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Data and their interpretation

extragalactic protons as primaries
magnetic fields
small-scale clustering
correlations
energy spectrum (above the GZK cutoff)

Alternative models

Z burst model
strongly interacting neutrinos
top-down models
violation of Lorentz invariance
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Energy losses and the GZK cutoff
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N + γ3K → ∆→ N +π
starts and reduces free
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nuclei
photo-disintegrate with
similar free mean path

photons are absorbed
on IR background on
∼ 10 Mpc
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Cosmic ray spectrum: the dip at 1019 eV [Berezinsky, Grigorieva, Hnatyk ’04 ]
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dip suggests: primaries above 1018 eV are extragalactic protons
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Large-scale isotropy and small-scale clustering
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Large-scale isotropy and small-scale clustering
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large-scale isotropy: extragalactic sources

few sources nearby, nuclei, strong EGMF?
many sources, protons, weak EGMF?

small-scale clusters: chance or multiplets from same sources?
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Number of sources Ns

As Ns decreases, sources become brighter for fixed flux ⇒
probability for clustering increases [Waxman, Fisher, Piran ’96 ]
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Number of sources Ns

As Ns decreases, sources become brighter for fixed flux ⇒
probability for clustering increases. [Waxman, Fisher, Piran ’96 ]

Since NtotÀ Ncl, most sources are not seen:
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Number of sources Ns

As Ns decreases, sources become brighter for fixed flux ⇒
probability for clustering increases. [Waxman, Fisher, Piran ’96 ]

Since NtotÀ Ncl, most sources are not seen:
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allows to estimate Ns, but not ns
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Statistical estimator for small-scale clustering:

two-point autocorrelation function of the data, i.e.

w1 = ∑
i<j

Θ(`1− `ij) ,

where `ij is the angular distance of CRs i, j and `1 the bin size
chosen
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Statistical estimator for small-scale clustering:

two-point autocorrelation function of the data, i.e.

w1 = ∑
i<j

Θ(`1− `ij) ,

where `ij is the angular distance of CRs i, j and `1 the bin size
chosen

compare to distribution p(w1 : ϑ) from simulations:

choose finite number of sources according density ns

generate CRs according to dN/dE ∝ E−α

propagate them
calculate w1 for fixed ns, α, `1 . . .
determine consistent parameters
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Small-scale clusters and density of sources:
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Extragalactic magnetic field – simulation by SME:

[Sigl, Miniato, Ensslin ’03 ]
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Extragalactic magnetic field – simulation by SME:

SME: astronomy with UHE protons may be impossible
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Extragalactic magnetic field – simulation DGST:

[Dolag, Grasso, Springel, Tkachev ’03 ]
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Extragalactic magnetic field – simulation DGST:

DGST: astronomy with UHE protons possible in large part of sky!
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which simulation/conclusion is closer to reality?

many technical differences between the two simulations; two
major conceptional ones:

Sigl, Miniato, Ensslin use an unconstrained simulation, putting
observer ∗ close to a cluster
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which simulation/conclusion is closer to reality?

many technical differences between the two simulations; two
major conceptional ones:

Sigl, Miniato, Ensslin use an unconstrained simulation, putting
observer ∗ close to a cluster
Dolag, Grasso, Springel, Tkachev use a constrained simulation
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which simulation/conclusion is closer to reality?

many technical differences between the two simulations; two
major conceptional ones:

Sigl, Miniato, Ensslin use an unconstrained simulation, putting
observer ∗ close to a cluster
Dolag, Grasso, Springel, Tkachev use a constrained simulation

Dolag, Grasso, Springel, Tkachev inject protons uniformly on a
sphere
Sigl, Miniato, Ensslin inject protons following matter
distribution
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Deflections for eE/Q = 1020eV in Galactic field
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Deflections for eE/Q = 1020eV in Galactic field

deflections >
∼ 2.5◦ at 4×1019 eV in large fraction of sky
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Hillas plot – potential sources for E > 1020eV
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Unified AGN picture
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Correlations with astrophysical sources:

+ Farrar & Biermann ’98: radio-loud QSO’s, pch ∼ 0.5%
– Sigl et al. ’01: pch ∼ 27%

+ Tinyakov & Tkachev: AY – radio-loud BL Lacs with z > 0.1
and mag < 18, pch ∼ 2×10−5

– Torres et al.: HV no significant correlation

+ Gorbunov et al.: HiRes – all BL Lacs with mag < 18,
pch ∼ 4×10−4
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Correlations with astrophysical sources:

+ Farrar & Biermann ’98: radio-loud QSO’s, pch ∼ 0.5%

– Sigl et al. ’01: pch ∼ 27%

+ Tinyakov & Tkachev: AY – radio-loud BL Lacs with z > 0.1
and mag < 18, pch ∼ 2×10−5

– Torres et al.: HV no significant correlation

+ Gorbunov et al.: HiRes – all BL Lacs with mag < 18,
pch ∼ 4×10−4

How serious pch should be taken?

