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Talk Layout

m Astrophysical context; gamma-ray bursts,
and active galaxies (radio galaxies and

blazars) as sources of ultra-high energy
cosmic rays (UHECRs);

m Monte Carlo simulation technique;
m Plane-parallel relativistic shocks;
m Oblique shocks;

m Bottom line: a plethora of possibilities
(=everyone can have their flavor of coffee).
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Pierre Auger UHECR Spectrum (2007)
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Pierre Auger Array determination of UHECR spectrum (x E?¢ above)
reveals GZK turnover at 60 EeV ( ).

Confirms Fly’s Eye and later HIRES observations; contradicts AGASA
results;

=> UHECR sources must be further than around 30-50 Mpc.




BATSE Gamma-Ray Burst Lightcurves
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Gamma-Ray Bursts: Relativistic Outflows

FORMATION OF A GAMMA-RAY BURST could begin
either with the merger of two neutron stars or
s with the collapse of a massive star. Both these
A events create a black hole with a disk of material
NEUTRON STARS | around it. The hole-disk system, in turn, pumps
out a jet of material at close to the speed of light.
Shock waves within this material give off radiation. | JET COLLIDES WITH
AMBIENT MEDIUM
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Spectral Character: GRB990123

Low-Energy Index
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High Energy Cosmic Ray Accelerators:
Radio Galaxies like Cygnus A
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Correlation of UHECR Directions
with nearby (z<0.02) AGNs
T T R —

m Science (2007) 318, 938: Pierre Auger Collaboration announces
correlation of arrival directions on Celestial Sphere (Aitoff proj.) of
the 27 cosmic rays (1.2 year’s data) with highest energy ( )
with the positions of the 472 AGN (318 in the field of view of the
Observatory) with redshift z < 0.018 (D < 75 Mpc Veron-Cetty 2006

catalog). The dashed line marks the Supergalactic plane.
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Cosmic Ray Acceleration:
Fields and Spatial Scales

Phase Space for Ay~ (c/u)r,~R
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Based on diffusion
theory at non-rel.
shock using Bohm

limit (mfp A~ c 1, /u);
Gyroresonant
interactions operate;

AGN jets, GRBs and
magnetars are best
candidates for

UHECR production.




Monte Carlo Simulation Particle Trajectories

Diffusive Shock Acceleration

Upstream

Gyration in B-fields and diffusive transport modeled by a Monte Carlo
technique; color-coded in Figure according to fluid frame energy.

Shock crossings produce net energy gains (evident in the increase of
gyroradii) according to principle of first-order Fermi mechanism.




Shock Acceleration: Monte Carlo Simulations

The Monte Carlo simulations use a
in MHD shocks (after Bell 1978);

Thermal 1ons and e are injected far upstream of shock:

Particle diffusion in MHD turbulence is phenomenologically
described via the mean free path = being some power of its
gyroradius :same prescription for both thermal and non-
thermal particles, and for electrons and protons;

Principal advantages include addressing large momentum
ranges =>

, and not restricted to
subluminal shocks, and include shock drift acceleration;

Technique has been well-tested in heliospheric contexts of
acceleration at the Earth’s bow shock (Ellison et al. 1990)
and interplanetary shocks (Baring et al. 1997; Summerlin &
Baring 2006) using z7-situ spacecraft data.




Ulysses 1991 Day 292 Shock:
Spectral and Spatial Comparison
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Day of 1991

: Ulysses SWIGS and HI-SCALE downstream data from Gloeckler, et al.
(1994), together with MG simulation fit (upper blue histogram) to data from

s Spatial/temporal profiles for 5 keV (SWIGS) and 200 ke V: (HI-SCALLE)
protons. MG model for ILAS in strong field turbulence matches 200 keV: ramp
scalejforssamerturbulencelparaneterN i that fits downstreanvspectiinm.




Expectation Uncertainties for UHECRs

m Population statistics + source energetics:
Space distribution of source population;
Duty cycle of transient or flaring sources:;

Non-thermal hadronic luminosity distribution function of

candidate sources (i.e. AGNs and GRBs);
Relativistic beaming reductions of intrinsic source luminosity;
m Spectral form: power-law “lever arm” critical to fluxes
predicted in window;

m shock acceleration expectations;
m Tying cosmic ray spectra to candidate source gamma-ray
spectra - a central role for science;
m Hadronic vs. leptonic acceleration efficiency:

= non-thermal population abundances possess the biggest
uncertainty: they are products of the acceleration environment.




