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Outline of the talk:

@ Data and their interpretation

)
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extragalactic protons as primaries
magnetic fields

small-scale clustering

correlations

energy spectrum (above the GZK cutoff)

@ Alternative models

<

Z burst model

strongly interacting neutrinos
top-down models

violation of Lorentz invariance

@ Summary
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Energy losses and the GZK cutoff
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Energy losses and the GZK cutoff
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Cosmic ray spectrum: the dip at 101° eV
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Data and their interpretation

Extragalactic protons

Small-scale clustering and magnetic fields

Possible sources and correlations

Transition to extragalactic protons
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Transition to extragalactic protons
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dip suggests: primaries above 108 eV are extragalactic protons J
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Large-scale isotropy and small-scale clustering

E=4-10x10%° eV
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Large-scale isotropy and small-scale clustering

@ large-scale isotropy: extragalactic sources

o few sources nearby, nuclei, strong EGMF?
@ many sources, protons, weak EGMF?

@ small-scale clusters: chance or multiplets from same sources?
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Data and their interpretation actic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Number of sources Ng

@ As Ns decreases, sources become brighter for fixed flux =
probability for clustering increases [Waxman, Fisher, Piran '96 ]
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Number of sources Ng

@ As Ns decreases, sources become brighter for fixed flux =
probability for clustering increases. [Waxman, Fisher, Piran ‘96

@ Since Niot > Ng, most sources are not seen:
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Number of sources Ng

@ As Ns decreases, sources become brighter for fixed flux =
prObabI|Ity fOF C|UStering increases. [Waxman, Fisher, Piran '96 |

@ Since Niot > Ng, most sources are not seen:
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3
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@ allows to estimate Ng, but not ng
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Statistical estimator for small-scale clustering:

@ two-point autocorrelation function of the data, i.e.

Wy = Z@(fl—fij%

i<j

where /jj is the angular distance of CRs i,j and /1 the bin size
chosen
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Statistical estimator for small-scale clustering:

@ two-point autocorrelation function of the data, i.e.

Wy = Z@(fl—fij%

i<j

where /jj is the angular distance of CRs i,j and /1 the bin size
chosen

@ compare to distribution p(wy : &) from simulations:

o choose finite number of sources according density Ns
s generate CRs according to dN/dE O E~©

@ propagate them

o calculate wy for fixed ng, Q, /1 ...

@ determine consistent parameters
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Small-scale clusters and density of sources:
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Extragalactic magnetic field — simulation by SME:

40. < E/EeV < 9000.: a= 63.8+ 42.8+ 43.1
IO/ ™ 7 T [ T ¢ r r [ r 1 T T1

cumulative distribution

0 o0 100 150
deflection angle [degrees]
[Sigl, Miniato, Ensslin '03 ]
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Extragalactic magnetic field — simulation by SME:
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cumulative distribution
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0 o0 100 150
deflection angle [degrees]
SME: astronomy with UHE protons may be impossible J
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Extragalactic magnetic field — simulation DGST:
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[Dolag, Grasso, Springel, Tkachev '03]
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Extragalactic magnetic field — simulation DGST:
100

80
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40 £

20

Sky covered by 6>6,, [%]

DGST: astronomy with UHE protons possible in large part of sky! )
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

which simulation /conclusion is closer to reality?

@ many technical differences between the two simulations; two
major conceptional ones:
s Sigl, Miniato, Ensslin use an unconstrained simulation, putting
observer x close to a cluster

mogr\etlx field

v/Mpc
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

which simulation /conclusion is closer to reality?

@ many technical differences between the two simulations; two
major conceptional ones:
s Sigl, Miniato, Ensslin use an unconstrained simulation, putting
observer x close to a cluster
@ Dolag, Grasso, Springel, Tkachev use a constrained simulation

Coma

0 1 2 3 4 5  [Degrees
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

which simulation /conclusion is closer to reality?

