Magnetic fields in galaxies and the Milky Way

Rainer Beck (MPIfR Bonn) Magnetic fields are widely accepted as being important in most astrophysical processes

- Interest in magnetic fields is also rising thanks to UHECRs

Fundamental questions

• Structure

• What is the magnetic field structure at small and large scales ?

Dynamics

Do magnetic fields affect gas flows and galaxy evolution ?

Origin

• When and how were the first magnetic fields generated ?

Evolution

How and how fast were galactic magnetic field amplified ?

Observing magnetic fields with radio waves

 Total synchrotron intensity: Strength of total B₁

 Polarized synchrotron intensity: Strength and structure of ordered B₁

- Faraday rotation: Strength and sign of regular B₁
- Faraday depolarization: Strength and scale of regular + turbulent fields

 Zeeman effect: Strength and sign of regular B₁

Outline

Field origin

- Cosmic ray electrons
- Field strengths and structures
- Radio halos
- Faraday rotation
- Field reversals
- Milky Way
- Future observations

Field origin

- Cosmic ray electrons
- Field strengths and structures
- Radio halos
- Faraday rotation
- Field reversals
- Milky Way
- Future observations

Magnetic field generation and amplification

Field seeding

Primordial, Weibel instability, ejection by supernovae, stellar winds or jets

- Field amplification MRI, compressing / shearing flows, turbulent flows, small-scale dynamo
- Coherent field ordering Mean-field dynamo

Classical mean-field dynamo

- Ingredients: Ionized gas + differential rotation
 + helical turbulence + magnetic diffusion
- Microphysics approximated by the average parameters "alpha-effect" and diffusivity
- **Dynamo equation** for the large-scale "mean" field
- Generation of large-scale modes

Dynamo action in evolving galaxies

Turbulent magnetic fields can be expected after z≈10, large-scale (regular) fields after z≈4

Dynamo action in evolving galaxies: coherence lengths

Arshakian et al. 2009

Large galaxies need more than 10 Gyr to build up a fully coherent field

Antisymmetric (dipolar) dynamo mode

Realistic models

- MHD models: Include magnetic fields on all scales and back-reaction of the field onto gas turbulence and flows
- Include cosmic rays
- Global models of galaxies, including rotation and non-axisymmetric gas flows (e.g. spiral arms, bar and outflow)
- Include galaxy evolution

MHD model of supernova-induced turbulence in the ISM

de Avillez & Breitschwerdt 2005

Generation of small-scale turbulent, filamentary fields by compression and shear

Magnetic field strength

Global cosmic-ray driven MHD model

Hanasz et al., in prep.

Field origin

- Cosmic ray electrons (GeV only)
- Field strengths and structures
- Radio halos
- Faraday rotation
- Field reversals
- Milky Way
- Future observations

Synchrotron spectra of spiral galaxies

Radio spectral indices in M 51

Cosmic-ray electron spectra in spiral galaxies

1. Spiral arms: Injection by strong shocks in supernova remnants $(\varepsilon \approx 2.2)$ + energy-dependent escape $(\delta \approx 0.5)$

4. Interarm regions: Mixture of young particles from SNR ($\epsilon \approx 2.2$) and old particles with spectra steepened by synchrotron / IC losses ($\epsilon \approx 3.2$)

Diffusion of cosmic-ray electrons in M51

Fletcher et al. 2009

Lifetime of synchrotron-emitting electrons:

 $v_{svn} = 5 \text{ GHz}, B_{\perp} = 15 \mu\text{G}: t_{svn} \approx 8 \text{ Myr}$

- Propagation length: L ≈ 1 kpc
- Diffusion coefficient:

 $D = L^2 / t_{syn} \approx 4 \ 10^{28} \ cm^2 \ s^{-1}$

NGC 253

Spectral index 6/20cm (Heesen et al. 2009)

> Spectral index steepens with height:

Synchrotron losses of GeV CREs

Scale heights of cosmic-ray electrons in NGC 253

• North: Convection dominates, bulk speed $v_7 = 300 \pm 30$ km/s

South: Diffusion dominates, $D = (2 \pm 0.2) \cdot 10^{29} \cdot cm^2 \cdot s^{-1}$

Field origin Cosmic ray electrons Field strengths and structures Radio halos Faraday rotation Field reversals Milky Way Future observations

Equipartition strength of the total field

(assuming equipartition between magnetic fields and total cosmic rays)

