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Abstract

The fractional polarisation measured towards the northern Galactic pole is much lower than
expected from synchrotron emission. In this thesis we investigate different Galactic magnetic
field models to fit polarisation and intensity data. We provide descriptions of both turbulent
magnetic fields and the theory of synchrotron radiation, with a focus on polarisation. Formulas
for the degree of circular and linear polarisation are derived for a single electron and a power-
law electron distribution. Furthermore, magnetic field models are presented for turbulent and
regular fields. We argue that the regular field models may not reproduce the low measured po-
larisation degrees, either alone or in combination with a turbulent field. An extended turbulent
field may be added to solve the issue. A simplified total field model consisting of a turbulent
disk and corona field with a regular halo field is also investigated. Simulations of synchrotron
polarisation and intensity for this model may be in agreement with the measured data in a
significant amount of cases, for some given parameters and assumptions.
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Sammendrag

Polarisasjonsfraksjonen m̊alt mot den nordlige galaktiske polen er mye lavere enn forventet fra
synkrotronstr̊aling. I denne oppgaven undersøker vi ulike galaktiske magnetfeltmodeller for å
sammenligne med polarisasjons- og intensitetsdata. Vi beskriver b̊ade turbulente magnetfelt
og teorien rundt synkrotronstr̊aling, med et fokus p̊a polarisasjon. Formler for den sirkulære
og lineære polarisasjonsgraden blir derivert for et enkelt elektron og en distribusjon av elek-
troner som følger en potenslov. Videre presenterer vi magnetfeltmodeller for turbulente og
regulære felt. Vi argumenterer for at de regulære feltmodellene ikke kan reprodusere de lave
polarisasjonsverdiene m̊alt, verken alene eller i kombinasjon med et turbulent felt. Et utvidet
turbulent felt kan inkluderes for å løse problemet. En forenklet totalfeltmodell best̊aende av
et turbulent disk- og korona-felt med et regulært “halo”-felt blir ogs̊a utforsket. Simulasjoner
av synktrotronpolarisasjon og -intensitet for denne modellen kan stemme overens med de m̊alte
dataene i et betydelig antall tilfeller, gitt visse parametre og antagelser.
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Chapter 1

Introduction

Arguably the most important emission process in astrophysics is synchrotron radiation. Syn-
chrotron radiation is electromagnetic emission from ultra-relativistic charged particles acceler-
ated by magnetic fields. This interaction of charged particles, in particular electrons, with the
magnetic fields of our Universe dominates most of high-energy astrophysics, and its character-
istics are therefore of large interest.

The theory of relativistic electrons emitting electromagnetic radiation in a uniform magnetic
field was treated by Schott as early as 1912. However, the first direct observation of synchrotron
radiation was made much later, in 1947. The observation was made by chance by a technician in
a 70 MeV synchrotron1 at the General Electric Laboratory in Schenectady, New York. Ivanenko
and Sokolov in 1948 and Schwinger in 1949 developed the theory of synchrotron radiation, and
Sokolov and Ternov in 1956 and Westfold in 1959 the theory of its polarisation effects. These
developments are the basis for the modern treatment of synchrotron radiation, although much
of the theory can be dated back to the nineteenth century. In particular, Larmor derived an
expression for the total power radiated by an accelerated charged particle in 1897, the same year
as the discovery of the electron by Thomson. Just one year later, in 1898, Liénard extended
the treatment to relativistic particles.

In the field of astrophysics, it became clear in 1950 that the observed radio emission required
the presence of magnetic fields, and that the synchrotron radiation should be highly polarised.
In 1953 it was suggested by Shklovsky that the radiation from the Crab Nebula was due to
synchrotron radiation, which was later confirmed by observations. In particular, observations
of optical linear polarisation were made by Vashikadze in 1954 and Dombrovski in 1954. Addi-
tionally, in 1957 Mayer et al. detected polarised radio emission from the Crab Nebula at optical
wavelengths. Further observations have lead to the conclusion that the Milky Way contains
widespread, significant magnetic fields, and that synchrotron radiation processes are responsi-
ble for the majority of the radio emission in the Galaxy. The presence of magnetic fields in
galaxies are indicated through low-frequency radio observations where non-thermal spectra are
found. Specifically, Mathewson et al. in 1972 were the first to detect radio linear polarisation
from a nearby galaxy, the Whirlpool Galaxy (M51)2.

1A circular particle accelerator. Today the largest synchrotron-type accelerator is the Large Hadron Collider
(LHC) finished in 2008 at CERN in Switzerland.

2See Refs. [1, 2, 3, 4] for further historical context.
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation and objectives

The cosmic microwave background (CMB) and Galactic emission spectra are shown in Fig 1.1.
At frequencies below 30GHz, synchrotron radiation from cosmic ray (CR) electrons is the main
emission process [5]. We see that in this range, the synchrotron emission dominates over both
the free-free and dust emission. Understanding the dominant component of the Galactic radio
emission is central for understanding the Galactic structure as a whole. However, this is not an
easy task.

Figure 1.1: CMB and Galactic emission spectra at Galactic latitudes 15◦ < |b| < 75◦,
including the ranges of synchrotron, free-free, dust and atmospheric emission. From
Smoot [6].

Observations of the radio emission towards the northern Galactic pole from the C-Band All
Sky Survey (C-BASS) project give the fractional polarisation in Fig. 1.2. The polarisation is
lower than 10% in almost all pixels, and the resulting mean degree of polarisation is 3.3% [7].
This measured polarisation degree is much lower than expected from synchrotron radiation in
the Galactic magnetic field (GMF) by commonly used numerical models. The measured values
therefore question our current methods of modelling the magnetic fields of our Galaxy.

To create a realistic description of the GMF is very difficult, as there are several components
that need to fit all the measured data. Usually models are optimised to fit a few different
parameters, however GMF models often give too high polarisation of synchrotron radiation
compared with the result of the C-BASS project. The Milky Way is believed to have a large-
scale coherent magnetic field, as well as a small-scale turbulent magnetic field. The measured
low polarisation degrees may point to a stronger or more widespread turbulent component than
originally expected and accounted for in GMF models.

Simulations of synchrotron radiation in magnetic fields require, however, a theoretical founda-
tion. The motivation for this thesis is therefore to both understand the process of synchrotron
radiation and its theory of polarisation, as well as understand and investigate different Galactic
magnetic field models. The objectives of the thesis are the following.
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Figure 1.2: Observed fractional polarisation of the radio emission towards the north-
ern Galactic pole from the C-BASS project. From Leahy [8].

• Describe and discuss the magnetic fields in our Galaxy. Considering both the structure
of the GMF and the theory of turbulence is essential for investigating numerical models.

• Theoretically describe the process of synchrotron radiation, both for a single electron and
a collection of electrons with a power-law distribution. The theory is well known, and the
comprehensive treatments found in the books by Rybicki and Lightman [9] and Longair
[10] will be used.