Spectral Properties of Diffusive
i Relativistic Shock Acceleration

= For small angle scattering, ultra-relativistic, parallel
shocks have a power-law index of 2.23 (Kirk et al. 2000);

s Result obtained from solution of diffusion/convection

equation and also Monte Carlo simulations (Bednarz &
Ostrowski 1996; Baring 1999; Ellison & Double 2004);

= Power-law index is . scattering angles
larger than Lorentz cone flatten distribution;

= Large angle scattering yields kinematic spectral
structure;

= Spectral index is generally (but not always) a strongly
increasing function of field obliquity angle ©g,.




Relativistic Shocks: Spectral
Dependence on Scattering

m Deviations from

““canonical” index of
2.23 (Bednarz &

Ostrowski 1998; Kirk et
al. 2000; Baring 1999)
occur for scattering
angles >1/T, i.e.
Large angle scattering
yields kinematically
structured distributions;

Log,,[mec dN/dp]

weate = 7 (LAS)

(e°g'/ . scatt < 60° o
; Ellison ot < 20° }Fiel =10 N\ o
e

& Double 2004; Baring — e
2005)




i The Character of Relativistic Shocks

= Character of relativistic shocks defined by their
. convective influence is
profound, particularly for superluminal cases;

= Escape downstream is a sfrong function of
shock speed and field obliquity: convective loss
rates are high;

= Acceleration times are not modified strongly by
relativistic effects (EJR90, Baring 2002).



Upstream and Downstream Angular Distributions
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Normalized Shock Frame Distribution

simulation shock frame distributions for a parallel,
relativistic shock with I';3,=10.

Left Panel: different distances upstream. At the shock (black), simulation results
closely approximate the asymptotic (I';3;>>1) analytic form of

Right Panel: different distances downstream of the shock. Far downstream, the
distribution approximates that for an isotropic fluid boosted by ,=1/3.




Oblique Shock Geometry

B,

upstream flow downstream flow
velocity ug velocity u,
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Gaussian
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Spectral Dependence on Field Obliquity

Downstream Distributions
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4 Increasing upstream B-field obliquity and / or ratio of mean free path
to gyroradius sieepens the continuun (e.g. Bednarz & Ostrowski
1998; Ellison & Double 2004; Summerlin & Baring 2009 [in prep];
Kirk & Heavens 1989).




Shock Acceleration Spectral Indices

To compare with Kirk &
Heavens (1989) solutions
of convection-diffusion
equation (oblique shocks).

Power-law indices in the
limit of small angle
scattering (pitch angle
diffusion: PAD) range
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For absolutely no cross
field diffusion (A/r,—>),
the index 1s

and the distribution
i1s extremely flat:

Such regimes correspond
to

, and are
extremely unlikely.

Shock Acceleration Power—Law Indices (PAD)
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50° 60° 70° Oy, = 80°
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0.2 0.4 0.6 0.8
Upstream HT Frame Speed, B,y = B,,/C0S0p,




Shock Drift in Action: 7\/1‘g=104

Shock Drift Acceleration, g, = 0.95 Shock Drift Acceleration, B, = 0.95
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m Left Panel: projection of a selected ion orbit onto the x-y plane, exhibiting
drifting in the shock layer. Right Panel: evolution of magnitudes of
momentum in fluid (pg) and shock (ps) frames versus y, indicating shock
drift episodes interspersed with upstream diffusive hiatuses in energy gain;

, enables

particle convection downstream, and steepens spectrum.



Disrupted Shock Drift: A/r,=10?

Shock Drift Acceleration, £, = 0.95

= Projection of a selected ion orbit onto the x-y plane, exhibiting drifting in
the shock layer. Exhibits “wonky drift.”

, enables
particle convection downstream, and steepens spectrum.




Shock Acceleration Spectral Indices

Shock Acceleration Power—Law Indices (PAD)

AL A L L L

s Power-law indices in the 20° 30°  40° 50° Opyy = 60° 1
limit of small angle t
scattering (pitch angle
diffusion: PAD) range

considerably;

In cases of absolutely no
cross field diffusion, the
index is

and the distribution is
extremely flat;

Spectral Index, ¢

Gyro-orbit simulations
for AMr_,—>% do not quite
match Kirk & Heavens
(1989, KH89) solutions to 1
diffusion-convection 28948 ,}f{rﬂnili
equation, since : 05 06 07 08 09 1
Upstream HT Frame Speed, B,y = B,/ c0S0p,

for
particles interacting with

the shock.




