagation through the
heliosphere separately. Due to the magnetic field, the charged particles will follow the
magnetic field lines and suffer an additional adiabatic energy loss that can be described
by the diffusion equation [78, 79]

∂f

∂t
= −(V sw + vd) · ∇f +∇ · (K · ∇f) + p

3(∇ · V sw)∂f
∂p
, (6.15)

where f is the antideuteron momentum distribution, p is the antideuteron momentum, K
is the diffusion tensor, V sw is the velocity of the Solar wind and vd is the velocity of the
antideuteron drift. In order to solve this equation, one needs to specify the Solar system
geometry, as well as diffusion, winds and drift properties. By amongst other assuming that
the heliosphere is spherically symmetric, one obtains the force-field solution (lowest-order
approximation)[79, 80]

j(r, E) = jlis(E + Zeφ) E2 −m2

(E + Zeφ)2 −m2 , (6.16)
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6 Computing the antideuteron and antihelium spectra

where j is the flux at a radial distance r, jlis is the local interstellar flux, Ze is the particle
charge, m is the particle rest mass and φ is the Fisk potential.7 The Fisk potential is
a pseudo-steady state solution that is correlated to the Solar activity, most notably the
∼ 11 year solar activity cycle. The value of φ should thus be tuned to experimental
data, such as antiproton measurements, around the same time period as the antideuteron
measurements. The Fisk potential is typically in the range from 300 to 700 MV [8]. In
the next section, we will be using φ = 500 MV.

Ideally, the solar modulation should be treated numerically, for example by using the
HelioProp code as done in Ref. [52]. This has the advantage of taking into account the
polarisation of the Sun and the antideuteron velocity vd, as well as the opposite polarisa-
tions on the two Solar hemispheres. Moreover, the force-field approximation reproduces
only the average modulation while Monte Carlo method can also take into account fluctu-
ations as well as spectral features of the particle flux. The uncertainties arising from solar
modulation modelling are not very large, but can reach a maximum of a factor 2.5 for light
DM particles at the top of the atmosphere [52]. All the same, the uncertainty remains
small compared to the uncertainties related to the propagation through the Galaxy and
the antideuteron formation (≈ 20 % [8, 52]).

There will be some additional effects due to geomagnetic deflection and atmospheric
influences [8]. Here we will compute the antinucleus flux at the top of the atmosphere
and neglect these effects.

6.3 Final spectra and detection prospects
The expected flux on Earth from WIMP annihilations and secondary production can now
be estimated by employing the two-zone propagation model and force-field approximation,
discussed in section 6.2, on the source spectra computed in section 6.1. For concreteness,
we consider only the Einasto distribution profile and the same benchmark cases as for
the source spectra. The estimated antideuteron flux is shown in figure 6.5 with the ‘med’
parameters. The shaded area corresponds to the expected GAPS long duration balloon
flight (105 days) (yellow) and five year AMS-02 sensitivity (purple) [8, 81]. The flux is
regarded as detectable if it reaches the shaded area. The opaque regions around the fluxes
corresponds to a typical uncertainty range related to the different formation models. For
the new models ∆σ = 1 GeV−1 has been used. This corresponds the uncertainty related
to the ALEPH experiment considered in sections 4.2 and 5.3. The uncertainty in the old
model is not shown in order to make the figure clearer, but it is similar to the new model
with constant ζ.

Note that the ALICE experiment includes more data points with smaller uncertainty
bands, but the estimated uncertainties in table 4.4 includes only the fit uncertainty. In

7The parameter φ is also known as the force-field potential or modulation potential.
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6.3 Final spectra and detection prospects

addition, one expects that the models induces additional uncertainties. In particular, the
old model and the new model with constant ζ does not describe the ALICE data well
at large pT . In order to obtain a proper uncertainty estimate, more experiments should
be considered. However, there are currently few e+e− and pp experiments with small
uncertainties available that can be used. Note that the estimated sensitivity of AMS-
02 and GAPS are based on studies during the development phases of the experiments.
Updated studies based on the final configurations is therefore warranted.