• Derive and discuss formulas for the degree of polarisation of synchrotron radiation. The
description of polarisation proposed by Westfold [11] in 1959 and Legg and Westfold [12]
in 1968 will be used to consider both the linear and circular degree of polarisation.

• Use numerical models to simulate synchrotron radiation in magnetic fields. We wish to
investigate which parameters of given GMF models give polarisation degrees in accordance
with the low measurements of the C-BASS project.

1.2 Structure of the thesis

The main part of the thesis can essentially be divided into two parts. The first part consists of
chapters 2-6 and contains the theory of magnetic fields and synchrotron radiation. The second
part consists of chapters 7-8 and contains numerical simulations, results and a final discussion.
Lastly, the main results and conclusions of the thesis are summarised in chapter 9. Outside the
main part of the thesis, we have appendix A-C, which include some additional derivations and
discussions, as well as nomenclature. Below is a more detailed overview of the chapters of the
thesis.

Chapter 2 - Magnetic fields in the Universe. In this first chapter we discuss the magnetic
fields in our Galaxy and Universe, including the overall structure of the GMF and turbulence.
Here, we also present two models used for our numerical simulations.
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Chapter 3 - Radiation of relativistic particles. This is the first of several chapters specif-
ically focused on the theory of synchrotron radiation. The most basic theory of synchrotron
radiation is introduced, from how a relativistic charged particle moves in a magnetic field to its
total emitted power and radiation field.

Chapter 4 - Spectrum of synchrotron radiation. In this chapter we consider the intensity
spectrum of synchrotron radiation. The expression for emitted power per frequency of a single
particle is derived and used to find the spectrum of a power-law distribution of electrons. In
addition, the last section introduces restrictions to the derived theory.

Chapter 5 - Polarisation. Building on the previous chapters, we now consider the polarisation
of synchrotron radiation in order to calculate the degree of circular and linear polarisation. The
emission-polarisation tensor and the Stokes parameters are derived, both for a single electron
and a power-law electron distribution.

Chapter 6 - Radiative transfer. The last chapter of theory includes a brief discussion of
radiative transfer, including the line-of-sight integral and diffusion. This chapter provides us
with the final methods necessary for our numerical simulations.

Chapter 7 - Numerical simulations and results. With all the theory outlined in the
previous chapters, we now present the numerical simulations and their results. Here we consider
different Galactic magnetic field structures, and calculate both polarisation degrees and intensity
profiles.

Chapter 8 - Discussion. In the discussion, the results from the previous chapter are further
analysed and discussed in more detail.

Chapter 9. Conclusion. The final chapter of the main part of the thesis contains a short
summary and our conclusions based on the discussions in the previous chapter.

Appendix A - Useful integrals. Throughout the thesis, some special integrals are used.
These are presented and derived in this appendix.

Appendix B - Second order pitch angle distribution approximation. Adding on the
derivation of the emission-polarisation tensor in chapter 5, we consider a higher order approx-
imation in the particle pitch angle distribution. The derivation of the emission-polarisation
tensor is included, as well as a brief discussion on its relevance.

Appendix C - Nomenclature. For a better overview of the abbreviations, symbols and
physical constants used throughout the thesis, the most relevant ones are presented here.



Chapter 2

Magnetic fields in the Universe

Magnetic fields in the Universe are still not well understood, although they are important in
many astrophysical processes. In particular, the magnetic fields may be turbulent. Turbulence
is characterised by disordered, or chaotic, motion of flows and formations of eddies [13]. It is
the result once some amount of friction is allowed in the treatment of a fluid. The behaviour
of turbulent flows is still an unresolved problem in physics, albeit progressions in the field are
consistently being made.

In this chapter we will introduce the Galactic magnetic field (GMF) and discuss its structure,
as well as which effects and processes are used to measure the magnetic fields in our Galaxy
and Universe. We intend to further motivate the importance of understanding synchrotron
radiation given the turbulent GMF. We will also briefly look at magnetohydrodynamic (MHD)
turbulence, and describe models used to generate both turbulent and regular magnetic fields.

2.1 The Galactic magnetic field

Magnetic and electric fields are described by the well-known Maxwell’s equations, which are (in
Gaussian-cgs units)

∇ ·E = 4πρ, (2.1.1a)

∇ ·B = 0, (2.1.1b)

∇×E = −1

c

∂B

∂t
, (2.1.1c)

∇×B =
4π

c
j+

1

c

∂E

∂t
. (2.1.1d)

Here, B is the magnetic field, E is the electric field, j is the electric current density, ρ is the
charge density and c is the speed of light. Together with the Lorentz force law, which we will
consider in Sec. 3.1, these equations are the foundation of classical electromagnetism. Any
electromagnetic system in vacuum must necessarily obey the laws of Eq. (2.1.1). The first two
laws are also commonly known as Gauss’ law, while the third and fourth are known as the
Maxwell–Faraday law and Ampère’s (or Maxwell-Ampère’s) law, respectively.

Maxwell’s equations provide us with a tool to describe the behaviour of magnetic (and electric)
fields along with charges and currents. The existence of magnetic fields has been established
to be present not only on Earth, but throughout the Universe; in stars, pulsars, quasars, inter-
galactic space and galaxies such as ours; the Milky Way. We still do not know the origin of the
first magnetic fields, and the generation of the first “seed” fields remains a mystery. However,
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the matter in the Universe is mostly ionised, which means that magnetic fields can be generated
[3].

The non-thermal parts of the interstellar medium (ISM) consists of significant magnetic fields
and cosmic rays (CRs). The magnetic fields contribute to about half of the pressure balancing
the ISM against gravity, and thus play an important role in the Galactic structure [14]. In
particular they influence the gas density and the star formation rate. The evolution of galaxies
and accretion of gas, as well as in- and outflows are also affected by GMFs and CRs [3].

The GMF has been measured to have a mean strength of a few µG [14]. The magnetic field
varies throughout the ISM and objects can have magnetic field strengths much higher than this.
In particular, compact objects like white dwarfs can have surface magnetic fields up to 109G,
while neutron stars can have surface magnetic fields in the range 108 to 1015G [15]. The central
magnetic field of a white dwarf can reach 1013G, while the most extreme case of neutron stars,
magnetars, can have central magnetic fields up to 1018G. In comparison, Earth’s magnetic field
has an average strength of about 0.5G [16].

We will in Sec. 2.2 look into different methods of measuring the GMF. However, to characterise
the magnetic field in the Milky Way is a difficult task, and no magnetic field model can fit all
the measured data [17]. The task is made even more difficult considering the Earth is located
within the Milky Way and we are not outside observers. Nevertheless, we may make some
distinctions of the structure of the Milky Way and its magnetic field. In Fig. 2.1, a diagram of
the structural components of the Galaxy is shown. The figure presents a side view of the Milky
Way, where the coordinate system is defined by choosing the x-axis horizontally with the Sun
at negative x and the z-axis vertically.

