News from High-Energy Cosmic Rays and Neutrinos Michael Kachelrieß

NTNU, Trondheim

Outline of the talk

Introduction

- Is progress slow?
- Results on Composition
- γ 's and ν 's as CR secondaries
- Origin of the CR knee: Escape model
 - Fluxes of groups of CR nuclei
 - Transition to extragalactic CRs
 - Anisotropy
- IceCube excess
 - Disentangling signal/prompt/background
 - Characteristica of proposed sources

Conclusions

Outline of the talk

Introduction

- Is progress slow?
- Results on Composition
- γ 's and ν 's as CR secondaries
- Origin of the CR knee: Escape model
 - Fluxes of groups of CR nuclei
 - Transition to extragalactic CRs
 - Anisotropy
- IceCube excess
 - Disentangling signal/prompt/background
 - Characteristica of proposed sources

Conclusions

Outline of the talk

Introduction

- Is progress slow?
- Results on Composition
- γ 's and ν 's as CR secondaries
- Origin of the CR knee: Escape model
 - Fluxes of groups of CR nuclei
 - Transition to extragalactic CRs
 - Anisotropy

IceCube excess

- Disentangling signal/prompt/background
- Characteristica of proposed sources

Conclusions

1912: Victor Hess discovers cosmic rays

Two key questions

- what are their sources?
- how do they accelerate?

Hess' and Kolhoerster's results:

102 years later: no definite answers yet

- Why progress has been slow?
 - **Q** CRs diffuse in magnetic fields \Rightarrow no "astronomy" possible
 - 2 only indirect detection $> 10^{14} \,\mathrm{eV} \Rightarrow$ composition uncertain

102 years later: no definite answers yet

- Why progress has been slow?
 - **O** CRs diffuse in magnetic fields \Rightarrow no "astronomy" possible
 - 2 only indirect detection $> 10^{14} \text{ eV} \Rightarrow$ composition uncertain
- How to overcome these problems?
 - Multi-messenger astronomy,
 - \star γ : distinguish "hadronic" from "leptonic", only below $\sim 10 \text{ TeV}$
 - $\star \nu$: low event rates requires km³ detectors

102 years later: no definite answers yet

- Why progress has been slow?
 - **O** CRs diffuse in magnetic fields \Rightarrow no "astronomy" possible
 - 2 only indirect detection $> 10^{14} \text{ eV} \Rightarrow$ composition uncertain
- How to overcome these problems?
 - Multi-messenger astronomy,
 - \star γ : distinguish "hadronic" from "leptonic", only below $\sim 10 \text{ TeV}$
 - \star ν : low event rates requires km³ detectors
 - improve
 - * experiments: combining different techniques (KASCADE-Grande, PAO, TA)
 - ★ models: new data from LHC (EPOS-LHC, QGSJET-II-04)

1 E N 1 E N

Composition of Galactic CRs: traditional view [Gai

[Gaisser, Stanev, Tilav '13]

< 回 > < 三 > < 三 >

Composition of Galactic CRs: KASCADE-Grande 2013

< ロト < 同ト < ヨト < ヨト

Auger

Composition of Galactic CRs:

[arXiv:1409.5083]

Michael Kachelrieß (NTNU Trondheim)

High-Energy Cosmic Rays and Neutrinos

APC Paris, 9. Dec. '14 5 / 53

3

Composition of Galactic CRs:

Auger

[arXiv:1409.5083]

composition $6 \times 10^{17} - 5 \times 10^{18} \,\mathrm{eV}$ consistent with

 $\mathcal{O}(50\% \text{ p}, 50\% \text{ He+N}, < 20\% \text{Fe})$

Composition of Galactic CRs:

composition $6\times 10^{17}-5\times 10^{18}\,\mathrm{eV}$ consistent with

- $\mathcal{O}($ 50% p, 50% He+N, < 20%Fe)
- early transition from Galactic to extragalactic CRs

Transition to extragalactic CRs - anisotropy limits

dominant light Galactic composition around $E = 10^{18} \,\mathrm{eV}$ excluded

[Giacinti, MK, Semikoz, Sigl ('12), PAO '13]