Figure 6.5: Estimated antideuteron flux on Earth from WIMP annihilations and secondary
production for the considered benchmark cases and the ‘med’ propagation
parameters. The shaded area around the flux for the new models corresponds
the uncertainty ∆σ = 1 GeV−1. The shaded area on the top is the estimated
AMS-02 and GAPS sensitivities.

The antideuteron flux with the ‘med’ and ‘max’ parameters are shown in figure 6.6,
which corresponds to a typical uncertainty in the propagation. The uncertainties in the
primary fluxes are larger than the uncertainties related to the coalescence models, and it
it clear that a new complete study of the different parameters and recent constraints is
needed. Alternatively, one may employ a complete numerical treatment using e.g. the
GALPROP code [71]. The uncertainties related to the propagation of the secondaries are
smaller than the uncertainties in the models. Two reasons for this are that we have not
considered the uncertainties in the cross section parametrisations and the solar modula-
tion, and that the parameter sets do not capture the entire uncertainty range. In any case,
the uncertainties in the propagation of the secondaries are smaller than for the primaries,
which may be expected as these spend a smaller time in the diffusion zone.

The new model with constant ζ is similar to the old model in all cases. The beam
dependent ζ, on the other hand, differs notably from the other cases at T & 1 GeV/n,
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6 Computing the antideuteron and antihelium spectra

Figure 6.6: Estimated antideuteron flux on Earth from WIMP annihilations and secondary
production for the considered benchmark cases and the ‘med’ propagation
parameters. The shaded area around the flux for the new models corresponds
the difference in the ‘med’ and ‘max’ parameters. The shaded area on the top
is the estimated AMS-02 and GAPS sensitivities.

but by at most a factor 2–3. This is much smaller than the uncertainty related to the
propagation and does not change current detection prospects significantly.

As apparent from figure 6.5, the flux at low T increases with decreasing WIMP mass.
This includes for example also the antiproton flux. Thus, it is simple to contrive a DM
candidate that can be detected by existing and previous experiments, which in turn implies
that bounds on the WIMP properties can be made using cosmic ray antideuteron and
antiproton. Optimistic scenarios, such as small DM masses, may overshoot the antiproton
data. Therefore one should cross check optimistic approaches with current constraints (see
for example [38, 39] for constraints from the AMS-02 antiproton data).

The estimated antihelium-3 flux on Earth for the same benchmark cases as in the
antideuteron case is shown in figure 6.7 with uncertainties related to the models, and in
figure 6.8 with the propagation uncertainties. For the uncertainty in the models, we use
∆τ = 2 GeV−1 to account for a larger uncertainty in the helium-3 data. The uncertainties
related to the old model have been omitted due to low statistics and to make the figures
clearer. We estimated the antihelium-3 sensitivity of AMS-02 by multiplying the 18-
year 3He/He sensitivity [82] by the measured helium flux by AMS-02 [83]. The increased
sensitivity may explain why, as discussed in section 2.5, AMS-02 has reported the detection
of eight possible antihelium events — one each year — while yet no antideuteron events.
From figures 6.7 and 6.8, one can see that the secondary production is more likely to
be detected than the considered WIMP particles. Reference [84] finds that some of the
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events may be accounted for in an optimistic approach, but it is hard to account for all
of them. However, as can be seen in the figures, the antideuteron flux is closer to the
expected detection efficiency, meaning that it is hard to explain the antihelium events from
secondary production without any antideuteron events. In addition, the two reported
antihelium-4 events should be even more suppressed compared to the six antihelium-3
events (a factor ∼ p3

0 ∼ 10−3), which is hard to explain even with an increased sensitivity.
In any case, eight events are not enough to draw a firm conclusion and the detection of
the events has not yet been published.