Corona

Halo

Bulge

DiskSun

Figure 2.1: Diagram illustrating the structure of the Milky Way, including the disk,
halo and corona, as well as the bulge and the approximate location of the Sun (not to
scale).
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Components of the GMF

The GMF is generally considered to be a combination of a large-scale and a small-scale magnetic
field. The large-scale field is the component that is coherent, or regular, on larger scales, typically
of the order of the Galaxy [17]. The large-scale structure of the GMF is not yet determined and
remains a topic of discussion [3], but it has been established that the Milky Way has a magnetic
field aligned with the Galactic plane. Generally, the magnetic field follows the spiral arms of the
Galaxy [14], and is strongest in the central regions of the Galactic plane. It may be described
by the dynamo theory, based on turbulent magnetic fields being generated by a small-scale
dynamo which is driven by interstellar gas motions. Furthermore, large-scale magnetic fields
may be generated due to the rotation of the Galaxy, as well as stratification of the turbulent
interstellar medium [14]. On the other hand, the small-scale field is the turbulent component of
the GMF. The turbulence is usually assumed to follow a power spectrum with a given injection
and dissipation scale, which we will study in Sec. 2.4. The small-scale component is believed
to be caused by interstellar turbulence, shock waves from e.g. supernovas, etc. [17].

In addition to the large-scale coherent field and the small-scale turbulent field, some models
include a third component. This component may be called ordered random or striated, and
consists of a field which on small scales has a constant orientation, but varying direction [17].

Although the Galaxy consists of a large-scale and small-scale magnetic field, it is believed that
the Solar System is located inside the so-called Local Bubble resulting from supernova explosions
[18]. This is a region of space where the local ISM differs from the large-scale GMF, and it is
believed to extend more than 250 pc towards the Galactic poles. Our location inside the Local
Bubble poses additional difficulties in understanding the large-scale coherent magnetic field.

Galactic disk

The Milky Way has its centre around the supermassive black hole Sagittarius A∗ (or simply Sgr
A∗)1. The Solar System is located within the Galactic disk at a distance of about 8 kpc from
the centre [16], close to one of the minor spiral arms, the Orion arm. The disk is estimated
to have a total diameter of around 40 − 50 kpc and is usually divided into the thin and thick
disk2. The thin disk consists of mostly young stars, dust and gas, while the thick disk consists
of mostly older stars.

It is common to define the scale height zt of parameters such as the number density of electrons
or the magnetic field strength. Given the quantity Q, one estimates

Q(z) = Q0 exp

(
− |z|
zt,Q

)
. (2.1.2)

That is, for e.g. the number density n, it decreases outwards from the disk as a function of
distance through the above relation. The scale height may be approximately zt,n ≃ 0.35 kpc in
the thin disk and zt,n ≃ 1 kpc in the thick disk [16]. However, towards the centre of the Galaxy
one finds the Galactic bulge, which is considered to be an independent component of the Milky
Way. Here, the scale height may increase from that of the thin disk.

The turbulent component of the magnetic field in the thin disk is estimated to have a mean
strength of about 3 − 4µG [17]. In the thick disk, however, the field is believed to be mostly
uniform, where the estimated mean strength ranges from 2− 12µG, and the scale height of the
magnetic field zt,B is about 5− 6 kpc [17].

1In March of 2024 the Event Horizon Telescope (EHT) published results of the observed horizon-scale syn-
chrotron emission region around Sgr A∗, indicating a strong and ordered magnetic field through its highly
polarised emission ring [19].

2Note that in the literature, the thick disk is sometimes called the halo, but this must not be confused with
our definition of the halo.
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Galactic halo and corona

Outside of the Galactic disk and bulge, we have the Galactic halo and corona extending far out
into space. The extent of the these regions are not well defined, and only in recent times it
has been suggested that there is a so-called “corona” extending beyond the halo. The corona
is therefore rarely standard in the literature, however we will keep its existence in mind as it
becomes an important consideration in Sec. 7.4.

A motivation for the additional turbulent corona field is the recent ultra-high-energy cosmic ray
(UHECR)3 event Amaterasu4. The event was observed in 2021 by the Telescope Array (TA) Col-
laboration, and the particle’s energy was calculated in 2023 to be approximately 2.44× 1020 eV
[20]. By attempting to localise the particle through backtracking its path in the GMF, Unger
and Farrar [21] found its localisation region. This was done using the magnetic field models
UF23 [22] (see Sec. 2.5.2) for the regular field and the Planck-tune of the JF12 random field [23,
24] for the turbulent field. The localisation resulted in a region where no candidates for powerful
radio galaxy sources could be found. This treatment did not include the additional turbulent
corona field component, and the inclusion of this field might alter the resulting localisation of
the Amaterasu event, although this would have to be investigated further.

The magnetic field in the halo may be expected to have a strong regular component to satisfy
the requirements of CR propagation [25]. Given a dominating isotropic turbulent field, the
CRs escape too slow from the Galactic disk, which therefore implies the existence of a stronger
regular field.

2.2 Measuring magnetic fields

Measuring the magnetic fields in our Galaxy is a difficult task. Since the magnetic fields vary
throughout the ISM, it is necessary to obtain a large number of measurements to even determine
their large-scale properties. Measurements can be done in-situ by e.g. spacecrafts, which gives
us information about the magnetic fields nearby Earth [3]. To obtain information about more
distant objects and regions of space, however, we rely on electromagnetic radiation associated
with CRs, dust or gas. In addition, the local effects of space along the line-of-sight (LoS) might
lead to projection effects [26]. This further complicates the analysis of the observations. As
the magnetic fields cannot be measured directly, the observables used can be sensitive to many
quantities which we do not fully understand.

Some of the most used so-called observational tracers are Faraday rotation, synchrotron intensity
and polarisation, the Zeeman effect and polarised emission from dust [14]. These tracers are
dependent on magnetic fields, however each of them may provide different information, which
could e.g. be the strength or orientation of the field. One should therefore use the tracers in
combination to create a more complete image of the magnetic fields in our Galaxy. Although we
are interested in the synchrotron process, we will briefly describe the use of Faraday rotation,
polarised dust emission and the Zeeman effect as well.

2.2.1 Faraday rotation

Faraday rotation affects the magnetic field component along the LoS. However, since the Faraday
rotation is measured along the LoS, it is influenced by contributions from outside our Galaxy.
In addition, the density of thermal electrons is an influence. Therefore, not only the magnetic
field strength determines the measured Faraday rotation, but several other factors have to be
considered [26].