Beck & Krause 2005

$$\mathbf{B}_{eq,\Box} \propto \left(\mathbf{I}_{sync} \left(\mathsf{K}+1 \right) / \mathsf{L} \right)^{1/(3+\alpha)}$$

- **I_{sync}:** Synchrotron intensity
- L: Pathlength through source
- **α**: Synchrotron spectral index ($S \propto v^{-\alpha}$)
- K: Ratio of GeV cosmic-ray proton/electron number densities n_p/n_e Usual assumption: K=100

Equipartition field strengths in M 51

Fletcher et al. 2009

Equipartition magnetic field strengths in spiral galaxies

Average total field in disks:	5 – 15 µG
Total field in spiral arms:	20 - 30 µG
Total field in interarm regions:	10 - 15 µG
Regular field in interarm regions:	5 - 15 μG
Total field in halos:	≤ 10 μG
Total field in starburst regions:	<mark>40 – 100 µG</mark>

Typical radial scale lengths of disks of spiral galaxies

- Cold & warm gas: ≈4 kpc
 Synchrotron: ≈4 kpc
- Cosmic-ray electrons: ≤8 kpc (upper limit due to energy losses of CREs)
- Total magnetic field strength: 216 kpc

The full extent of the magnetic field into intergalactic space is not yet known !

NGC 6946 WSRT HI + optical (Boomsma et al. 2006)

Where does a galaxy end ?

Synchrotron polarization

VLA + Effelsberg 6cm

Beck & Hoernes 1996

NGC 6946

6cm VLA+Effelsberg Polarized intensity + B-vectors (Beck & Hoernes 1996)

"Magnetic arms":

Ordered fields concentrated in interarm regions

NGC 6946 Center 3cm VLA Total intensity

+B-vectors (Beck 2007)

The spiral field continues deep into the central region

NGC 6946 VLA Polarized Intensity + B (Beck 2006)

Deep mapping:

More magnetic spiral arms out to ≥ 25 kpc

M 51

6cm VLA + Effelsberg Total intensity + B-vectors (Fletcher et al. 2009)

Prototypical density-wave galaxy:

Spiral fields along and between the optical spiral arms

6cm VLA+Effelsberg Total intensity + B-vectors (Fletcher et al. 2009)

M 51

Spiral fields parallel to the inner spiral arms:

Strong density-wave compression

6cm VLA+Effelsberg Total intensity + B-vectors (Fletcher et al. 2009)

M 51

Spiral fields between the outer spiral arms (weak density waves):

> Dynamo action? Shear?

NGC 4736 3cm VLA Polarized intensity + B-vectors (Chyzy & Buta 2007)

Spiral fields in a ring galaxy

NGC 4414

3cm VLA H-alpha + B-vectors (Soida et al. 2002)

Flocculent galaxies:

Spiral field exists even without spiral arms, large pitch angles

Field origin

- Cosmic ray electrons
- Field strengths and structures
- Radio halos
- Faraday rotation
- Field reversals
- Milky Way
- Future observations

NGC 891 3cm Effelsberg Total intensity + B-vectors (Krause 2007)

Similar to the Milky Way !

Bright radio halo with X-shaped field pattern:

Vertical field increases with increasing height

NGC 4631

Effelsberg 3.6cm Total intensity + B-vectors (Krause & Dumke)

> Huge halo with exceptionally large scale height and strong vertical field

Large-scale field patterns in halos are neither dipolar nor quadrupolar, but X-shaped

Typical scale heights of radio halos

- Cold gas: ≈0.1 kpc
- Warm gas: ≈2 kpc
- Synchrotron: ≈1.5-2 kpc
- Cosmic-ray electrons: ≤ 3-4 kpc (assuming equipartition, upper limit due to energy losses of GeV CREs)
- Total magnetic field strength: ≥ 7-8 kpc

NGC 4569 6cm Effelsberg Polarized intensity

+ B-vectors (Chyzy et al. 2006)

> Field pulled out and ordered –

tracer of past interactions

Results (1): Ordered magnetic fields

- Ordered magnetic fields prefer spiral patterns
- Ordered magnetic fields are hardly compressed in spiral arms and bars
- Ordered magnetic fields are concentrated in interarm regions
- Ordered fields in radio halos are X-shaped
- Ordered magnetic fields keep memory of past interactions

