Multi-Messenger Astonomy with Cen A?

Michael Kachelrieß

NTNU, Trondheim

Outline of the talk

Introduction

② Dawn of charged particle astronomy?

- Expectations vs. Auger data
- Effects of cluster fields
- S Multi-messenger astronomy with Cen A?

Conclusions

<回> < 回> < 回> < 回> -

Introduction

Dawn of charged particle astronomy?

- Expectations vs. Auger data
- Effects of cluster fields
- S Multi-messenger astronomy with Cen A?

Conclusions

<回> < 回> < 回> < 回> -

Introduction

② Dawn of charged particle astronomy?

- Expectations vs. Auger data
- Effects of cluster fields
- S Multi-messenger astronomy with Cen A?
- Conclusions

<回> < 回> < 回> < 回> -

Introduction

② Dawn of charged particle astronomy?

- Expectations vs. Auger data
- Effects of cluster fields
- S Multi-messenger astronomy with Cen A?

Onclusions

<回> < 回> < 回> < 回> -

1910: Father Wulf measures ionizing radiation in Paris

80m: flux/2

APC Paris, 9. Dec. '08

Michael Kachelrieß

Multimessenger Astronomy with Cen A?

A DUAL DE

1910: Father Wulf measures ionizing radiation in Paris

300m: flux/2

80m: flux/2

APC Paris, 9. Dec. '08

Michael Kachelrieß

Multimessenger Astronomy with Cen A?

A DUAL DE

What do we know 98 years later?

APC Paris, 9. Dec. '08

Michael Kachelrieß

What do we know 98 years later?

PAO data: energy spectrum

PAO data: energy spectrum

PAO data: energy spectrum

APC Paris, 9. Dec. '08

Michael Kachelrieß

APC Paris, 9. Dec. '08

Michael Kachelrieß Multimessenger Astronomy with Cen A?

・ロン ・回 と ・ ヨ と ・ ヨ と …

• limits strongly all top-down or Z burst models

APC Paris, 9. Dec. '08

Michael Kachelrieß Multimessenger Astronomy with Cen A?

(ロ) (同) (E) (E)

- limits strongly all top-down or Z burst models
- points to heavier composition at UHE

- 4 回 2 - 4 □ 2 - 4 □

- limits strongly all top-down or Z burst models
- points to heavier composition at UHE
- supported by fluctuations of X_{\max}

APC Paris, 9. Dec. '08

- 4 回 2 - 4 □ 2 - 4 □

• astronomy with VHE photons restricted to few Mpc:

APC Paris, 9. Dec. '08

Michael Kachelrieß

- astronomy with VHE photons restricted to few Mpc:
- astronomy with HE neutrinos:
 - large λ_v , but also large uncertainty $\langle \delta \vartheta \rangle \gtrsim 1^\circ$

(本部) (注) (注) (注)

- astronomy with VHE photons restricted to few Mpc:
- astronomy with HE neutrinos:
 - large $\lambda_{\nu},$ but also large uncertainty $\langle\delta\vartheta\rangle\gtrsim1^\circ$
 - $\bullet\,$ small event numbers: $\lesssim {\rm few}/{\rm yr}$ for PAO or ICECUBE
 - identification of steady sources challenging

・ 回 と ・ ヨ と ・ ヨ と

Energy losses, the dip and the GZK cutoff

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Dipole anisotropy – cosmolog. Compton-Getting effect

- induced by motion of Sun relative to cosmological rest frame
- requires $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$

・ 同 ト ・ ヨ ト ・ ヨ ト

- Dipole anisotropy cosmolog. Compton-Getting effect
 - induced by motion of Sun relative to cosmological rest frame
 - requires $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$
- Anisotropies on medium scales

- $z \leq 0.2$: spots with $\ell \sim 20\text{--}40$ degrees
- reflects LSS of matter, modified by B
- requires $\lambda_{CR}(E) \leq \text{few} \times \lambda_{LSS}$

- Dipole anisotropy cosmolog. Compton-Getting effect
 - induced by motion of Sun relative to cosmological rest frame
 - requires $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$
- Anisotropies on medium scales
 - $z \leq 0.2$: spots with $\ell \sim 20\text{--}40$ degrees
 - reflects LSS of matter, modified by B
 - requires $\lambda_{CR}(E) \lesssim \text{few} \times \lambda_{LSS}$

Small-scale clustering

- $\bullet\,$ Small-scale $\sim\,$ angular resolution of experiments
- \Rightarrow CR from the same (?) point sources
 - requires small qB/E and small N_s

・ 回 ト ・ ヨ ト ・ ヨ ト

- Dipole anisotropy cosmolog. Compton-Getting effect
 - induced by motion of Sun relative to cosmological rest frame
 - requires $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$
- Anisotropies on medium scales
 - $z \leq 0.2$: spots with $\ell \sim 20\text{--}40$ degrees
 - reflects LSS of matter, modified by B
 - requires $\lambda_{CR}(E) \lesssim \text{few} \times \lambda_{LSS}$
- Small-scale clustering
 - $\bullet\,$ Small-scale $\sim\,$ angular resolution of experiments
 - \Rightarrow CR from the same (?) point sources
 - requires small qB/E and small N_s
- Orrelations with specific sources
 - requires small qB/E and small N_s

・ 同 ト ・ ヨ ト ・ ヨ ト

AGN from VCC catalogue:

4 E 6 4 E 6

• first data set with data < May 2006 to fix cuts:

 $E_{\rm th} = 56 {\rm EeV}$, $\ell_0 = 3.1^\circ$ and $d \le 75 \,{\rm Mpc}$.