Finally, one can note that other works on the helium-3 flux usually use a value of p0
that is about twice as large as ours [53, 54, 84]. The reason is that they use the value
obtained for antideuterons using the ALEPH experiment and rescale it according to the
the binding energies of the nuclei. Both the antideuteron production spectra measured
by ALICE and the scaling of the new model we developed suggest that this value is too
large.

Figure 6.7: Estimated antihelium-3 flux on Earth from WIMP annihilations and secondary
production for the considered benchmark cases and the ‘med’ propagation
parameters. The shaded area around the flux for the new models corresponds
the uncertainty ∆σ = 2 GeV−1. The shaded area on the top right is the
estimated 18-year AMS-02 sensitivity.

The analyses performed here indicate that no antideuterons nor antihelium nuclei from
secondary production and WIMP annihilations with mχ & 100 GeV should be detected
by the 5-year sensitivity of AMS-02 and the long duration balloon flight of GAPS. In
an optimistic approach, however, one may account for some events. In particular, some
of the antihelium-3 events reported by AMS-02 may be accounted for by the secondary
species, although it is hard to account for all of them. In any case, an updated sensitivity
analysis including local effects such as geomagnetic deflection and atmospheric influences
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Figure 6.8: Estimated antihelium-3 flux on Earth from WIMP annihilations and secondary
production for the considered benchmark cases and the ‘med’ propagation
parameters. The shaded area around the flux for the new models corresponds
the difference in the ‘med’ and ‘max’ parameters. The shaded area on the top
right is the estimated 18-year AMS-02 sensitivity.

is highly needed in order to obtain a more certain conclusion. It it worth noting that our
analyses contains several uncertainties related to amongst other the propagation model,
nuclear cross sections, formation models, the DM distribution profiles and the sensitivity
analyses. In order to improve the results, one should amongst other use a complete nu-
merical treatment for the propagation. In addition, future experiments on the antinucleus
production in pp and e+e− collisions may increase the accuracy of the formation models.
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7 Summary and conclusion
The production of light (anti)nuclei in e+e−, pp and DM interactions is usually described
by the coalescence model in a MC framework, thereby taking momentum correlations of
the nucleons into account. This model is however phenomenological, lacks an underlying
microphysical picture and the numerical value of its free parameter varies considerably
between different experiments. In this thesis, we therefore developed a new coalescence
model for light (anti)nuclei based on the Wigner function representation of the produced
(anti)nuclei states. This approach allowed us to include in a semi-classical treatment both
the size of the formation region and the momentum correlations of the nucleons forming
the nuclei. The universal free parameter of the model is process dependent and accounts
therefore naturally for the difference in the observed antideuteron yields in e+e− and pp
collisions. Fitting the free parameter to recent experimental data on the antideuteron
production in pp collisions at LHC yielded σ(pp) ' 7 GeV−1, which corresponds well to
its physical interpretation as the size of the formation region of the nuclei. In turn, this
value describes well the helium-3 production in pp collisions and antideuteron production
in e+e− annihilations with σ(e+e−) = σ(pp)/

√
2 ' 1 fm ' 5 GeV−1 as expected from the

physical interpretation. Even so, the exact value depends on amongst other the event
generator used, meaning that it should be fine-tuned for each analysis. The model leads
to a notable better fit to the considered experiments, but more importantly, the model
includes a semi-classical description of the particles and has a microphysical picture that
can be used to estimate the free parameter.