Are correlations as found by Tinyakov & Tkachev possible
with protons or nuclei as primaries?
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Is the GZK cutoff observed?
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Is the GZK cutoff observed?
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Three outstanding questions:

• does the UHECR spectrum shows GZK suppression or not?

if not: several possibilities:

Z burst model
top-down models
violation of Lorentz invariance

• is UHECR astronomy possible?

• do correlations with objects at cosmological distance exist?

if yes:

new primary
Z burst model
violation of Lorentz invariance
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AUGER experiment:
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AUGER: Pampa + Detektor
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Z burst model: UHE ν+νBR → Z → all [Fargion, Mele, Salis ’99; Weiler ’99 ]

advantages:

economical: no new particle physics is needed
for Eν ∼ 1023 eV, the mass of the relic neutrino should be
mν = m2

Z/(2Eν)∼ 0.1 eV, compatible with oscillation data.
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Z burst model: UHE ν+νBR → Z → all [Fargion, Mele, Salis ’99; Weiler ’99 ]

advantages:

economical: no new particle physics is needed

for Eν ∼ 1023 eV, the mass of the relic neutrino should be
mν = m2

Z/(2Eν)∼ 0.1 eV, compatible with oscillation data.

problems:

requires proton acceleration up to E ∼ 1023 eV!

Neutrinos as HDM are not strongly clustered

⇒ enormous fluxes needed; luminosity of sources too high

experimental bounds on UHE neutrino fluxes constrain already
Z burst model

observed MeV–GeV-γ background implies upper bounds on
UHE neutrino flux produced in (astrophysical) sources
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Idea of EGRET limit

all energy in γ and e± cascades down to MeV–GeV range, bounded
by observations:

ωcas = femmZ

∫ t0

0
dt (1+ z)−4 nZ(t)

dt
<
∼ 2 ·10−6 eV/cm3
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EGRET and neutrino limits:
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Neutrinos as UHE primaries

UHE neutrinos are not absorbed, but are deeply penetrating
particles in SM

⇒ produce mainly horizontal, not vertical EAS

not observed up-to now

Michael Kachelrieß Ultra-High Energy Cosmic Rays



Data and their interpretation
Alternative models

Summary

Neutrinos
Top-Down Models

Neutrinos as UHE primaries

for primary energies Eν = 1020−1021 eV:

cms energy for collisions with background
∼ 100 MeV – 100 GeV ⇒ physics well-understood
cms energy for collisions in atmosphere
∼ 100 TeV – 1 PeV ⇒ beyond reach of accelerators

⇒ talk of Huitzu Tu
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Neutrinos
Top-Down Models

Neutrinos as UHE primaries

for primary energies Eν = 1020−1021 eV:

cms energy for collisions with background
∼ 100 MeV – 100 GeV ⇒ physics well-understood

cms energy for collisions in atmosphere
∼ 100 TeV – 1 PeV ⇒ beyond reach of accelerators

UHE neutrinos could acquire large cross-section due to new
physics:

exchange of KK gravitons

production of black holes

non-perturbative effects in the SM (sphalerons)

⇒ talk of Huitzu Tu
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Ex.: Large Extra Dimensions

t channel exchange of KK gravitons could enhance Nν cross
section because of

small mass splitting of KK gravitons, m2
~n =~n2/R2.

fast growth, σ(s) ∝ sj and j = 2.

Could neutrino be primary of observed vertical EAS above
GZK-cutoff?

[Sigl ’00, Jain et. al ’00 ]
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Ex.: Large Extra Dimensions

t channel exchange of KK gravitons could enhance Nν cross
section because of

small mass splitting of KK gravitons, m2
~n =~n2/R2.

fast growth, σ(s) ∝ sj and j = 2.

could neutrino be primary of observed vertical EAS above
GZK-cutoff?

[Sigl ’00, Jain et. al ’00 ]

no, because

unitarity slows down increase of cross section
[MK, M.Plümacher ’00, Giudice, Rattazzi, Wells ’01 ]

also large energy transfer is needed
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Ex.: Large Extra Dimensions
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⇒ neutrinos are still deeply penetrating particles
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BH production and UHE ν’s

[Feng and Shapere ’01 ]
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• neutrinos with non-SM interactions cannot explain observed
vertical EAS

• but provide exciting experimental target for HE and UHE
neutrino experiments

Michael Kachelrieß Ultra-High Energy Cosmic Rays



Data and their interpretation
Alternative models

Summary

Neutrinos
Top-Down Models

Top-Down Models UHECR primaries are produced by decays of
supermassive particle X with MX >

∼ 1012 GeV.