6 / 53

• CR scattering on gas or photons: $pp \rightarrow$ mesons, baryons $\rightarrow e, \gamma, \nu, p$

the lightest mesons, π⁰ and π[±], are produced most often
decays: π⁰ → 2γ and π[±] → 3ν + e[±]

- 4 目 ト - 4 日 ト - 4 日 ト

• $\pi^0 ightarrow \gamma({m k}_1) + \gamma({m k}_2)$ at rest:

- energy conservation: $m_{\pi}c^2/2 = E_1 = E_2$
- momentum conservation: $m{k}_1 = -m{k}_2$
- moving back-to-back

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2

The pion peak

•
$$\pi^0
ightarrow \gamma({m k}_1) + \gamma({m k}_2)$$
 at rest:

- energy conservation: $m_{\pi}c^2/2 = E_1 = E_2$
- momentum conservation: $\boldsymbol{k}_1 = -\boldsymbol{k}_2$
- moving back-to-back

• π^0 is moving:

• decay isotropic in rest-frame $\Rightarrow dn/dE_{\gamma} = \text{const.}$

A B K A B K

•
$$\pi^0
ightarrow \gamma({m k}_1) + \gamma({m k}_2)$$
 at rest:

- energy conservation: $m_{\pi}c^2/2 = E_1 = E_2$
- momentum conservation: $\boldsymbol{k}_1 = -\boldsymbol{k}_2$
- moving back-to-back

• π^0 is moving:

- decay isotropic in rest-frame $\Rightarrow dn/dE_{\gamma} = \text{const.}$
- min./max. photon energies

$$E_{\min}^{\max} = \gamma \frac{m_{\pi^0}}{2} (1 \pm \beta) = \frac{m_{\pi^0}}{2} \sqrt{\frac{1 \pm \beta}{1 \mp \beta}}$$

< 同 > < 三 > < 三 > <

•
$$\pi^0
ightarrow \gamma({m k}_1) + \gamma({m k}_2)$$
 at rest:

- energy conservation: $m_{\pi}c^2/2 = E_1 = E_2$
- momentum conservation: $m{k}_1 = -m{k}_2$
- moving back-to-back
- π^0 is moving:
 - decay isotropic in rest-frame $\Rightarrow dn/dE_{\gamma} = \text{const.}$
 - min./max. photon energies

$$E_{\min}^{\max} = \gamma \frac{m_{\pi^0}}{2} (1 \pm \beta) = \frac{m_{\pi^0}}{2} \sqrt{\frac{1 \pm \beta}{1 \mp \beta}}$$

• geometric mean $\sqrt{E_{\min}E^{\max}} = \frac{m_{\pi 0}}{2}$

 □ > < ∃ > < ∃ > < ∃ > < ∃ >
 ⊃ < ○</td>

 APC Paris, 9. Dec. '14
 8 / 53

The pion peak

E

▲圖▶ ▲ 国▶ ▲ 国▶

The pion peak

E

< 回 > < 三 > < 三 >

The pion peak

E

<回> < 回> < 回> < 回>

E

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 1 □

E

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 1 □

- independent of velocity distribution of pions:
- \Rightarrow symmetric photon distribution w.r.t. $m_{\pi^0}/2$

The pion peak: pp interactions

• low threshold & approx. Feynman scaling

- A - E

The pion peak: pp interactions

• low threshold & approx. Feynman scaling

 $\Rightarrow dN_{\gamma}/dE \sim dN_{CR}/dE$

10 / 53

• threshold $E_{
m th}\gtrsim m_\pi m_p/arepsilon_\gamma\sim 10^{16}\,{
m eV}$ with $arepsilon_\gamma\lesssim 10\,{
m eV}$

E + 4 E +

3

11 / 53

 \Rightarrow

 $dN_{\gamma}/dE \sim \begin{cases} \sim E^{-1} & \text{for } E < E_{\rm th} \\ \sim dN_{CR}/dE & \text{for } E > E_{\rm th} \end{cases}$