Several different approximations of the (anti)deuteron wave function and implemen-
tations of the spatial distribution factor ζ were examined. The fits to the antideuteron
production in pp collisions at the ALICE experiment favoured the two-Gaussian wave
functions. In the simplest case of a constant ζ, the results were similar to the old coales-
cence model, although the new models had a notably improved goodness-of-fit parameter.
When the Lorentz transformation between the deuteron and lab frames was included in
ζ, the fit to the data improved. In particular, the fits using a Lorentz contracted trans-
verse size σ⊥ of the formation region (ζ beam dependent) improved the fits to the ALICE
antideuteron data significantly compared to the old model. Note that the best fit was
obtained for the physically expected choices: the two-Gaussian wave function takes into
account that the deuteron wave function has a distinct peak at r = 0, while σ⊥ ≈ Rp is
expected to hold in the lab frame. Only an one-Gaussian wave function for helium-3 and
tritium was studied, which may explain the difference in σ between the antideuteron and
antihelium-3 data sets.
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The new Wigner function based formation model was in turn used to estimate the
antideuteron and antihelium-3 production in DM annihilations and secondary production
in the Galaxy. The estimated secondary flux was similar for all considered models. The
model with constant ζ gave similar primary fluxes to the old model. On the other hand,
the beam dependent ζ gave primary fluxes that was at most a factor 2–3 larger than the
old model for T & 0.1 GeV/n, which is small compared to the uncertainties related to
the propagation. Thus, the new model does not change the existing detection prospects
significantly compared to the old model.

We find that the reported antihelium events by AMS-02 is difficult to account for by the
secondary production and the considered WIMP masses mχ = {102, 103}GeV with the
annihilation channels W+W− and b̄b. Furthermore, we find that the detection prospects
for both AMS-02 and GAPS are grim for the considered benchmark cases, both for an-
tideuteron and antihelium. However, the analysis consists of several uncertainties related
to the propagation and updated sensitivity analyses of the experiments are warranted.

In the future, the model should be fitted to a larger range of experiments such that
a proper uncertainty in the free parameter σ can be determined. However, there are
currently few available and relevant experiments with small uncertainties. In turn, in
order to obtain a proper estimate for the antinucleus flux, a complete numerical treatment
of the propagation should be used.
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Appendix A

Special relativity
This chapter lists formulas and concepts from special theory of relativity that are used in
this thesis. A more thorough discussion of the concepts and derivations can be found in
any introductory textbook on gravitation or particle physics (see e.g. Refs. [14, 22, 44,
85]).

Line element, proper time and Lorentz transformation
The space-time coordinates of an event in an inertial reference frame S can be written as
the four-vector xµ = (t,x). The space-time coordinate of the same event in a coordinate
system S ′ moving at constant velocity v = (v, 0, 0) with respect to S is given by the
Lorentz transformation

x′
ν = Λν

µx
µ, (A.1)

where Λν
µ may be regarded as elements in the matrix

Λ =


γ −γv 0 0
−γv γ 0 0

0 0 1 0
0 0 0 1

 . (A.2)

The Lorentz factor γ is as usual defined as

γ ≡ 1√
1− v2

. (A.3)

A general four-vector is defined as a vector with four components that transforms as the
space-time coordinates under Lorentz transformation.

The Lorentz transformation given above is a special case of the Lorentz boost in a
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general direction n = (nx, ny, nz) given by the matrix

B(v) =


γ −γvnx −γvny −γvnz

−γvnx 1 + (γ − 1)n2
x (γ − 1)nxny (γ − 1)nxnz

−γvny (γ − 1)nynx 1 + (γ − 1)n2
y (γ − 1)nynz

−γvnz (γ − 1)nznx (γ − 1)nzny 1 + (γ − 1)n2
z

 . (A.4)

In most cases, however, it is more convenient to rotate the coordinate system such that
the transformation is on the form (A.2). The boost B(v) constitutes together with three
rotations R(θ) the Lorentz group.

The line element in Minkowski space is

ds2 = dt2 − dx2 − dy2 − dz2 = dxµ dxµ = ηµνx
µxν ≡ dτ 2 , (A.5)

which is invariant under Lorentz transformation. Due to this invariance, the proper time
τ can be defined by the differential ds = dτ for time-like separated events. The proper
time interval is in other words found by integrating ds. For time-like separated event
ds2 < 0, while for space-like separated events ds2 > 0.