<回> < 回> < 回> < 回>

• first data set with data < May 2006 to fix cuts:

 $E_{\rm th} = 56 {\rm EeV}$, $\ell_0 = 3.1^\circ$ and $d \le 75 \,{\rm Mpc}$.

• second data set May 2006–August 2007:

13 events, 8 correlated, 2.7 expected $\Rightarrow p_{ch} \approx 2 \times 10^{-3}$

• first data set with data < May 2006 to fix cuts:

 $E_{\rm th} = 56 {\rm EeV}, \ \ell_0 = 3.1^{\circ} \ {\rm and} \ d \leq 75 \, {\rm Mpc}.$

- second data set May 2006–August 2007: 13 events, 8 correlated, 2.7 expected $\Rightarrow p_{\rm ch} \approx 2 \times 10^{-3}$
- just a "3 σ effect", test against isotropy, no propagation

• first data set with data < May 2006 to fix cuts:

 $E_{\rm th} = 56 {\rm EeV}, \ \ell_0 = 3.1^{\circ} \ {\rm and} \ d \leq 75 \, {\rm Mpc}.$

- second data set May 2006–August 2007: 13 events, 8 correlated, 2.7 expected $\Rightarrow p_{\rm ch} \approx 2 \times 10^{-3}$
- \bullet just a "3 σ effect", test against isotropy, no propagation
- AGN or something with similar distribution?

• 27 CRs (⊙) and 472 AGN (∗):

APC Paris, 9. Dec. '08

Michael Kachelrieß Multimessenger Astronomy with Cen A?

白 ト イヨト イヨト

• 27 CRs (⊙) and 472 AGN (∗):

Virgo does not contribute

[Gorbunov et al. '08

APC Paris, 9. Dec. '08

Michael Kachelrieß

Multimessenger Astronomy with Cen A?

Energy threshold consistent with GZK horizon?

• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

Energy threshold consistent with GZK horizon?

• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

Energy threshold consistent with GZK horizon?

• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

Energy threshold consistent with GZK horizon?

• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

Comparing with sources:

• Use the auto-correlation function,

$$w(\vartheta) = \frac{DD(\vartheta)}{RR(\vartheta)} - 1,$$

where

- DD: number of pairs in catalogue
- RR: number of pairs in random sets

for most popular sources of UHECRs:

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Comparing with sources:

• Use the auto-correlation function,

$$w(\vartheta) = \frac{DD(\vartheta)}{RR(\vartheta)} - 1,$$

for most popular sources of UHECRs: AGN

APC Paris, 9. Dec. '08

Michael Kachelrieß Multimessenger Astronomy with Cen A?

[A. Cuoco et al. '07, '08]

Comparing with sources:

[A. Cuoco et al. '07, '08]

• Use the auto-correlation function,

$$w(\vartheta) = \frac{DD(\vartheta)}{RR(\vartheta)} - 1,$$

for most popular sources of UHECRs: AGN and GRB

θ [deg]

(θ)

APC Paris, 9. Dec. '08

[A. Cuoco et al. '07]

- differences on all angular scales
- reduced statistical error
- reduced dependence on B:
 - global comparison on all scales
 - only relative deflections enter
- possible to constrain B

- differences on all angular scales
- reduced statistical error
- reduced dependence on B:
 - global comparison on all scales
 - only relative deflections enter
- possible to constrain B

- differences on all angular scales
- reduced statistical error
- reduced dependence on *B*:
 - global comparison on all scales
 - only relative deflections enter
- possible to constrain B

- differences on all angular scales
- reduced statistical error
- reduced dependence on B:
 - global comparison on all scales
 - only relative deflections enter
- possible to constrain B

Clustering signal for the PAO-Science data

[A. Cuoco et al. '08]

APC Paris, 9. Dec. '08

Michael Kachelrieß

Multimessenger Astronomy with Cen A?

Clustering signal for the PAO-Science data

APC Paris, 9. Dec. '08

Michael Kachelrieß

Effects of cluster fields

• Sources sit in regions with $\rho \gg \langle \rho \rangle$ and $B \gg \langle B \rangle$

・ロト ・同ト ・ヨト ・ヨト

Effects of cluster fields

• Sources sit in regions with $\rho \gg \langle \rho \rangle$ and $B \gg \langle B \rangle$

• what are effects of cluster fields?

- 4 回 2 4 三 2 4 三 2 4

Anisotropies of a single source at 1000 EeV/Z

APC Paris, 9. Dec. '08

Anisotropies of a single source at 100 EeV/Z

Anisotropies of a single source at 10 EeV/Z

Anisotropies of a single source at 1 EeV/Z

• anisotropies hide cluster for part of observer

APC Paris, 9. Dec. '08

Effects of cluster fields:

- anisotropies hide cluster for part of observer
- modulate the energy spectrum

: Multi-Messenger Astronomy with Cen A?