- * @ * * 注 * * 注 * … 注

The pion peak: Neutrinos from pp and p γ interactions

Only change from $pX \to Y\gamma$ to $pX \to Y\nu$:

• two mass scales $m_{\pi}, m_{\mu} \Rightarrow$ two boxes

(本語) (本語) (本語) (二語)

The pion peak: Neutrinos from pp and $p\gamma$ interactions

Only change from $pX \to Y\gamma$ to $pX \to Y\nu$:

• two mass scales $m_{\pi}, m_{\mu} \Rightarrow$ two boxes

 \Rightarrow for $E_{\nu} \gg m_{\pi}, m_{\mu}$ the same picture

- 御下 - 戸下 - 戸下 - 戸

The pion peak: Neutrinos from pp and p γ interactions

Only change from $pX \to Y\gamma$ to $pX \to Y\nu$:

- two mass scales $m_{\pi}, m_{\mu} \Rightarrow$ two boxes
- \Rightarrow for $E_{\nu} \gg m_{\pi}, m_{\mu}$ the same picture

for a single source:

• pp: $dN_{\nu}/dE \sim dN_{CR}/dE$

► p*γ*:

$$dN_{\nu}/dE \sim \begin{cases} \sim E^{-1} & \text{for } E < E_{\rm th} \\ \sim dN_{CR}/dE & \text{for } E > E_{\rm th} \end{cases}$$

イロト 不得下 イヨト イヨト 二日

12 / 53

 \blacktriangleright steeper spectra for p γ as result of E_{\max} distribution and evolution

Observing the π^0 bump in SNR W44:

Observing the π^0 bump in SNR W44:

• strong evidence for proton acceleration

Knee expla

explanations

Cosmic Ray Knee: steepening $\Delta \gamma \simeq 0.4$ at few $\times 10^{15}$ eV

ec. '14 14 / 53

explanations

Cosmic Ray Knee: 3 explanations

.

change of interactions at multi-TeV energies: excluded by LHC

< 🗇 🕨
Cosmic Ray Knee: 3 explanations

- change of interactions at multi-TeV energies: excluded by LHC
- change of propagation at $R_L \simeq l_{\rm coh}$ or $E_c \propto ZeB \, l_{\rm coh}$: \Rightarrow change in diffusion from $D(E) \sim E^{1/3}$ to
 - Hall diffusion $D(E) \sim E$
 - small-angle scattering $D(E) \sim E^2$
 - something intermediate?

unavoidable effect, but for $B\sim {\rm few}\;\mu{\rm G}$ and $l_{\rm coh}\sim 30\,{\rm pc}$ at too high energy:

$$E_c/Z \sim 10^{15} \ \frac{B}{\mu G} \ \frac{l_c}{pc}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

explanations

Cosmic Ray Knee: 3 explanations

maximal rigidity of dominant CR sources – e.g. Hillas model

Cosmic Ray Knee: 3 explanations

• maximal rigidity of dominant CR sources - e.g. Hillas model

• i = 1, ..., 3 types of CR sources, with slopes $\alpha_{A,i}$, rel. fractions $f_{A,i}$

16 / 53

Cosmic Ray Knee: 3 explanations

• maximal rigidity of dominant CR sources - e.g. Hillas model

• i = 1, ..., 3 types of CR sources, with slopes $\alpha_{A,i}$, rel. fractions $f_{A,i}$ • no reliable estimate of $E_{\max,i}$, $\alpha_{A,i}$, and $f_{A,i}$

 \Rightarrow fit of many-parameter model to two observables: $I_{
m tot}$ and $\ln(A)$

Knee explanations

Cosmic Ray Knee: 3 explanations

• maximal energy: Gaisser, Stanev & Tilav version

3.5 3 2.5 <InA> 2 1.5 IC40/IT40 Kascade Tunka-133 - HiResMia HiRes Auger - TA H4a 0.5 - H3a Global Fit Global Fit with Population 4 10¹⁰ 10⁹ 10^{6} 10⁸ 10¹¹ 10^{7} Primary Energy, E [GeV]

[1303.3665]

Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos

3

17 / 53

・ロン ・四 ・ ・ ヨン

Propagation in turbulent magnetic fields:

• Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150) \, pc$

A B K A B K

Propagation in turbulent magnetic fields:

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.