Energy and momentum
The velocity v of a particle constitutes a part of the four-vector uµ = dxµ/dτ = γ(1,v)
known as the four-velocity. The four-momentum is in turn defined as

pµ ≡ muµ = (E,p), (A.6)

where m is the rest mass, p = γmv is the three-momentum of the particle and E ≡ γm
is the relativistic energy. The energy can further be divided into a rest energy m and
kinetic energy T as

E ≡ T −m, (A.7)
where T ≡ m(γ − 1). By taking the inner product of the four-momentum by itself, one
obtains the important formula

pµp
µ = E2 − p2 = m2. (A.8)

Note that this implies E = |p| for a massless particle.
All of the relativistic quantities that were introduced above reduces to the corresponding

classical quantities in the low energy limit v � 1. The four-momentum is conserved and
it transforms under the Lorentz transformation (A.1) as

pµ → p′
µ = (γ[E − vpx], γ[px − Ev], py, pz) . (A.9)
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Lorentz invariant quantities
It is often convenient to consider Lorentz invariant quantities, such that one may evaluate
an expression in any frame rather than performing the transformation. All four-vectors,
for example, have the intrinsic property that their norm transforms as scalars under
Lorentz transformations. In two-body particle scatterings, 1 + 2 → 3 + 4, it is often
convenient to introduce the Mandelstam variables,

s ≡ (p1 + p2)2 = (p3 + p4)2, (A.10a)
t ≡ (p1 − p3)2 = (p2 − p4)2, (A.10b)
u ≡ (p1 − p4)2 = (p2 − p3)2, (A.10c)

where pi is the four-momentum of particle i. These quantities describes the momentum
transfer in the three possible tree-level channels, and it can be shown that these transforms
as scalars under Lorentz transformation.

As an example, consider the CoM energy of particle 1, E1,CoM. The CoM frame of
particle 1 and particle 2 is characterised by p1,CoM = −p2,CoM, which implies that s can
be expressed as s = (E1,CoM + E2,CoM)2. Finally, inserting E2

2,CoM = m2
2 − m2

1 + E2
1,CoM

and solving for E1,CoM gives

E1,CoM = s+m2
1 −m2

2
2
√
s

. (A.11)

Another important Lorentz scalar is d3p /E. One can use this to show that

d3p′ = E ′

E
d3p = γ

(
1− vpx

E

)
d3p . (A.12)
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Appendix B

Wigner functions and Weyl transforms
The Wigner function and Weyl transform of operators offer an alternative formulation
of quantum mechanics. In this chapter, some of the main features and characteristics
of the time independent Weyl transformation and Wigner function for one-body systems
in one dimension will be discussed, but the concepts can easily be generalised to more
dimensions and to N particles. Most of this content is taken from Refs. [86, 87].

The one-dimensional one-particle Wigner function fW(p, x) is defined as

fW(p, x) =
∫
ρ(x+ y/2, x− y/2)e−ipy dy , (B.1)

where ρ(x, x′) is the one-particle density matrix of the system in position space.1 As a
direct consequence fW(p, x) is always real.2 Note, however, that fW(p, x) is by itself only
a quasi-probability distribution since it, amongst other, in general can be negative. The
inverse relation is

ρ(x, x′) =
∫ dp

2πf
W
(
p,
x+ x′

2

)
exp[ip(x− x′)]. (B.2)

The Wigner function fW thus contains the same information as ρ. A key property of
the Wigner function is that the probability distribution in position space is found by
integrating over the momentum,∫

fW(p, x)dp
2π = ρ(x, x) = P (x), (B.3)

while the probability distribution in momentum space is found by integrating over space
the position, ∫

fW(p, x) dx = ρ(p, p) = P (p). (B.4)

In other words, the Wigner function fW(p, x) expresses the distribution in phase space
corresponding to the density matrix in position space.

1This definition can be “derived” in the following way: Fourier transform ρ(x, x′) with respect to
y ≡ x− x′ and then write (x+ x′)/2 as x.