Random (turbulent) fields

- Ratio of random to ordered magnetic fields:
- \geq 4 in spiral arms, bars and starburst regions
- 0.5 2 in magnetic arms
- 1 3 in halos
- Random and ordered fields are anticorrelated
- Turbulence scale of random fields: 10-50 pc

Field origin

- Cosmic ray electrons
- Field strengths and structures
- Radio halos
- Faraday rotation
- Field reversals
- Milky Way
- Future observations

Ordered fields:

Coherent (dynamo) or incoherent (shear / compression)

Regular (coherent) field

Anisotropic (incoherent) field

Polarization :strongstrongFaraday rotation :highlowUHECR deflection :highlow

Faraday rotation: crucial to detect regular fields

Searching for dynamo modes: Azimuthal variation of Faraday rotation

Bisymmetric spiral (mode m=1)

M 31: The classical dynamo field

Berkhuijsen et al. 2003

Berkhuijsen et al. 2003

Large-scale RM pattern of the diffuse emission: Axisymmetric (m=0) dynamo field

NGC 6946

6cm VLA+Effelsberg Polarized intensity + B-vectors (Beck & Hoernes 1996)

NGC 6946 RM 3/6cm VLA+Effelsberg (Beck 2007)

Superposition of two dynamo modes (m=0 + m=2) + strong fluctuations

M 51

6cm VLA + Effelsberg Total intensity + B-vectors (Fletcher et al. 2009)

> Prime candidate for strong dynamo action

> > *but* ...

M 51 RM 3/6cm VLA+Effelsberg (Fletcher et al. 2009)

Two *weak* dynamo modes (m=0+2) + strong anisotropic fields

Large-scale magnetic fields in M51

Fletcher et al. 2009

Upper layer: BSS (m=1) mode Disk: ASS (m=0) + m=2 modes (a) (b) ۶ * × * disc halo

Field reversal between northern disk and inner halo – similar to that found for the Milky Way (Sun et al. 2008)

NGC 253

6cm VLA+Effelsberg Total intensity + B-vectors (Heesen et al. 2009)

> Exponential radio halo

NGC 253

6cm VLA+Effelsberg Polarized intensity + B-vectors (Heesen et al. 2009)

Disk: Axisymmetric spiral field

Halo: X-shaped field, probably symmetric (quadrupolar)

Results (2): Dynamo action

- Preference of spiral field patterns indicates dynamo action
- Dominating single modes are rare among disk fields
- In most cases the disk field is a superposition of several unresolved modes, or the field is mostly anisotropic
- Is the time scale for generation of coherent disk fields larger than galaxy age ? (Arshakian et al. 2008)
- The symmetry of poloidal (halo) fields is hard to measure (only in the halo of NGC 253 so far)

Field origin

- Cosmic ray electrons
- Field strengths and structures
- Radio halos
- Faraday rotation
- Field reversals
- Milky Way
- Future observations

NGC 4414 VLA RM 3/6cm (Soida et al. 2002)

> One large-scale field reversal along radius

RM 3/6cm in the jet of NGC 7479

Field origin

- Cosmic ray electrons
- Field strengths and structures
- Radio halos
- Faraday rotation
- Field reversals
- Cosmic ray electrons
- Milky Way
- Future observations

All-sky radio continuum survey (Stockert + Villa Elisa 1.4 GHz)

Equipartition field in the Milky Way

(Berkhuijsen, in Wielebinski & Beck 2005)

Zeeman field strengths (B_{\parallel}) in gas clouds

Average total field strength in the diffuse ISM: \approx 6 μ G

All-sky polarization survey (WMAP 22.8 GHz) Page et al. 2006

Strong north-south asymmetry !

Rotation Measures (RMs) of polarized extragalactic background sources

Symmetric local field + antisymmetric (dipolar) halo field ?

Magnetic field model of the Milky Way (from Galactic synchrotron emission and extragalactic RMs)

Axisymmetric spiral field (ASS) + one reversal in disk + antisymmetric halo field

Canadian Galactic Plane Survey (21cm polarization, DRAO+Effelsberg)

Landecker, Kothes, Reich, et al.

Galactic Longitude

Depolarization canals : Signatures of MHD turbulence (Fletcher & Shukurov 2006)
Pulsar RMs in the Milky Way: Bisymmetric spiral (BSS) with many reversals ? (Han et al. 2001, 2005, ...)

Distance from the Sun: X (kpc)

Large-scale field reversals are rare in spiral galaxies:

Is our Milky Way special ?