@ many technical differences between the two simulations; two
major conceptional ones:
o Sigl, Miniato, Ensslin use an unconstrained simulation, putting
observer x close to a cluster
o Dolag, Grasso, Springel, Tkachev use a constrained simulation

s Dolag, Grasso, Springel, Tkachev inject protons uniformly on a
sphere

@ Sigl, Miniato, Ensslin inject protons following matter
distribution
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Deflections for €E/Q = 10°%V in Galactic field
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields

Possible sources and correlations

Deflections for €E/Q = 10°%V in Galactic field

deflections >2.5° at 4 x 101% eV in large fraction of sky J
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Hillas plot — potential sources for E > 1020V
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Data and their interpretation

Unified AGN picture

Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

FR I (NLRG)

Michael KachelrieB
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¢ FR II(NLRG)
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Correlations with astrophysical sources:

-+ Farrar & Biermann '98: radio-loud QSQ'’s, pch ~ 0.5%
— Sigl et al. '01: pch ~ 27%

+ Tinyakov & Tkachev: AY — radio-loud BL Lacs with z> 0.1
and mag < 18, pch ~ 2 x 107°
— Torres et al.: HV no significant correlation

+ Gorbunov et al.: HiRes — all BL Lacs with mag < 18,
Peh ~ 4 x 1074
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

Correlations with astrophysical sources:

+ Farrar & Biermann '98: radio-loud QSQ'’s, peh ~ 0.5%

— Sigl et al. '01: peh ~27%

+ Tinyakov & Tkachev: AY — radio-loud BL Lacs with z> 0.1
and mag < 18, peh ~ 2 x 107>

— Torres et al.: HV no significant correlation

+ Gorbunov et al.: HiRes — all BL Lacs with mag < 18,
Peh ~ 4 x 1074

@ How serious pcn should be taken?

@ Are correlations as found by Tinyakov & Tkachev possible
with protons or nuclei as primaries?
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Data and their interpretation Extragalactic protons

Small-scale clustering and magnetic fields
Possible sources and correlations

Is the GZK ¢ f observed?

i(E) E? [eV em? s srY

|
1019

E [eV] [MK, Semikoz and Tortola '03 ]
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Data and their interpretation Extragalactic protons

Small-scale clustering and magnetic fields
Possible sources and correlations

Is the GZK cutoff observed?

i(E) E2 [eV em? s srY

1017 1018 1019 1020 1021

E [eV] [MK, Semikoz and Tortola '03 ]
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Data and their interpretation Extragalactic protons

Small-scale clustering and magnetic fields
Possible sources and correlations

Three outstanding questions:

e does the UHECR spectrum shows GZK suppression or not?
@ if not: several possibilities:

o Z burst model
@ top-down models
@ violation of Lorentz invariance

e is UHECR astronomy possible?

e do correlations with objects at cosmological distance exist?
o if yes:

@ new primary
@ Z burst model
o violation of Lorentz invariance
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Data and their interpretation Extragalactic protons
Alternative models Small-scale clustering and magnetic fields
Summary Possible sources and correlations

AUGER experiment: ape—
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Data and their interpretation Extragalactic protons
Small-scale clustering and magnetic fields
Possible sources and correlations

AUGER experiment:
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Data and th terpretation Extragalactic protons
Alternative models Small-scale clustering and magnetic fields
Summary Possible sources and correlations

AUGER: Pampa + Detek




Neutrinos

Alternative models Top-Down Models

Z burst model: UHE v +vgr — Z — all

advantages:
@ economical: no new particle physics is needed
@ for E, ~ 102 eV, the mass of the relic neutrino should be
m, = M /(2E,) ~ 0.1 eV, compatible with oscillation data.
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Neutrinos

Alternative models Top-Down Models

Z burst model: UHE v +vgr — Z — all

advantages:
@ economical: no new particle physics is needed

o for Ey ~ 1023 eV, the mass of the relic neutrino should be
m, = m2/(2E,) ~ 0.1 eV, compatible with oscillation data.

problems:
@ requires proton acceleration up to E ~ 1022 eV!
@ Neutrinos as HDM are not strongly clustered
=- enormous fluxes needed; luminosity of sources too high
°

experimental bounds on UHE neutrino fluxes constrain already
Z burst model

@ observed MeV—-GeV-y background implies upper bounds on
UHE neutrino flux produced in (astrophysical) sources
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Neutrinos

Alternative models Top-Down Models

Idea of EGRET Ilimit

all energy in y and e cascades down to MeV—-GeV range, bounded
by observations:

1
Weas = fmnt/odt(1+z)‘4r1zm
0 dt

< 2-107%ev/em®
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Neutrinos

Alternative models Top-Down Models

EGRET and neutrino limits:
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Neutrinos

Alternative models Top-Down Models

Neutrinos as UHE primaries

@ UHE neutrinos are not absorbed, but are deeply penetrating
particles in SM

= produce mainly horizontal, not vertical EAS

@ not observed up-to now
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Neutrinos