3CRs with energies exceeding 1018 eV.
4Named after the goddess of the sun in Japanese mythology.
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For a linearly polarised source, the rotation of its plane of polarisation when it passes through
a medium containing magnetic fields results in the rotation measure (RM). The rotation angle
is given by [3]

Φ = λ2RM, (2.2.1)

where λ is the wavelength of the source and RM is the rotation measure. One can define this
measure, in units of radm−2, as [27]

RM = 0.812

∫ observer

source
ne(s)B∥(s)ds, (2.2.2)

where ne(s) is the thermal electron density in units of cm−3 and B∥(s) is the magnetic field
strength along the LoS with strength in units of µG. The sign of B∥ is chosen to be positive
if B∥ points from the source to the observer. The quantity s ≡ |s| is the distance away from
the observer in units of pc. However, Eq. (2.2.1) is only true in some rare cases. The rotation
angle is no longer linear in λ2 when there is significant Faraday depolarisation5 or when several
sources are located in the same region traced by the telescope [3]. In the latter case, the rotating
angle is given by

Φ = λ2FD. (2.2.3)

One uses instead the Faraday depth (FD), which is defined similarly to the RM in Eq. (2.2.2).
This is a more general property that can be defined at any point throughout the ISM [27].

A synthetic sky map of the Faraday rotation measure caused by the Milky Way is shown in
Fig. 2.2, in which the orientation of the magnetic field is visualised. In particular, red and
blue indicate that the magnetic field direction is pointing towards and away from the observer,
respectively, and the Galactic disk is seen extended horizontally with its centre in the middle of
the image. The sky map provides a visualisation of the large-scale structure of the magnetic field
in our Galaxy, as well as small-scale features. On the smaller scales, we see that the magnetic
fields in our Galaxy are turbulent.

2.2.2 Synchrotron intensity and polarisation

Synchrotron intensity and synchrotron polarisation are the observational tracers we are most
interested in. After this chapter we provide an in-depth treatment on the theory of synchrotron
radiation, however we introduce some of the concepts now to see how the synchrotron process
is used for observational purposes.

Ultra-relativistic electrons interacting with magnetic fields such as the GMF emit synchrotron
radiation. As opposed to Faraday rotation, the synchrotron process depends on the magnetic
field component perpendicular to the LoS. Together, these two methods are therefore comple-
mentary. The intensity of synchrotron radiation scales with the cosmic ray number density
nCR(E, s), the frequency ν and the magnetic field perpendicular to the LoS B⊥(s) in the fol-
lowing way [14],

I(ν) ∝
∫ observer

source
nCR(E, s)B

1+α
⊥ (s)ν−αds. (2.2.4)

α is called the spectral index and s is still the distance away from the observer. The power per
unit frequency of a single CR electron therefore scales as P (ν) ∝ ν−α. For the intensity relation
one assumes that the CR number density follows a power-law distribution, that is

nCR(E)dE ∝ E−pdE, (2.2.5)

where p is the particle distribution index. The term nCR(E)dE is the number density of CR
electrons in the interval of energies from E to E+dE. Integrating the product of P (ν) and the

5See Rainer and Wielebinski [3] for a further description of Faraday depolarisation.
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Figure 2.2: Sky map of the Faraday rotation measure caused by the Milky Way’s
magnetic fields. Red indicates the magnetic field is pointing towards the observer,
while blue indicates it is pointing away from the observer. The plane of the Galactic
disk extends horizontally, with the centre in the middle of the image. From Opperman
et al. [26].

power-law expression in Eq. (2.2.5) over all energies E gives the total power per unit volume
and frequency of the distribution, which scales as

Ptot(ν) ∝ ν−(p−1)/2. (2.2.6)

Hence, the spectral index is related to the particle distribution index by α = (p − 1)/2 or
equivalently p = 2α + 1 [9]. Observations give typical values of the spectral index from the
GMF around α ≃ 0.7 corresponding to a particle distribution index of p ≃ 2.4 [14]. There
are however several complications to the process of synchrotron radiation to take into account
when interpreting the observations. Effects like free-free absorption and self-absorption may
contribute at low frequencies [14]. These factors, along with the uncertainties of the quantities
such as the CR electron number density, makes the observations difficult to interpret.

We will see in chapter 5 a derivation of the degree of linear polarisation of synchrotron radiation
emitted by a power-law electron distribution, such as the CR electron distribution given by Eq.
(2.2.5). The result is only dependent on the particle distribution index p, and is given by

Πlin =
p+ 1

p+ 7
3

. (2.2.7)

For the typical value of p ≃ 2.4, the linear polarisation degree is Πlin ≃ 0.72. This is very
high and is rarely observed due to depolarisation of the radiation when travelling towards the
observer [14].

The Planck mission, with the objective of studying the cosmic microwave background (CMB)6,
traced polarised synchrotron emission in the GMF at 30GHz. The resulting sky map is shown
in Fig. 2.3. The colours represent the intensity, where the red areas clearly show the presence
of magnetic fields in the Galactic disk lying horizontally in the image.

6Microwave radiation from the primordial Universe that fills all of space. The CMB is sometimes considered
an “echo” of the Big Bang.
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Figure 2.3: Sky map of the angle of polarisation of synchrotron emission at 30GHz
caused by the Milky Way’s magnetic fields. The colours represent intensity, and the
view is rotated 90◦ to indicate the direction of the Galactic magnetic field projected
onto the plane of the sky. From Adam et al. [28].

2.2.3 Polarised dust emission

In addition to synchrotron emission, polarised (thermal) dust emission also depends on the
magnetic field component perpendicular to the line-of-sight [26]. This is because the emission
from non-spherical dust grains is polarised along its long axis. As the spin axis of the dust grain
is statistically aligned with the orientation of the magnetic field, we get the dependence on the
perpendicular component of the local GMF. However, one should also take into account the
absorption by dust. The absorption of dust grains can lead to linearly polarised light parallel
to the magnetic field lines. Both the emission and absorption by dust grains depend on their
intrinsic properties [14].

We will not go into more detail on the polarised thermal dust emission or absorption, but present
Fig. 2.3. This is the obtained sky map from the Planck mission of dust emission at 353GHz
caused by the GMF. Similarly to Fig. 2.4, the intensity is represented by the colours. It is clear
from both figures, as well as Fig. 2.2 for the Faraday rotation, that the Milky Way contains
significant magnetic fields. The Galactic disk is clearly visible horizontally in all three figures,
showing a greater magnetic field density. The figures also indicate that there are stronger
magnetic fields towards the centre of our Galaxy.

2.2.4 The Zeeman effect

Finally we wish to mention the Zeeman effect, which is the most direct method of measuring
the GMF. The Zeeman effect can be used for measuring in the optical wavelength range and
has lead to the detection of magnetic fields in stars. In fact, this effect was in 1908 the first
direct measurement indicating magnetic fields outside Earth, in sunspots in the Sun [3].