What is the structure of the local field ?

Starlight polarization

Local field is distorted !

The local environment

• Since 5-10 Myr the solar system passes through a low-density region generated by SNs, the Local Bubble

 A region of moderate density, the Local Interstellar Cloud, will be reached in ≈ 0.1 Myr

• Almost nothing is known about the local field !

The very local field

Opher et al. 2007

 Voyager 1+2: The very local field is strongly tilted with respect to the Galactic plane

 \rightarrow The orientation of the very local field differs strongly from that of the large-scale Galactic magnetic field

No surprise !

Results (3): Milky Way

- The total field strength in the disk of the Milky Way is 5-10 μG, similar to that in other spiral galaxies
- The detailed field structure is very inhomogeneous
- The large-scale disk field has a spiral pattern with a pitch angle similar to that of the optical arms
- The large-scale disk field has at least one large-scale reversal at 0.5-1 kpc inside the solar radius
- The Milky Way probably has an extended magnetic halo, but nothing is known yet about its structure
- External galaxies show us how our Milky Way may looks like

UHECR propagation

Beck 2009

UHECR propagation in magnetic fields

Deflection of protons by a regular field at 50 EeV: $\approx 1^{\circ} (L/kpc) (B_{\perp}/\mu G)$

Deflection of protons (random walk) by a turbulent field at 50 EeV: $\approx 1^{\circ} (L/kpc)^{0.5} (D/kpc)^{0.5} (B_{\perp}/\mu G)$

Region of deflection	Field structure	Field strength B	Scale height H	Path- length D	Correlation length L	Deflection angle at 50 EeV
Milky Way disk	Regular toroidal: symmetric ASS	2 μG	2 kpc	10 kpc	3 kpc ?	6° (near plane)
	Turbulent	5 µG	2 kpc	10 kpc	50 pc	4° (near plane)
Milky Way halo	Regular toroidal: antisymmetric?	13 µG	8 kpc	8 kpc	<3 kpc ?	<39° (near plane)
	Regular poloidal: X-shaped ?	1 μG ?	8 kpc ?	8 kpc	<3 kpc ?	<3°
	Turbulent	15 μG	8 kpc ?	8 kpc	100 pc ?	14°
IGM filaments	Turbulent	0.0010.03 μG	-	1 Mpc ?	1 Mpc ?	130°

UHECR deflection in the Milky Way

- Strong deflection near the Galactic plane by regular and turbulent fields
- Significant deflection by turbulent fields in the Galactic halo
- Deflection by regular halo fields unknown because their structure and coherence length are unknown
- Asymmetries in field strength and structure between the northern and southern sky
- IGM fields of 30 nG and 1 Mpc coherence scale (Lee et al. 2009) would not allow UHECR astronomy !

Field origin

- Cosmic ray electrons
- Field strengths and structures
- Radio halos
- Faraday rotation
- Field reversals
- Milky Way
- Future observations

🔊 LOFAR

30-80 MHz 110-240 MHz

© Spektrum der Wissenschaft/Emde-Grafik

Station 302

Cosmic Rays with LOFAR

• UHEP - Moon

Energy (eV/particle)

- VHECR dipole
- HECR tied-array beam

H. Falcke

- Rotation measure (RM) errors are much lower at low frequencies
- LOFAR can detect very weak magnetic fields via RMs towards polarized background sources:
- Extended galaxy halos:

 $n_e = 10^{-3} \text{ cm}^{-3}$, $B_{||} = 1 \mu G$, L=1 kpc: RM~1 rad m⁻²

• Intergalactic magnetic fields:

 $n_e = 10^{-3} \text{ cm}^{-3}$, $B_{||} = 0.1 \ \mu\text{G}$, L=1 kpc: RM~0.1 rad m⁻²

Nearby pulsars in the Milky Way and their RMs

Future rotation measures of pulsars in the Milky Way with LOFAR

Leuwwen & Stappers

≈ 1000 pulsars within 2 kpc from the sun expected

Square Kilometre Array (SKA) (Reference Design)

70 MHz -10/35 GHz

SKA core station

M31 RM survey of M31 (simulation by Bryan Gaensler)

\approx 10000 polarized sources shining through M31

Future rotation measures of pulsars in the Milky Way with the SKA

≈ 20000 pulsars to be detected with the SKA

Key Science Projects on Cosmic Magnetism for most future radio telescopes