A B K A B K

explanations

Propagation in turbulent magnetic fields:

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

 $\begin{array}{lll} {\sf Kolmogorov} & \alpha=5/3 & \Leftrightarrow & \beta=1/3 \\ {\sf Kraichnan} & \alpha=3/2 & \Leftrightarrow & \beta=1/2 \end{array}$

ロト (同) (三) (三) のへで

Propagation in turbulent magnetic fields:

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

$$\begin{array}{lll} \mbox{Kolmogorov} & \alpha = 5/3 & \Leftrightarrow & \beta = 1/3 \\ \mbox{Kraichnan} & \alpha = 3/2 & \Leftrightarrow & \beta = 1/2 \end{array}$$

- observed energy spectrum of primaries:
 - injection: $dN/dE \propto E^{-\alpha}$
 - observed: $dN/dE \propto E^{-\alpha-\beta}$

 $\alpha=3/2$ and $\beta=1/2$ simplest combination, but degeneracies

explanations

Propagation in turbulent magnetic fields:

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

$$\begin{array}{lll} \mbox{Kolmogorov} & \alpha = 5/3 & \Leftrightarrow & \beta = 1/3 \\ \mbox{Kraichnan} & \alpha = 3/2 & \Leftrightarrow & \beta = 1/2 \end{array}$$

- observed energy spectrum of primaries:
 - injection: $dN/dE \propto E^{-\alpha}$
 - observed: $dN/dE \propto E^{-\alpha-\beta}$

 $\alpha=3/2$ and $\beta=1/2$ simplest combination, but degeneracies

• anisotropy $\delta = -3D_{ij}\nabla_i \ln(n)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

18 / 53

Our approach:

- use model for Galactic magnetic field
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q\boldsymbol{v} \times \boldsymbol{B}$.

(3)

3

Our approach:

- use model for Galactic magnetic field
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- as preparation, let's calculate diffusion tensor in pure, isotropic turbulent magnetic field

コンマモ

Eigenvalues of $D_{ij} = \langle x_i x_j \rangle / (2t)$ for $E = 10^{15} \,\mathrm{eV}$

Knee ex

explanations

Eigenvalues of $D_{ij} = \langle x_i x_j \rangle / (2t)$ for $E = 10^{15} \,\mathrm{eV}$

• asymptotic value is ~ 10 smaller than extrapolated "Galprop value"

Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. '14 21 / 53

[Giacinti, MK, Semikoz ('12)]

Knee explanations

Knee from Cosmic Ray Escape

- $l_{\rm coh}$ and regular field $oldsymbol{B}(oldsymbol{x})$ fixed from observations
 - LOFAR: $l_{\rm coh} \lesssim 10\,{\rm pc}$ in disc
- determine magnitude of random $\boldsymbol{B}_{\mathrm{rms}}(\boldsymbol{x})$ from grammage X(E)

3

Knee explanations

Knee from Cosmic Ray Escape

- ullet $l_{\rm coh}$ and regular field ${m B}({m x})$ fixed from observations
 - LOFAR: $l_{\rm coh} \lesssim 10\,{
 m pc}$ in disc

• determine magnitude of random $\boldsymbol{B}_{rms}(\boldsymbol{x})$ from grammage X(E)

Knee exp

explanations

Knee from Cosmic Ray Escape

- ullet $l_{\rm coh}$ and regular field ${m B}({m x})$ fixed from observations
 - LOFAR: $l_{\rm coh} \lesssim 10\,{
 m pc}$ in disc

• determine magnitude of random $oldsymbol{B}_{
m rms}(oldsymbol{x})$ from grammage X(E)

- \Rightarrow prefers weak random fields
- \Rightarrow fluxes $I_A(E)$ of all isotopes fixed by low-energy data

글 에 에 글 어

Knee

explanations

Galactic CRs: KASCADE-Grande 2013

Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9.