The Zeeman effect relates to the atomic structure of the charged particle. In the presence of a
magnetic field B, the frequency of the radiation emitted by a harmonic oscillator is classically
split into three distinct frequencies, or lines. These are

ν0, ν± = ν0 ±
eB

4πmc
, (2.2.8)
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Figure 2.4: Sky map of the angle of polarisation of dust emission at 353GHz caused
by the Milky Way’s magnetic fields. The colours represent intensity, and the view is
rotated 90◦ to indicate the direction of the Galactic magnetic field projected onto the
plane of the sky. From Adam et al. [28].

for a charged particle with charge e and mass m [9]. The particle oscillates at a frequency
ν0, such that the emitted dipole radiation is at the same frequency ν0. The splitting of the
emitted frequency is due to the Lorentz force, which we know will influence the charged particle
in the presence of a magnetic field. One distinguishes between the longitudinal and transverse
Zeeman effect, where the latter is much harder to observe. For the longitudinal case, the
splitting becomes

ν± = ν0 ±
eB∥

4πmc
, (2.2.9)

which it only depends on the magnetic field component parallel to the line-of-sight. The split
components will be circularly polarised with opposite signs. For the transverse Zeeman effect
one considers the magnetic field component perpendicular to the line-of-sight. However, the
three lines are now all linearly polarised. No net polarisation is usually observed in this case
[3].

2.3 Magnetohydrodynamic turbulence

In order to describe the turbulence in GMFs, we need to consider MHD turbulence. Mag-
netohydrodynamics is the study of electrically conducting fluids in magnetic fields [13]. In
astrophysics, MHD is used to describe the dynamics of plasmas, which are gases consisting
of positively charged ions and negatively charged electrons [29]. In many cases one can treat
plasma as a continuous fluid, similarly to fluid dynamics. Plasma makes up most of the matter
in the Universe, and the ISM can act like a plasma as there are free electrons in the interstellar
space [29]. MHD can therefore be used to analyse the dynamics of the ISM and is important for
understanding the structure of the GMF. In astrophysics, one uses a model of MHD by Alfvén
proposed in 1942, which combines Maxwell’s equations in Eq. (2.1.1) and fluid dynamics [13].

The field of MHD further leads to the field of MHD turbulence, which, as the name implies,
deals with the turbulent flows of electrically conducting fluids in magnetic fields. Interstellar
turbulence leads to a significant complication of the structure of the GMF. As turbulence is not
well understood, the existence of turbulent GMFs thus leads to much more complex and difficult
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analyses. Since the processes described in the previous section, such as Faraday rotation and
synchrotron emission, are dependent on the magnetic field, it is important to better understand
the concept of turbulence in the GMF.

To deal with MHD turbulence in the ISM, one relies heavily on numerical methods and com-
putations. Simple models are generally not sufficient to create realistic descriptions [14]. There
are several methods of simulating turbulence, e.g. methods based on well known theories on
turbulence such as Kolmogorov’s theory [13] which will be described in the next section.

To describe a fluid where friction is allowed and turbulence appears, the velocity field of the
flow is split into two terms,

u(x, t) = ⟨u(x)⟩+ δu(x, t), (2.3.1)

known as the Reynolds decomposition [30]. As usual, x denotes the position and t denotes the
time of the fluid element. The first term is the average of a (regular) velocity field7, while the
second is the turbulent term. We can describe the turbulent term by its spectral representation
as the sum, or integral, of Fourier modes [30],

δu(k) =

∫
d3xδu(x)e−ik·x. (2.3.2)

Central in the field of fluid dynamics is the Reynolds number [30],

Re =
uL

ν
. (2.3.3)

Here, u is the velocity of the fluid, L is the characteristic length and ν is the kinematic viscosity.
The Reynolds number is a dimensionless quantity describing the degree of turbulence in a flow.
We have laminar flow for Re less than around 2300 and turbulent flow for Re larger than
around 4000. It is, however, worth noting that the onset of turbulence will happen in a range
of Reynolds numbers, dependent on other parameters of the experiment. Most important is the
fact that a higher Re corresponds to a larger degree of turbulence. A simulation of a 2D flow
past a cylinder is shown in Fig. 2.5 for different Reynolds numbers Re in the range 10 − 250.
The figure demonstrates the disordering of the flow for increasing Re.

2.4 Kolmogorov’s theory

Kolmogorov introduced his theory based on developments made by Richardson in 1922 regarding
the scales of turbulent motion [30]. In particular, Richardson used the notion of energy cascades.
The kinetic energy will enter the turbulence at the largest scales, and is then transferred to
smaller and smaller scales. In the end, the energy is dissipated due to viscosity. At each scale,
turbulence consists of eddies of different sizes ℓ with velocity u(ℓ). The time scale of a given
eddy is then τ(ℓ) ≡ ℓ/u(ℓ). Thus the idea of energy cascades implies that larger eddies break
down into smaller ones as the energy is transferred. Kolmogorov’s theory assumes isotropic
turbulence of the small-scale structure, which is what will be considered in the following.

The mean rate of energy transfer is given by [13]

εℓ ≡
dEℓ

dt
∝ u3ℓ

ℓ
, (2.4.1)

and the mean rate of energy dissipation is defined as

ε = − lim
ν→0

dE

dt
. (2.4.2)

7This term is in fact the average of the whole velocity field, as the average of the turbulent component should
be zero.
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Re = 10

Re = 50

Re = 100

Re = 250

Figure 2.5: Simulation of a 2D flow past a cylinder for different Reynolds numbers
Re after the same time t. The colour indicates the velocity u of the fluid element,
where darker colour corresponds to smaller u. Code adapted from [31].

Note that ε corresponds to flows with Reynolds number Re → ∞, which means highly turbulent
flows. This is seen from the definition of the Reynolds number in Eq. (2.3.3) as the viscosity
ν → 0.