topological defects: monopoles, strings, . . .
[Hill ’83; Ostriker, Thompson, Witten ’86 ]

superheavy metastable particles
[Berezinsky, MK, Vilenkin ’97; Kuzmin, Rubakov ’97 ]

Advantages:

no acceleration problem

no visible sources

if X ∈ CDM, no GZK-cutoff

theoretically motivated; testable predictions
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Gravitational creation of superheavy matter:

Small fluctuations of field Φ obey

ϕ̈k +
[

k2 +m2
eff(τ)

]

ϕk = 0

If meff is time dependent, vacuum fluctuations will be transformed
into real particles.
⇒ expansion of Universe leads to particle production

In inflationary cosmology

ΩXh2 =

(

MX

1012GeV

)2 TRH

109GeV

independent of details of particle physics, for any MX <
∼ HI

[Kuzmin, Tkachev ’98; Chung, Kolb, Riotto ’98 ]
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Lifetime:

For MX >
∼ 1010 GeV even gravitational interactions result in

cosmological short lifetimes, τX ¿ t0.

global symmetry broken by wormhole effects, τX ∝ exp(S)

symmetry broken by instanton effects,
τX ∝ exp(−4π2/g2)

discrete symmetries forbid operators with d < 9

crypton or fractionally charged and confined particle of
superstring theories
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Fragmentation of heavy particles

• Consider Bremsstrahlung, X→ f̄ fV:

soft and collinear singularities generate ln2(m2
V/m2

X) for m2
X À m2

V
⇒ they can compensate the small couplings g2,

g2 ln2(m2
X/m2

V)≈ 1
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Fragmentation of heavy particles

• Consider Bremsstrahlung, X→ f̄ fV:

soft and collinear singularities generate ln2(m2
X/m2

V) for m2
X À m2

Z
⇒ they can compensate the small couplings g2,

g2 ln2(m2
X/m2

V)≈ 1

• MX >
∼ 106 GeV, ⇒ naive perturbation theory breaks down:

electroweak and SUSY sector have a QCD-like behavior (“jets”)
[Berezinsky, MK ’98, Berezinsky, MK, Ostapchenko ’02) ]
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Fragmentation of heavy particles
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Signatures of SHDM decays

flat spectra dE/E1.9 up to mX/2

E
3
J(

E
)/
m

−
2
s−

1
eV

2

E/eV

1e+23

1e+24

1e+25

1e+26

1e+18 1e+19 1e+20 1e+21

[Aloisio, Berezinsky, MK, ’03 ]

⇒ SHDM dominates UHECR flux only above ∼ 8×1019 eV
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Signatures of SHDM decays

flat spectra dE/E1.9 up to mX/2
composition:

γ/pÀ 1, no nuclei
large neutrino fluxes
LSPs, if R-Parity conserved
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Signatures of SHDM decays

flat spectra dE/E1.9 up to mX/2

composition: [Berezinsky, MK ’98 ]

galactic anisotropy: [Dubovsky, Tinyakov ’98 ]

SUGAR data exclude at 99.8% C.L. annihilations of
superheavy DM
do not constrain strongly decays of superheavy DM

[MK, Semikoz ’03, Kim, Tinyakov ’03 ]
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Status of topological defect models – necklaces:
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Status of topological defect models – necklaces:
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⇒ shape of spectrum allows only sub-dominant contribution
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Violation of Lorentz invariance (LI)

quantum gravity (“space-time foam”) or dim. reduction
d = n > 4→ 4 could induce tiny departures from LI
⇒ non-universal maximal velocities
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suppose,
cγ− cπ0 = cγ− ce = 10−22

then π0 is stable above E ∼ 1019 eV and photon unstable!
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quantum gravity (“space-time foam”) or dim. reduction
d = n > 4→ 4 could induce tiny departures from LI
⇒ non-universal maximal velocities

suppose,
cγ− cπ0 = cγ− ce = 10−22

then π0 is stable above E ∼ 1019 eV and photon unstable!

similar in the GZK cutoff reaction p+ γ3K → ∆(1232)
threshold condition for head-on collision changed to
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if c∆− cp ≥ 2×10−25, reaction forbidden
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Summary I:

UHECR data will provide soon unique information about

structure of galactic magnetic field

magnitude of extragalactic magnetic fields

if both are “small”, astronomy with UHECRs will be possible

determination of source density ns

determination of source classes

acceleration mechanism?
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Summary II

Z bursts and topological defects can be only subdominant
sources of UHECR

no positive evidence for superheavy dark matter from its two
key signatures:

photons
galactic anisotropy

open questions for AUGER, Anita, . . . :

clustering due to point sources?

correlations with BL Lacs?

existence of GZK suppression?

photons as primaries?

detection of UHE neutrinos?
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Sensitivity of neutrino detectors
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