APC Paris, 9. Dec. '14 23 / 53

Knee from Cosmic Ray Escape: energy spectra

• protons from X(E):

24 / 53

Knee from Cosmic Ray Escape: He energy spectra

Knee from Cosmic Ray Escape: CNO energy spectra

Knee from Cosmic Ray Escape: total energy spectra

explanations

Transition to extragalactic CRs

explanations

Transition to extragalactic CRs

• at $E \approx 2 \times 10^{17} \text{ eV}$: $F_{\text{gal}}(E) : F_{\text{exgal}}(E) = 1 : 1$ • at $E \approx 2 \times 10^{18} \text{ eV}$: $F_{\text{gal}}(E) : F_{\text{exgal}}(E) = 0 : 1$ Knee

explanations

Knee from Cosmic Ray Escape: $\ln(A)$

Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. '14 27 / 53

Knee

explanations

Knee from Cosmic Ray Escape: $\ln(A)$

exgal. mix: 60% p, 25% He, 15% N

Knee from Cosmic Ray Escape: dipole anisotropy

Knee from Cosmic Ray Escape: dipole anisotropy

(4) (5) (4) (5)

3

IceCube

APC Paris, 9. Dec. '14 29 / 53

э

Icecube: 2 events presented at Neutrino 2012

• 2 cascade events close to $E_{\rm min} = 10^{15} \, {\rm eV}$, bg = 0.14

Two events passed the selection criteria

2 events / 672.7 days - background (atm. μ + conventional atm. ν) expectation 0.14 events preliminary p-value: 0.0094 (2.36 σ)

Michael Kachelrieß (NTNU Trondheim)

igh-Energy Cosmic Rays and Neutrinc

APC Paris, 9. Dec. '14

30 / 53

Icecube: prompt neutrino analysis

31 / 53

Signatures of high energy $\nu_{_{\rm II}}$ in IceCube

Conventional, prompt and astrophysical neutrinos can't be decoupled and need to be looked at together in a HE neutrino analysis.

IceCube events: specifications for candidate sources

36 events with ~ 14 bg: flukes are possible. . .

IceCube events: specifications for candidate sources

36 events with ~ 14 bg: flukes are possible. . .

anisotropies

- event cluster around GC
- enhancement close to Galactic plane gone?

IceCube events: 2 vears 28 events

IceCube events: 3 years 36 events

3

Column density of gas

[Evoli, Grasso, Maccione '07]
IceCube Neutrinos

Diffuse ν flux from Galactic plane

[Evoli, Grasso, Maccione '07]

averaged over 1,2,5 degrees

36 events with ~ 14 bg: flukes are possible...

- anisotropies
 - event cluster around GC
 - enhancement close to Galactic plane gone?

36 events with ~ 14 bg: flukes are possible...

- anisotropies
 - event cluster around GC
 - enhancement close to Galactic plane gone?
- flux is large, close to
 - Waxman-Bahcall estimate
 - ▶ cascade limit: slope "is steepening", $\alpha \sim 2.3 2.5$, conflict?

4 12 16 14 12 16

36 events with ~ 14 bg: flukes are possible. . .

- anisotropies
 - event cluster around GC
 - enhancement close to Galactic plane gone?
- flux is large, close to
 - Waxman-Bahcall estimate
 - cascade limit: slope "is steepening", $\alpha \sim 2.3 2.5$, conflict?
- CR energies $E_p \sim 20 E_{\nu} \Rightarrow$ up to few $\times 10^{16}$ eV,
 - high for Galactic CRs
 - Iowish for cosmogenic, AGN, GRB

A B + A B +

36 events with ~ 14 bg: flukes are possible. . .