We now define the dissipation scale Lmin as the scale ℓ of energy dissipation and the injection
scale Lmax as the scale where energy is injected. Consequently, we distinguish between the
dissipation range and the injection range. Scales with

Lmin ≪ ℓ≪ Lmax, (2.4.3)

form the so-called inertial range [30]. Since no energy is injected or dissipated in this range, the
mean rate of energy transfer εℓ equals the mean rate of energy dissipation ε [13]. Hence,

εℓ ∝ u3ℓ . (2.4.4)

For a given length scale ℓ, the corresponding wavenumber is k = 2π/ℓ [30]. This means the
inertial range is described by wavenumbers k such that kmin ≪ k ≪ kmax with kmin = 2π/Lmax

and kmax = 2π/Lmin. The total energy of a system is

E =

∫
E(k)dk, (2.4.5)



2.4. KOLMOGOROV’S THEORY 15

where E(k) denotes the energy spectrum. Given a spectral tensor of the velocity field in three
dimensions Φii(k), assuming the turbulence is homogeneous, the energy spectrum is defined as
[13]

E(k) ≡ 1

2
Φii(k), (2.4.6)

where

Φij(k) ≡
1

(2π)3

∫∫∫
Rij(ℓ)e

−ik·ℓdℓ. (2.4.7)

The term Rij(ℓ) ≡ ⟨ui(x)uj(x+ ℓ)⟩ is the second order velocity correlation tensor. For isotropic
turbulence, we need to only consider the norm of the wavevector, i.e. the wavenumber k, in the
spectral tensor. The energy spectrum becomes then

E(k) = 2πk2Φii(k), (2.4.8)

where one integrates E(k) over a sphere in Fourier space of radius k. The spectral tensor is pro-
portional to the velocity u2ℓ through Rij(ℓ), and the triple integral over ℓ gives a proportionality
factor k3. Therefore, we arrive at

E(k)k ∝ u2ℓ ∝ (εℓ)2/3 ∝ ε2/3k−2/3. (2.4.9)

Consequently, for a constant C, the so-called Kolmogorov k−5/3 spectrum is given by

E(k) = Cε2/3k−5/3. (2.4.10)

This spectrum is a power-law energy spectrum E(k) ∝ k−γ with γ = 5/3. A diagram of the
energy spectrum in a log-log plot is shown in Fig. 2.6, distinguishing between the different
ranges. In the inertial range, the Kolmogorov k−5/3 relation is therefore shown as a straight
line with slope −5/3. In the injection range and dissipation range, the energy spectra cannot
be described.

log k

logE(k)

Injection
range

Inertial
range

Dissipation
range

Figure 2.6: Illustration of the Kolmogorov energy spectrum. Energy is injected in
the injection range, before it cascades through the inertial range, and finally dissipates
in the dissipation range. The slope of the straight line in the inertial range is −5/3.

We finally define the correlation length Lc, sometimes called the coherence length, for a turbulent
magnetic field with a power-law spectrum [32],

Lc =
Lmax

2

γ − 1

γ

1− (Lmin/Lmax)
γ

1− (Lmin/Lmax)
γ−1 ≃ Lmax

2

γ − 1

γ
. (2.4.11)
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The approximation is valid for Lmax ≫ Lmin and γ > 1. For the case of Kolmogorov spectrum
with γ = 5/3, the correlation length becomes Lc ≃ Lmax/5.

2.5 Numerical models

As we rely on numerical models to describe the GMF, several different programs have been
made both for turbulent fields and the coherent GMF. In the following we will present two
programs that provide frameworks for generating magnetic fields, ELMAG and UF23 by [32] and
[22], respectively.

2.5.1 Turbulent field from ELMAG

To generate a turbulent magnetic field according to Kolmogorov’s theory discussed in 2.4, we
use the numerical model in the program ELMAG 3.018 provided by [32]. The ELMAG program
is a Monte Carlo program for simulating electromagnetic cascades, both on the extragalactic
background light (EBL) and in magnetic fields, using Fortran 90. The turbulent magnetic
field generated by ELMAG is an isotropic and divergence-free Gaussian random field, and is only
a small part of the program itself. We will, however, refer to ELMAG as the magnetic field model,
as this is our only application of the program.

The turbulent field model of ELMAG is based on algorithms described in [33] and [34], and
assumes a magnetic field

B(r) =

nk∑
j=1

Bj

[
cosαj êx′ + ihj sinαj êy′

]
ei(kj êz′+βj). (2.5.1)

This is a superposition of transverse Fourier modes. For a given mode j, αj and βj are random
phases with uniform distribution on [0, 2π] and hj = ±1 is the polarisation of the magnetic
field. The helicity ⟨h⟩ is the expectation value of the polarisation, and gives a fully left- or
right-helical field for ⟨h⟩ = 1 and ⟨h⟩ = −1, respectively. The strength of a magnetic field mode
is given by

Bj = Bmin

(
kj
kmin

)−γ/2

, (2.5.2)

where Bmin determines the magnetic field strength of the lowest Fourier mode, and kmin is its
wavenumber. The sets of Cartesian unit vectors êi′ in Eq. (2.5.1) are related to êi by the
rotation r′ = Rr, with

R (ϑj , ϕj) =


cosϑj cosϕj cosϑj sinϕj − sinϑj

− sinϕj cosϕj 0

sinϑj cosϕj sinϑj sinϕj cosϑj

 . (2.5.3)

For an isotropic magnetic field, the rotation angle ϕj is uniformly distributed on [0, 2π] and
cosϑj is uniformly distributed on [−1, 1].

By using the described numerical model, the magnetic field strength B in the xy-plane for
z = 0 is plotted in Fig. 2.7. Four different correlation lengths Lc have been chosen; 50 pc,
100 pc, 150 pc and 200 pc, for x and y both ranging from 0 to 1 kpc. The field strength B is
plotted as B/Brms with Brms = 3µG. The other parameters are constant. In particular, the
number of turbulent nodes nk = 1000, the helicity ⟨h⟩ = 0 and Lmin/Lc = 0.005. Recall that

8The program may be used for any energy spectrum with slope γ, however we will focus on Kolmogorov’s
theory where γ = 5/3 unless otherwise stated.
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for Kolmogorov turbulence Lc ≃ Lmax/5, and the injection scale Lmax is therefore also changing
with the correlation length. We see from Fig. 2.7 that the magnetic fields are turbulent on
smaller scales for smaller correlation lengths Lc, as we would expect.

Figure 2.7: Magnetic field strength B/Brms of generated turbulent fields in the xy-
plane for four different correlation lengths Lc. Each field has nk = 1000 turbulent
modes, helicity ⟨h⟩ = 0, Lmin/Lc = 0.005 and Brms = 3µG.

As we are interested in the GMF we should make some further adjustments to the model. We
will assume that the mean strength of the field Brms decreases with the z-coordinate. This is
due to the fact that the strength of the magnetic field will tend towards zero as one exits the
Galactic disk. As an example, we may choose the scaling function to be the Gaussian,

f(z) = exp

(
− z2

2σ2

)
, (2.5.4)

which is normalised to 1 at z = 0, and σ is the root mean square (RMS) width, or standard
deviation (SD). The generated turbulent magnetic field is scaled by multiplying the field strength
with f(z) at each point along z. As magnetic fields follow Maxwell’s equations, the divergence
should be zero by Gauss’s law in Eq. (2.1.1b). The multiplication of a function with B may
violate this. However, we will ignore the possible effects by the described scaling of the magnetic
field, as it should not become problematic for our use case.
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A plot of the strength along z for a generated turbulent magnetic field can be seen in Fig. 2.8a,
while Fig. 2.8b shows a generated turbulent magnetic field scaled by f(z) along with a Gaussian
function normalised to Brms at z = 0. The figure illustrates the scaling effect for increasing
z-values.
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Figure 2.8: The strength along z for (a) a generated turbulent magnetic field, and (b)
a generated turbulent magnetic field scaled by a Gaussian together with a Gaussian
function. The generated fields have Brms = 3µG, Lc = 20pc, Lmin/Lc = 0.005,
nk = 1000 and ⟨h⟩ = 0, while the Gaussian function is normalised to Brms at z = 0.
Both the scaling function and the Gaussian function has a width of σ = 200 pc.