2Take the complex conjugate of equation (B.1) and change the integration variable as y → −y.
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Appendix B Wigner functions and Weyl transforms

The Weyl transform of an operator Â is defined as

Ã(x, p) =
∫

dy e−ipy 〈x+ y/2| Â |x− y/2〉 , (B.5)

where the operator is expressed in position space through the matrix elements 〈x| Â |x〉.
This can, however, equally well be expressed with matrix elements of the operator in
momentum space. Comparison to the definition of the Wigner function (B.1) reveals that
the Wigner function is simply the Weyl transform of the density operator. One important
property of the Weyl transform is that the trace of the product of two operators, Â and
B̂, can be expressed by the integral of the corresponding Weyl transforms,

tr
(
ÂB̂

)
=
∫∫

dx dp
2πÃ(x, p)B̃(x, p). (B.6)

This property implies that the expectation value of A can be written as

〈A〉 = tr
(
ρÂ
)

=
∫
fW(p, x)Ã(x, p) dx dp

2π . (B.7)

Let now Â = Â(x̂) be an operator which depends only on x̂. In this case the Weyl
transform becomes

Ã(x) =
∫

dy eipyA(x− y/2)δ(y) = A(x). (B.8)

A similar result is obtained for Â = Â(p̂) by using the Weyl transform in the momentum
basis. More generally, the Weyl transform of an operator Â(x̂, p̂) that can be written as
a sum where each term is purely a function of x̂ or p̂, is simply the original function with
x̂ and p̂ replaced by x and p: Ã(x, p) = A(x, p). In this case, (B.7) simplifies to

〈A(x, p)〉 =
∫
A(x, p)fW(p, x)dp

2π dx . (B.9)
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Appendix C

Cross section parametrisations
In this chapter, we review the parametrisations for cross sections relevant for the an-
tideuteron and antihelium-3 propagation in the Galaxy. This appendix follows the ap-
proach by Delahaye and Grefe [49] for antideuterons and Carlson et al. [53] for antihelium.

We redo the fits by Delahaye and Grefe. Data for the antiproton-proton total collision
cross section was obtained from Ref. [14], and we account for uncertainties by adding
the statistical and systematic errors in a quadrature. Possible correlation of statistical
errors was not taken into account. There are no data on proton-antinucleus cross sec-
tions, and we therefore assume that σi

pN̄
= σip̄N . Furthermore, there exists little data on

the antiproton-deuteron cross sections, and some scaling of the antiproton-proton cross
section will therefore be used. For the propagation of antinuclei, we need the annihilating
antideuteron-proton cross section σann

N̄p
(T ) = σtot

N̄p
(T )−σel

N̄p
(T )−σnon-ann

N̄p
(T ). The final fits

of the relevant cross sections is plotted in figure C.1.

Antiproton-proton cross section
There exists many different parametrisations for the antiproton-proton cross section, most
of which are only applicable for high energies (

√
s > 5 GeV). One useful parametrisation

valid for the entire domain of measurements is [88]

σtot
p̄p = σtot

asmpt

1 + c√
s− 4m2

pR
3
0(s)

(
1 + d1√

s
+ d2

s
+ d3

s3/2

) , (C.1)

where s = 2m2
p + 2mp

√
m2
p + p2

p̄ is the CoM energy, and

σtot
asmpt =

[
36.04 + 0.304 ln2(s/33.1 GeV)

]
mb,

R2
0 =

[
0.40874044σtot

asmpt mb−1 −B(s)
]

GeV−2,

B(s) = 11.92 + 0.3036 ln2(
√
s/20.74 GeV),

where we have used the numerical values from Ref. [89]. The parameters c, d1, d2 and
d3 must be determined from a fit to experimental data. Note that both the high energy
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behaviour σtot
asmpt and the slope of the diffraction cone B(s) has been determined by fit to

data.
We performed a χ2-fit on available experimental data on p̄p cross section, as well pp

cross section for plab > 1 TeV . The result was

c = (14.81± 0.64) GeV−2, d1 = (−5.01± 0.17) GeV,
d2 = (14.11± 0.53) GeV2, d3 = (−13.95± 0.50) GeV3,

(C.2)

giving a goodness-of-fit χ2/dof = 2365/456. Given that most of the data used do not
state the systematic errors, this is acceptable.