- anisotropies
 - event cluster around GC
 - enhancement close to Galactic plane gone?
- flux is large, close to
 - Waxman-Bahcall estimate
 - cascade limit: slope "is steepening", $\alpha \sim 2.3 2.5$, conflict?
- CR energies $E_p \sim 20 E_{\nu} \Rightarrow$ up to few $\times 10^{16} \, {\rm eV}$,
 - high for Galactic CRs
 - Iowish for cosmogenic, AGN, GRB
- initial flavor ratio consistent with 1:1:1 ?

A B K A B K

Flavour ratio

- ratio $R = N_{\rm sh}/N_{\rm tr} \sim (N_e + N_{ au})/N_{\mu} \sim 21/7$ consistent with 1:1:1
- including atm. bg. favors (weakly) 1:0:0 at source [Mena, Palomares, Vincent '14]

Flavour ratio

- ratio $R = N_{\rm sh}/N_{\rm tr} \sim (N_e + N_{\tau})/N_{\mu} \sim 21/7$ consistent with 1:1:1
- including atm. bg. favors (weakly) 1:0:0 at source [Mena, Palomares, Vincent '14]

37 / 53

Sources of high-energy neutrinos

Galactic sources:

- Galactic plane and bulge
- SNR
- hypernova, GRB
- micro-quasar, ...

Extragalactic sources:

- diffuse flux from normal/starburst galaxies
- cosmogenic neutrinos
- diffuse flux from AGN
- GRB
- single AGN, ...

Dark matter decays, topological defects

Diffuse ν flux from normal and starburst galaxies

Diffuse ν flux from normal and starburst galaxies

[Loeb, Waxman '06]

- too optimistic?
 - fraction of starbust galaxies?
 - all calorimetric?

Reminder: The photon horizon

Development of the elmag. cascade:

A.

Development of the elmag. cascade:

• analytical estimate:

[Strong '74, Berezinsky, Smirnov '75]

$$J_{\gamma}(E) = \begin{cases} K(E/\varepsilon_{\rm X})^{-3/2} & \text{ at } E \leq \varepsilon_{\rm X} \\ K(E/\varepsilon_{\rm X})^{-2} & \text{ at } \varepsilon_{\rm X} \leq E \leq \varepsilon_{\rm a} \\ 0 & \text{ at } E > \varepsilon_{\rm a} \end{cases}$$

- three regimes:
 - Thomson cooling:

$$E_{\gamma} = \frac{4}{3} \frac{\varepsilon_{\rm bb} E_e^2}{m_e^2} \approx 100 \,\,{\rm MeV} \,\, \left(\frac{E_e}{1 \,{\rm TeV}}\right)^2$$

- plateau region: ICS $E_{\gamma} \sim E_e$
- above pair-creation threshold $s_{\min} = 4E_{\gamma}\varepsilon_{bb} = 4m_e^2$: flux exponentially suppressed

Cascade limit: for pp interactions, $\alpha = 2.1$

-

Cascade limit: for pp interactions, $\alpha = 2.3$

3 1 4 3

Cascade limit: for pp interactions, $\alpha = 2.5$

3 1 4 3

Cascade limit: pp vs. p γ interactions

- pp interactions: no way to reduce low-energy secondaries
- \Rightarrow for $\alpha_{\nu} \gtrsim 2.3$ problems with EGRB

A B K A B K

- 3

Cascade limit: pp vs. p γ interactions

- pp interactions: no way to reduce low-energy secondaries
- $\Rightarrow~{\rm for}~\alpha_{\nu}\gtrsim 2.3~{\rm problems}$ with EGRB
 - $\mathbf{p}\gamma$ interactions:
 - slope below $E_{\rm th}$ differs
 - can be modified by max. energy & redshift evolution
 - cascades in source can be modified

(제품) 제품 (제품) 문

Cascade limit: pp vs. p γ interactions

- pp interactions: no way to reduce low-energy secondaries
- $\Rightarrow~{\rm for}~\alpha_{\nu}\gtrsim 2.3~{\rm problems}$ with EGRB
 - $p\gamma$ interactions:
 - slope below $E_{\rm th}$ differs
 - can be modified by max. energy & redshift evolution
 - cascades in source can be modified
 - successful paradigm: Stecker model