In addition to using the function in Eq. (2.5.4) to scale the magnetic field, it is reasonable to
assume that a similar function can be used to scale the electron density along z. As more free
electrons should be present towards the centre of the Galactic disk, this should be taken into
account later when the model is used to calculate different quantities.

2.5.2 UF23 regular field models

While the ELMAG turbulent field model only generates turbulent magnetic fields according to
a power-law energy spectrum such as Kolmogorov’s theory, we wish to consider a more global
description of the GMF. Unger and Farrar [22] provides a framework UF23 with eight different
models for the coherent magnetic field of the Galaxy. These models intent to give a realistic
representation of the global structure of the GMF, that is a spiral coherent magnetic field. They
are constructed using Faraday rotation measures of extragalactic sources as well as synchrotron
intensity data. An overview of the ensemble of GMF models is shown in Tab. 2.1. The table
includes the type of disk field; GD (grand-design spiral) or LS (local spur), the toroidal halo;
explicit or twisted, the poloidal halo; CX-sigm or CX-expo, the electron density model; YMW16
or NE2001, and the synchrotron intensity data; W (WMAP), P (Planck), CG (Cosmoglobe) or
a combination. For all the given models the CR diffusion equation is solved by using the DRAGON
plain diffusion model [35]. In Fig. 2.9, the magnetic field strength in the xy- and xz-plane is
plotted for the models base, expX and nebCor. Following is a more in-depth description of the
components constituting the GMF models, however we refer to Unger and Farrar [22] for more
detailed information.
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Table 2.1: Ensemble of GMF models from the framework UF23 showing the type
of disk field, toroidal halo, poloidal halo, electron density model and synchrotron
intensity data.

Model
name

Disk
Toroidal
halo

Poloidal
halo

ne
model

QU

base GD explicit CX-sigm YMW16 (W+P)/2

expX GD explicit CX-expo YMW16 (W+P)/2

spur LS explicit CX-sigm YMW16 (W+P)/2

neCL GD explicit CX-sigm NE2001 (W+P)/2

twistX GD twisted CX-sigm NE2001 (W+P)/2

nebCor GD explicit CX-sigm YMW16 (W+P)/2

cre10 GD explicit CX-sigm YMW16 (W+P)/2

synCG GD explicit CX-sigm YMW16 CG

Figure 2.9: Magnetic field strength B of coherent magnetic fields in the xy- and
xz-plane for three of the models from UF23.

Disk field

As the Milky Way is believed to to have a spiral coherent magnetic field close to the disk, UF23
assumes a logarithmic spiral. This disk field is modelled by assuming a “pitch angle”, defined
for magnetic fields as [17]

α = arctan

(
Br

Bϕ

)
, (2.5.5)

where Br and Bϕ are the radial and azimuthal components of the magnetic field, respectively.
One also has to assume the arm width and angle at some radius, as well as the magnetic field
strength. In each arm, the magnetic flux should be constant as function of radius. As the radius
increases out of the disk, the magnetic field should become weak. This is true for the electron
density as well. An outer radius of r2 = 20 kpc is therefore defined by [22], such that the disk
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field is effectively zero for r > r2. Furthermore, an inner radius of r1 = 5kpc is chosen. For
radii smaller than this, the magnetic field is expected to be weak, and no longer a logarithmic
spiral. Compared to previous magnetic field models, the Fourier spiral of [22] provides a disk
field without discontinuities.

The eighth models in Tab. 2.1 are either grand-design (GD) magnetic disk fields from the
Fourier spiral, or a local spur (LS) which includes only a single arm (the Orion arm) of the GD
spiral field. The spur model is the only one with a LS disk field, while the rest of the models
are based on the GD disk field.

Toroidal and poloidal halo

The models are created by considering that the global structure of the GMF is a superposition
of a logarithmic spiral field and a large-scale halo field, where the latter consists of a toroidal
and/or poloidal field.

The toroidal magnetic field is a purely azimuthal field consisting only of the component Bϕ of
the magnetic field vector B. On the other hand, the poloidal magnetic field consists of only the
components Br and Bz of B. In [22], this halo field is an improved X-field from that introduced
by Jansson and Farrar [36]. It is made either a power-function X-field or a coasting X-field (CX),
where all the chosen models in Tab. 2.1 are of the type CX. The radial midplane dependence of
the magnetic field strength is determined by a scaling function that is for the models either by
an exponential or a logistic sigmoid function, giving the entries of either CX-sigm or CX-expo
in Tab. 2.1.

Given a poloidal halo field, the differential rotation of the Galaxy implies the creation of toroidal
fields. This twisting of the poloidal field leads to the unified halo by [22]. The explicit toroidal
fields in Tab. 2.1 are modelled using a logistic sigmoid function, while the twisted toroidal halo
field of the model twistX is the result of this unified halo model.

Electron density models

Two different thermal electron models are used by [22], the NE2001 by Cordes and Lazio [37]
and YMW16 by Yao et al. [38] models. Both use data from Galactic pulsars and describe the
dispersion measure (DM), that is the integral from Earth to the pulsar over the electron number
density ne. Hence the DM is similar to the RM defined in Sec. 2.2.1, but without the magnetic
field dependence.

As mentioned, the DRAGON plain diffusion model [35] is used to describe the CR density distri-
bution and energy spectrum by solving the diffusion equation.