For the elastic cross section σp̄pel , we use the parametrisation by Uzhinsky et al. [89].
Here, they use the same function (C.1) with an asymptotic behaviour1

σtot
asmpt = 4.5 + 0.101 ln2(s/33.0625 GeV).

With this parametrisation, we found that

c = 60.78± 3.00, d1 = −7.03± 0.16, d2 = 23.68± 0.52, d3 = −25.37± 0.56, (C.3)

with a goodness-of-fit χ2/dof = 165/138, where we have included data for σpptot above
1 TeV.

For the non-annihilating cross section, we use the parametrisation by Ref. [60],2

σnon-ann
p̄d (pp̄) = 10−2.141+5.865 exp{− log10(pp̄/GeV)}−3.398 exp{−2 log10(pp̄/GeV)}. (C.4)

Antideuteron-proton cross section
There are no experimental data for σd̄ptot. However, there exists some data for the charge
conjugated reaction σp̄dtot between 270 MeV and 280 GeV [14]. We therefore assume that
σd̄ptot = σdp̄tot. Most previous work on the subject assume also that σd̄p ≈ 2σp̄p, but as Ref.
[49] notes, 2σp̄ptot is roughly 10 % larger than σd̄ptot as expected due to Glauber screening. We
will therefore follow Ref. [49] and rescale the high energy part of the antiproton-proton
cross section data by a suitable factor.3

We found that equation (C.1) with the parameters (C.2) rescaled by a factor 1.89
gives a good fit on the antiproton-deuteron data above 5 GeV. The parametrisation for
σd̄ptot was in turn found by fitting (C.1) rescaled by the same factor to the experimental

1This numerical value is not explicitly given in the article, but can be found in the source code of the
Geant4 software referred to in the article.

2This is not stated in the article, but written down by Delahaye and Grefe [49].
3Note that Ref. [49] uses different fit functions. They use the fit function by Ref. [88] for σp̄ptot and a

piecewise ansatz for σp̄ptot.
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data. In addition to the σp̄dtot data, we included antiproton-proton data above 1 TeV and
proton-proton data above 10 TeV. The result was

c = (16.00± 0.38) GeV−2, d1 = (−5.65± 0.11) GeV,
d2 = (16.28± 0.41) GeV2, d3 = (−16.17± 0.41) GeV3,

(C.5)

with a goodness-of-fit χ2/dof = 388/144.
There is not much data available for the elastic cross section. We therefore follow Ref.

[49] and scale the parametrisation of σp̄pel to the available data [90]. We found that a scale
factor 1.65 gave the best fit to the elastic antiproton-deuteron data.
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Figure C.1: Parametrisations and data for the total and elastic antiproton-proton cross
sections (left) and total, elastic and inelastic antideuteron-proton cross sec-
tions (right). The parametrisations and the data are described in the text.

Antihelium-proton cross section
For the antihelium cross sections we use the parametrisations [53, 91]

σtot
p̄A =A2/3

[
48.2 + 19T−0.55 + (0.1− 0.18T−1.2)Z (C.6a)

+0.0012T−1.5Z2
]
, (C.6b)

σann
p̄A =σtot

p̄A − σ
non-ann, inel
p̄A , (C.6c)

σnon-ann, inel
p̄A =σnon-ann, inel

pA , (C.6d)
σnon-ann, inel
pA =45A0.7 [1 + 0.016 sin(5.3− 2.63 lnA)] (C.6e)

×

1− 0.62e−T/0.2 sin [10.9/(103T )0.28] for T ≤ 3,
1 for T > 3,

(C.6f)

where T is the kinetic energy per nucleon.
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