A B K A B K

Neutrinos from Galactic Sea CRs: $X = 30 \text{ g/cm}^2$

Neutrinos from Galactic Sea CRs: $X = 30 \text{ g/cm}^2$

Neutrinos from Galactic Sea CRs

gives negligible contribution to IceCube signal

- au_{pp} is too small even towards GC
- gas is concentrated as $n(z) \sim n_0 \exp[-(z|/z_{12})^2]$ with $z_{12} \sim 0.2\,{\rm kpc}$

results apply also to other normal galaxies as starburst galaxies:

Neutrinos from Galactic Sea CRs

gives negligible contribution to IceCube signal

- au_{pp} is too small even towards GC
- gas is concentrated as $n(z) \sim n_0 \exp[-(z|/z_{12})^2]$ with $z_{12} \sim 0.2\,{\rm kpc}$

results apply also to other normal galaxies as starburst galaxies:

• magnetic fields factor 100 higher:

★ ■ ► ★ ■ ► ■ ■

Neutrinos from Galactic Sea CRs

gives negligible contribution to IceCube signal

- au_{pp} is too small even towards GC
- gas is concentrated as $n(z) \sim n_0 \exp[-(z|/z_{12})^2]$ with $z_{12} \sim 0.2\,{\rm kpc}$

results apply also to other normal galaxies as starburst galaxies:

- magnetic fields factor 100 higher:
- if knee is caused by
 - diffusion: $E_{\rm cr} \sim B$, neutrino knee at few $\times 10^{16} \, {\rm eV}$
 - ▶ source: $E_{\rm max} \sim B_{\rm CR}$, neutrino knee at few $\times 10^{14} \, {\rm eV}$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 ● の Q @

• at low energies:

many sources, large confinement times

3 🕨 🖌 3

• at low energies:

- many sources, large confinement times
- \Rightarrow average CR sea plus few recent sources

- at low energies:
 - many sources, large confinement times
 - \Rightarrow average CR sea plus few recent sources

• close to the knee:

- CRs in PeV range spread fast
- few extreme sources

- at low energies:
 - many sources, large confinement times
 - \Rightarrow average CR sea plus few recent sources

close to the knee:

- CRs in PeV range spread fast
- few extreme sources
- \Rightarrow inhomogenous CR sea, extended sources
- ⇒ no clear distinction between point sources vs. Galactic bulge + plane cases

Point source in gamma-ray

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Gamma-ray point sources

• flux from HESS J1825-137, GC and GP

48 / 53

(Isotropic) photon limits

[Ahlers, Murase '13]

re-incarnation of SHDM idea for AGASA excess:

- non-thermal DM
- avoids cascacde limit
- Galactic anisotropy
- some option to move initial flavor ration 1:2:0 towards 1:0:0

re-incarnation of SHDM idea for AGASA excess:

- non-thermal DM
- avoids cascacde limit
- Galactic anisotropy
- some option to move initial flavor ration 1:2:0 towards 1:0:0

re-incarnation of SHDM idea for AGASA excess:

- non-thermal DM
- avoids cascacde limit
- Galactic anisotropy
- some option to move initial flavor ration 1:2:0 towards 1:0:0

|Esmaili, Serpico '13] 🔿

[Esmaili, Serpico '13]

- 47 ►
- Knee due to CR escape
 - characteristic feature: recovery of p/He as suggested by KASCADE-Grande
 - probes GMF: suggests small $B_{
 m rms}$ and small $l_{
 m coh}$
 - $\blacktriangleright\,$ transition to light-medium extragalactic CRs completed at $\sim 3\times 10^{17}\,{\rm eV}$
 - propagation feature is unavoidable, only possible to shift to higher energies
 - source effects may be on top, but seem not necessary

- Knee due to CR escape
 - characteristic feature: recovery of p/He as suggested by KASCADE-Grande
 - probes GMF: suggests small $B_{\rm rms}$ and small $l_{\rm coh}$
 - $\blacktriangleright\,$ transition to light-medium extragalactic CRs completed at $\sim 3\times 10^{17}\,{\rm eV}$
 - propagation feature is unavoidable, only possible to shift to higher energies
 - source effects may be on top, but seem not necessary