MK, S. Ostapchenko, R. Tomàs '08

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

(日) (ヨ) (ヨ) (ヨ)

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

(日) (ヨ) (ヨ) (ヨ)

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

(日) (ヨ) (ヨ) (ヨ)

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

- neglect acceleration
- fix 2 basic scenarios: "core" and "jet"
- fix n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis

Chandra observation of X-ray emission in the jet

◆□ > ◆□ > ◆臣 > ◆臣 >

Chandra observation of X-ray emission in the jet

- divide in subareas
- separate fit to gas column density X and spectral index α

APC Paris, 9. Dec. '08

Michael Kachelrieß

Multimessenger Astronomy with Cen A?

Chandra observation of X-ray emission in the jet: Results

• $X = 1.5 \times 10^{21} / \text{cm}^2$ in the jet

APC Paris, 9. Dec. '08

Michael Kachelrieß Multimessenger Astronomy with Cen A?

Chandra observation of X-ray emission in the jet: Results

•
$$X = 1.5 \times 10^{21} / \text{cm}^2$$
 in the jet

- with d = 0.4 kpc and $\sigma_{pp} = 150$ mbarn:
- \Rightarrow interaction depth $au_{pp} \sim 0.01$

・ 回 ト ・ ヨ ト ・ ヨ ト

Length scales for acceleration in the jet

APC Paris, 9. Dec. '08

Length scales for acceleration in the jet

Length scales for acceleration in the jet

- diffusion increases effective size
- for pp no threshold
- $\tau = 1$ for $E = 10^{17} \text{eV}$, optimal for neutrino telescope

acceleration close to the core

acceleration in accretion shock/regular fields

 $p\gamma$ interactions

 $au_{\gamma\gamma}\gg 1$, synchrotron losses for e^\pm

acceleration in jet

shock acceleration

pp interactions

 $au_{\gamma\gamma} \ll 1$, synchrotron losses for e^\pm

APC Paris, 9. Dec. '08

(日) (同) (E) (E) (E)

Results for acceleration in jet: broken power-law

APC Paris, 9. Dec. '08

Results for acceleration in jet: broken power-law

APC Paris, 9. Dec. '08

Results for acceleration in jet: broken power-law

Results for acceleration in jet: $\alpha = 2$

APC Paris, 9. Dec. '08

-<- ≣ →

Results for acceleration in jet: $\alpha = 1.2$

APC Paris, 9. Dec. '08

-∢ ≣ ▶

토 🖌 🖉 토

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: $10^{-4}\mbox{--few events per year}$

(日) (同) (E) (E) (E)

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: $10^{-4}\mbox{--few}$ events per year
 - if typical steady source, first detection of diffuse flux

[Koers, Tinyakov '08]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: $10^{-4}\mbox{--few}$ events per year
 - if typical steady source, first detection of diffuse flux

[Koers, Tinyakov '08]

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・

- HE gamma astronomy:
 - $\bullet\,$ all cases promising apart from $\alpha \to 1$

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: $10^{-4}\mbox{--few}$ events per year
 - if typical steady source, first detection of diffuse flux

[Koers, Tinyakov '08]

・ロン ・回 と ・ ヨ と ・ ヨ と …

- HE gamma astronomy:
 - $\bullet\,$ all cases promising apart from $\alpha \to 1$
- general:
 - TeV photon sources may be also good neutrino sources

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: $10^{-4}\mbox{--few}$ events per year
 - if typical steady source, first detection of diffuse flux

[Koers, Tinyakov '08]

- HE gamma astronomy:
 - $\bullet\,$ all cases promising apart from $\alpha \to 1$
- general:
 - TeV photon sources may be also good neutrino sources
 - pp may be more important than $p\gamma$ in jet

• tension between horizon and fraction of correlated PAO events

- tension between horizon and fraction of correlated PAO events
- tension between chemical composition and correlation data from PAO

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

- tension between horizon and fraction of correlated PAO events
- tension between chemical composition and correlation data from PAO
- \Rightarrow nuclei with admixture of protons?

- tension between horizon and fraction of correlated PAO events
- tension between chemical composition and correlation data from PAO
- \Rightarrow nuclei with admixture of protons?
 - auto-correlation more robust method than cross-correlation

(本部) (注) (注) (注)

- tension between horizon and fraction of correlated PAO events
- tension between chemical composition and correlation data from PAO
- \Rightarrow nuclei with admixture of protons?
 - auto-correlation more robust method than cross-correlation
 - lensing in cluster and Galactic fields important

・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

- tension between horizon and fraction of correlated PAO events
- tension between chemical composition and correlation data from PAO
- \Rightarrow nuclei with admixture of protons?
 - auto-correlation more robust method than cross-correlation
 - lensing in cluster and Galactic fields important
 - connection to TeV γ -rays, acceleration

(日) (同) (E) (E) (E)