Alternative models Top-Down Models

Neutrinos as UHE primaries

for primary energies E, = 10%° — 102! eV:
@ cms energy for collisions with background
~ 100 MeV — 100 GeV = physics well-understood
@ cms energy for collisions in atmosphere
~ 100 TeV — 1 PeV = beyond reach of accelerators
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Neutrinos

Alternative models Top-Down Models

Neutrinos as UHE primaries

for primary energies E, = 10%° — 10%! eV:

@ cms energy for collisions with background
~ 100 MeV — 100 GeV = physics well-understood

@ cms energy for collisions in atmosphere
~ 100 TeV — 1 PeV = beyond reach of accelerators

UHE neutrinos could acquire large cross-section due to new
physics:

@ exchange of KK gravitons

@ production of black holes

@ non-perturbative effects in the SM (sphalerons)
= talk of Huitzu Tu
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Neutrinos

Alternative models Top-Down Models

Ex.: Large Extra Dimensions

t channel exchange of KK gravitons could enhance NV cross
section because of

@ small mass splitting of KK gravitons, m% =¥ /R2.
o fast growth, a(s) 09 and j=2.

Could neutrino be primary of observed vertical EAS above
GZK-cutoff?

[Sigl '00, Jain et. al "00]
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Neutrinos

Alternative models Top-Down Models

Ex.: Large Extra Dimensions

t channel exchange of KK gravitons could enhance NV cross
section because of

@ small mass splitting of KK gravitons, m% = /R2.
o fast growth, a(s) 09 and j=2.

could neutrino be primary of observed vertical EAS above
GZK-cutoff?

[Sigl 00, Jain et. al '00]

no, because

@ unitarity slows down increase of cross section
[MK, M.Plimacher '00, Giudice, Rattazzi, Wells '01 ]

@ also large energy transfer is needed
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Neutrinos
Top-Down Models

Alternative models

Ex.: Large Extra Dimensions
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= neutrinos are still deeply penetrating particles
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Neutrinos
Top-Down Models

Alternative models

BH production and UHE V's

pb

IIIIII| ,””l NN 11 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 IIIIIII| 1 IIIIIII| 11
108 108 1010 e
E v (GeV) [Feng and Shapere '01 ]
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Neutrinos

Alternative models Top-Down Models

e neutrinos with non-SM interactions cannot explain observed
vertical EAS

e but provide exciting experimental target for HE and UHE
neutrino experiments
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Neutrinos
Top-Down Models

Alternative models

Top-Down Models UHECR primaries are produced by decays of
supermassive particle X with My > 102 GeV.

@ topological defects: monopoles, strings, ...
[Hill "83; Ostriker, Thompson, Witten '86 |

@ superheavy metastable particles
[Berezinsky, MK, Vilenkin '97; Kuzmin, Rubakov '97 |

Advantages:
@ no acceleration problem
@ no visible sources
o if X& CDM, no GZK-cutoff

@ theoretically motivated; testable predictions
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Neutrinos

Alternative models Top-Down Models

Gravitational creation of superheavy matter:

Small fluctuations of field ® obey
B+ [K*+ Mgy (1)] ¢k =0

If My is time dependent, vacuum fluctuations will be transformed
into real particles.
= expansion of Universe leads to particle production

In inflationary cosmology

M 2 T
Qxh2: ( X ) RH

1012GeV /) 109GeV
independent of details of particle physics, for any My < Hj

[Kuzmin, Tkachev '98; Chung, Kolb, Riotto '98 |
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Neutrinos

Alternative models Top-Down Models

Lifetime:

For My > 100 GeV even gravitational interactions result in
cosmological short lifetimes, Tx < tp.
@ global symmetry broken by wormhole effects, Tx O exp(S)
@ symmetry broken by instanton effects,
Tx O exp(—41%/9?)
@ discrete symmetries forbid operators with d < 9

@ crypton or fractionally charged and confined particle of
superstring theories
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Neutrinos

Alternative models Top-Down Models

Fragmentation of heavy particles

Consider Bremsstrahlung, X — iV

soft and collinear singularities generate In?(mg/mg) for mg > n¥,
= they can compensate the small couplings g,

o’ In*(mg/mG) ~ 1
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Neutrinos

Alternative models Top-Down Models

Fragmentation of heavy particles

Consider Bremsstrahlung, X — ffv:

soft and collinear singularities generate In?(mg/m¢) for mg > mé
= they can compensate the small couplings g2,

g* In?(mg/m) ~ 1

My >10° GeV, = naive perturbation theory breaks down:
electroweak and SUSY sector have a QCD-like behavior (“jets")