- Knee due to CR escape
 - characteristic feature: recovery of p/He as suggested by KASCADE-Grande
 - probes GMF: suggests small $B_{
 m rms}$ and small $l_{
 m coh}$
 - transition to light-medium extragalactic CRs completed at $\sim 3\times 10^{17}\,{\rm eV}$
 - propagation feature is unavoidable, only possible to shift to higher energies
 - source effects may be on top, but seem not necessary

- Knee due to CR escape
 - characteristic feature: recovery of p/He as suggested by KASCADE-Grande
 - probes GMF: suggests small $B_{
 m rms}$ and small $l_{
 m coh}$
 - $\blacktriangleright\,$ transition to light-medium extragalactic CRs completed at $\sim 3\times 10^{17}\,{\rm eV}$
 - propagation feature is unavoidable, only possible to shift to higher energies
 - source effects may be on top, but seem not necessary

- IceCube neutrinos:
 - excess towards GC, consistent (?) with γ -ray data
 - ⇒ partly Galactic origin?
 - no enhancement towards Galactic plane:
 - ★ gas too narrow, flux too low
 - **③** some tension with (Northern) γ -ray limits
 - extragalactic:
 - dominant isotropic component
 - ★ diffuse, difficult to identify
 - ***** spectrum $\alpha = -2.45$: cascade limit?
 - \Rightarrow favours p γ ?

- IceCube neutrinos:
 - excess towards GC, consistent (?) with γ -ray data
 - ⇒ partly Galactic origin?
 - Ino enhancement towards Galactic plane:
 - ★ gas too narrow, flux too low
 - Some tension with (Northern) γ -ray limits
 - extragalactic:
 - dominant isotropic component
 - ★ diffuse, difficult to identify
 - ***** spectrum $\alpha = -2.45$: cascade limit?
 - \Rightarrow favours p γ ?

- 3

- IceCube neutrinos:
 - excess towards GC, consistent (?) with γ -ray data
 - ⇒ partly Galactic origin?
 - Ino enhancement towards Galactic plane:
 - ★ gas too narrow, flux too low
 - **③** some tension with (Northern) γ -ray limits
 - extragalactic:
 - dominant isotropic component
 - ★ diffuse, difficult to identify
 - ***** spectrum $\alpha = -2.45$: cascade limit?
 - \Rightarrow favours p γ ?

- 3

- IceCube neutrinos:
 - excess towards GC, consistent (?) with γ -ray data
 - ⇒ partly Galactic origin?
 - Ino enhancement towards Galactic plane:
 - ★ gas too narrow, flux too low
 - Some tension with (Northern) γ -ray limits
 - extragalactic:
 - dominant isotropic component
 - ★ diffuse, difficult to identify
 - ***** spectrum $\alpha = -2.45$: cascade limit?
 - \Rightarrow favours p γ ?

- IceCube neutrinos:
 - excess towards GC, consistent (?) with γ -ray data
 - ⇒ partly Galactic origin?
 - no enhancement towards Galactic plane:
 - ★ gas too narrow, flux too low
 - **③** some tension with (Northern) γ -ray limits

extragalactic:

- dominant isotropic component
- ★ diffuse, difficult to identify
- ***** spectrum $\alpha = -2.45$: cascade limit?
- \Rightarrow favours p γ ?

- 3

- IceCube neutrinos:
 - excess towards GC, consistent (?) with γ -ray data
 - ⇒ partly Galactic origin?
 - no enhancement towards Galactic plane:
 - ★ gas too narrow, flux too low
 - Some tension with (Northern) γ -ray limits
 - extragalactic:
 - dominant isotropic component
 - ★ diffuse, difficult to identify
 - ***** spectrum $\alpha = -2.45$: cascade limit?
 - \Rightarrow favours p γ ?

Sevent Sevent Pevent Sevent Se