Shock Acceleration Injection Efficiencies

Distributions at Shock (SAS)

. [ T [ T |

m  Complete particle spectra
in the limit of small angle
scattering (pitch angle r=4, My =4.04
diffusion: PAD) range J 1

considerably;

B = 0.5, Biyr = 0.75

In cases of strong cross
field diffusion, the index is
and the
injection is efficient;
Gyro-orbit simulations
for A/r,—o0 that give flat
power-law indices are
poor injectors — this
becomes far more
extreme as HT frame
speed approaches c.

Log,,[p/(mc)]




Injection Efficiencies: Near Luminality

When shocks are nearly Distributions at Shock (SAS)

luminal, the injection o
efficiency precipitously Bix =05, By =097 _|
drops in gyro-orbit 1 r=4, Mg = 4.04
simulations as k/rg%OO. |

=> flat power-law index
cases are poor injectors —
this becomes far more
extreme as HT frame speed
approaches c.

Log,,[mec dN/dp]

Rapid convection
downstream inhibits
suprathermal injection.

Stochastic heating can aid
injection: only modestly.

Astrophysical requirements

of moderate turbulence and Log,o[p/(me)]
injection efficiency

advocate spectra steeper

than E-1-°,




Implications for sources of UHECRs

Relativistic shocks can generate a multitude of
spectral forms: power-law indices depend on
shock parameters and scattering properties;

—>
Distinct contrast to non-relativistic case
|depends on r only/|;

Spectrum is only flat for quasi-parallel shocks or
strong turbulence, g

GRB prompt and afterglow emission more easily
explained by mildly-relativistic shocks that are not
quasi-perpendicular (for diffusive acceleration
scenarios). True also perhaps for radio galaxies.




Conclusions

Shock acceleration particle spectral indices depend on several
shock parameters: to the shock normal,
or level of MHD turbulence,

=P
Unless source shocks are superluminal and only modestly
turbulent, UHECR spectral generation is easily realized for a
variety of conditions in relativistic shocks.
The abundance ratio, a key parameter for the UHECR and
neutrino cosmic flux budget, is still a critical unknown — a goal for
future simulation probes.
GRB and AGN spectra are intimately connected to detailed shock

parameters => role for gamma-ray spectral diagnostics for
both hadronic and leptonic models.

: efficient retention of particles in the
shock layer permits efficient action of shock drift acceleration.




Power-Law Normalizations: the big Unknown

For single component species, the downstream thermal
population is heated to momentum ~I',f;mc. This
effectively establishes the power-law normalization;

For relativistic e-p shocks, this introduces a temperature
ratio 1,/T,~m /m, that effects

For 0~2,
In most source modeling to date, this unknown is chosen.

Need to consider:

m the effect on ¢, by heating of thermal electrons in plasma shocks via
in the shock layer [ e™-e” pair shocks
don’t exhibit such separations |;

m Turbulent heating modifications to ¢,in PIC simulations.

Relevant both for UHECR and VHE neutrino flux budgets,

as well as Ferm: gamma-ray sources.




Density and Electric Field Profiles - low M_
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(Density profiles apply to e or p)

Heating the beam smooths out the gyrational influence on density and E-field
profiles. Correlation of gyrational peaks with field obliquity is marked.

Efficient acceleration in parallel shocks diminishes density compression on
sub-diffusive scales (i.e. |x|< 5 here).

Dashed magenta lines mark Rankine-Hugoniot densities and (maximal) E.




Shock Drift in Oblique, Non-Relativistic Systems

DECKER AND VLAHOS o (DV 1986)
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F16. 6.—Sample for quasi-perpendicular shock #; = 60°. See Fig. 5 caption and text for details.



Ion Acceleration at Earth’s Bow Shock

Ellison, Moebius & Paschmann (1990)
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AMPTE observations of diffuse ions at Q-parallel Earth bow shock H*, He** and CNO%* observed
during time when solar wind magnetic field was nearly radial;

Efficient acceleration (25%) in high MS shock; model fits work only for non-linear model that
exhibits A/Q enhancements; Scholer, Trattner & Kucharek (1992) found similar results with hybrid
PIC simulations.



Anisotropies 1n Relativistic Shocks:
Pitch Angle Dittusion, 0.1c <u,<c¢

Kirk, Guthmann, Gallant & Achterberg (2000)
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