[Berezinsky, MK '98, Berezinsky, MK, Ostapchenko '02) |
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Neutrinos

Alternative models Top-Down Models

Fragmentation of heavy particles

(SUSY (hadronization)
+ SU2) @ U(1)

breaking
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. Neutrinos
Alternative models Top-Down Models

Signatures of SHDM decays

o flat spectra dE/EX® up to my/2

le+26 F————
N
>
[}
“l' le+25 E
w0 E
)
S
~
@ 1e+24E
= E
™
Ll
1e+23 PR | PR | P T
le+18 le+19 le+20 le+21

E/eV [Aloisio, Berezinsky, MK, '03]

= SHDM dominates UHECR flux only above ~ 8 x 10'° eV
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Neutrinos
Top-Down Models

Alternative models

Signatures of SHDM decays

o flat spectra dE/EY up to my/2
@ composition:

@ y/p>1, no nuclei
@ large neutrino fluxes
o LSPs, if R-Parity conserved

26 ; ;
255 ]

N 25| ]
>

[
T 245 f
,_4;[75

[N 24 [ 1
9

B 235f ]
=

8 ) ]
=

R s ]

22,

19 195 20 205 [Berezfisky, MK, 28F; Aloisio, Berezinsky, MK, '03 |
log(E/eV)
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Neutrinos

Alternative models Top-Down Models

Signatures of SHDM decays

o flat spectra dE/EY up to my/2

@ com pOSItlon [Berezinsky, MK '98 ]
) galaCtIC anisotropy: [Dubovsky, Tinyakov '98 ]

@ SUGAR data exclude at 99.8% C.L. annihilations of
superheavy DM

@ do not constrain strongly decays of superheavy DM
[MK, Semikoz '03, Kim, Tinyakov '03 ]
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Neutrinos

Alternative models Top-Down Models

Status of topological defect models — necklaces:

1e+22- . —l L e —
le+18 le+19 1le+20 le+21 le+22

E/eV

[Aloisio, Berezinsky, MK, '03]
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Neutrinos

Alternative models Top-Down Models

Status of topological defect models — necklaces:

1e+22- . —lr L e —
le+18 le+19 1le+20 le+21 le+22

E/eV
= shape of spectrum allows only sub-dominant contribution
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Neutrinos

Alternative models Top-Down Models

Violation of Lorentz invariance (LI)

@ quantum gravity (“space-time foam™) or dim. reduction
d=n>4 — 4 could induce tiny departures from LI
= non-universal maximal velocities
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Neutrinos

Alternative models Top-Down Models

Violation of Lorentz invariance (LI)

@ quantum gravity (“space-time foam™) or dim. reduction
d=n>4 — 4 could induce tiny departures from LI
= non-universal maximal velocities

@ suppose,
Cy— Crp = Cy— Ce = 10~ %
then T is stable above E ~ 10%° eV and photon unstable!
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Neutrinos

Alternative models Top-Down Models

Violation of Lorentz invariance (LI)

@ quantum gravity (“space-time foam™) or dim. reduction
d=n>4 — 4 could induce tiny departures from LI
= non-universal maximal velocities

@ suppose,
Cy— Crp = Cy— Ce = 10~ %
then T is stable above E ~ 10%° eV and photon unstable!
@ similar in the GZK cutoff reaction p+Yysk — A(1232)
threshold condition for head-on collision changed to

2w+m‘2’>(c C)E+M§
QE= VAT 2E

if cA—Cp>2x 10~25, reaction forbidden
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Summary

Summary I

o UHECR data will provide soon unique information about
@ structure of galactic magnetic field

@ magnitude of extragalactic magnetic fields

if both are “small”, astronomy with UHECRs will be possible
@ determination of source density ng
@ determination of source classes

@ acceleration mechanism?
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Summary

Summary |

@ Z bursts and topological defects can be only subdominant
sources of UHECR

@ no positive evidence for superheavy dark matter from its two
key signatures:

& photons
@ galactic anisotropy

open questions for AUGER, Anita, ...:

clustering due to point sources?
correlations with BL Lacs?

photons as primaries?
detection of UHE neutrinos?

Michael KachelrieB Ultra-High Energy Cosmic Rays
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@ existence of GZK suppression?
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Sensitivity of neutri

no detectors
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Sensitivity of neutrino detectors

I I I I I I I
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