Rotation measure and synchrotron intensity data

The UF23 model uses a large set of RM data as well as synchrotron intensity data, however not
self-consistently. For the polarised synchrotron intensity, one uses the Stokes parameters which
will be detailed later in Sec. 5.3, and considers in particular the parameters Q and U . Through
the quadratic addition of these parameters one obtains the (linear) polarised intensity,

I2lin = Q2 + U2. (2.5.6)

The data providing these polarised intensities are given in the last column of Tab. 2.1. A
combination of WMAP (W) [39] and Planck (P) [40] satellite data is used for most models,
except the model synCG. This uses the alternative Cosmoglobe (CG) [41] data, which is a
combined analysis of W and P. A comparison of the different data sets for the Stokes parameters
Q and U are shown in figure 22 of [22].
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2.5.3 Combining the models

A realistic model of the GMF should consist of a combination of a regular field and a turbulent
field, that is

Btot = Breg +Bturb. (2.5.7)

The UF23 model generates coherent magnetic fields, or regular fields, but does not consider
the turbulent component. We therefore wish to combine this model with the ELMAG turbulent
field model. In doing so, we need to preserve the overall global structure from UF23 while
introducing additional turbulent motion, similarly to scaling the turbulent magnetic field in
Fig. 2.8b. Letting BUF23 denote the magnetic field generated by UF23 and BELMAG denote the
magnetic field generated by ELMAG, we define the total field at a position x in space as

Btot(x) = BUF23(x) + s(x)BELMAG(x). (2.5.8)

Here, s(x) is a scaling function also dependent on the position in space. We will define this
scaling function as

s(x) =
BUF23(x)

Brms
β, (2.5.9)

such that β is the fraction of turbulent field strength to regular field strength,

β ≡ Bturb

BUF23
. (2.5.10)

It is reasonable to assume that β is in the range 0 to a value not much larger than 1, as we
expect the global structure of the magnetic field to be most significant. The total magnetic field
strength in the xy and xz-plane can be seen in Fig. 2.10 for three different models, base, expX
and nebCor. Here, the parameter β is chosen to be 0.5. It is clear that the combination of the
models preserves the global coherent field from UF23, while it simultaneously includes turbulent
motion.

Figure 2.10: Total magnetic field strength B [µG] in the xy- and xz-plane with
β = 0.5 for three of the models from UF23. The turbulent component of the fields
have Brms = 3µG, Lc = 20pc, Lmin/Lc = 0.005, nk = 1000 and ⟨h⟩ = 0.





Chapter 3

Radiation of relativistic particles

When a charged particle is accelerated by a magnetic field, it produces electromagnetic radiation.
This radiation is called cyclotron radiation if the particle is non-relativistic, and synchrotron
radiation if the particle is ultra-relativistic [9]. To describe synchrotron radiation, our starting
point is the essential discussion of how a relativistic particle moves in a magnetic and electric
field. We want to analyse the case where there is no electric field present and simplify the
equation of motion accordingly.

The following discussion is based on the books by Rybicki and Lightman [9] and Longair [10].
It is worth noting that the two books use different notations and systems of units. In particular,
[9] uses Gaussian-cgs units while [10] uses SI units. We will follow the the notation of [9], and
Gaussian-cgs units are assumed.

3.1 Motion of a particle

We consider a relativistic particle of mass m and charge q in an electric and magnetic field, E
and B, respectively. The total force F acting on the particle is then given by the Lorentz force
law,

F = q

(
E+

1

c
v ×B

)
. (3.1.1)

Using the momentum p of the particle, we write the force as

F =
dp

dt
=

d

dt
(γmv) = m

dγ

dt
v +mγ

dv

dt
. (3.1.2)

Here, v is the velocity of the particle and γ =
(
1− v2/c2

)−1/2
is the Lorentz factor, given

v ≡ |v| = √
v · v and the speed of light c. The combination of Eq. (3.1.1) and (3.1.2) gives

us an expression for the equation of motion for the particle. We see however that Eq. (3.1.2)
includes the time derivative of the Lorentz factor. We would like to show that this term only
depends on the electric field E. We therefore begin by expressing the time derivative of the
Lorentz factor as

dγ

dt
=

d

dt

(
1− v2

c2

)− 1
2

=

(
−1

2

)(
−2v

c2

)(
1− v2

c2

)− 3
2 dv

dt
=

v

c2
γ3

dv

dt
=

1

c2
γ3v · dv

dt
. (3.1.3)

The trick we will use is to calculate the dot product of the particle velocity v with the force F
in Eq. (3.1.1), that is

v · F = v ·
[
q

(
E+

1

c
v ×B

)]
. (3.1.4)

23
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Using that

γ2 =
1

1− v2

c2

=
1− v2

c2
+ v2

c2

1− v2

c2

= 1 +
v2

c2

1− v2

c2

= 1 + γ2
v · v
c2

, (3.1.5)

we evaluate the left-hand side (LHS) of Eq. (3.1.4). This gives

v · F = v ·
(
m
dγ

dt
v +mγ

dv

dt

)
= m

(
1

c2
γ3v · dv

dt

)
v · v +mγv · dv

dt

= mγ

(
v · dv

dt

)(
γ2

v · v
c2

+ 1
)
= mγ3

(
v · dv

dt

)
= mc2

dγ

dt
. (3.1.6)

On the right-hand side (RHS) of Eq. (3.1.4) we are left with

v ·
[
q

(
E+

1

c
v ×B

)]
= qv ·E, (3.1.7)

as v · (v ×B) = (v × v) ·B = 0. Therefore,

mc2
dγ

dt
= qv ·E. (3.1.8)

In our treatment of the problem we assume there is no electric field E present. This means
that the time derivative of the Lorentz factor is zero, that is γ = constant and hence v = |v| =
constant. Our equation of motion then simplifies significantly, and becomes

γm
dv

dt
=
q

c
(v ×B) . (3.1.9)

This is an ordinary differential equation that, together with a chosen initial value v0 ≡ v(t = 0),
can be solved numerically.

3.2 Total emitted power

A useful quantity is the total power emitted into synchrotron radiation, sometimes also called
the total energy (or radiation) loss rate. For this we take into consideration Larmor’s formula
for the power emitted by a single, relativistic charge q,

P ′ =
2q2

3c3
|a′|2. (3.2.1)

Here, the acceleration a′ is the proper acceleration of the particle and the power P ′ is measured
in the particle’s instantaneous rest frame S′. In this frame the particle accelerates but will have
zero velocity at a certain time. Relating the frame S that moves with the velocity −v with
respect to the particle, we have

dW = γdW ′, dt = γdt′. (3.2.2)

We therefore obtain

P =
dW

dt
=

dW ′

dt′
= P ′. (3.2.3)

Hence, the total emitted power is a Lorentz invariant, and subsequently we can write

P =
2q2

3c3
a′

2
, (3.2.4)

defining a′ ≡ |a′|.
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In our case of a particle moving in a magnetic field B, we know that the acceleration is always
perpendicular to the magnetic field direction, a ≡ |a| = |a⊥| ≡ a⊥. It is therefore convenient to
express the acceleration in terms of its parallel and perpendicular components with respect to
B. We have that

a′∥ = γ3a∥, a′⊥ = γ2a⊥, (3.2.5)

such that
|a|2 =

∣∣a∥∣∣2 + |a⊥|2 . (3.2.6)

The total emitted power becomes

P =
2q2

3c3
γ4
(
a2⊥ + γ2a2∥

)
=

2q2

3c3
γ4a2⊥, (3.2.7)

using that a∥ = 0. To obtain an expression for a⊥ we begin by simplifying the equation of
motion given by Eq. (3.1.9). As for the acceleration, we split the velocity into a component
parallel and perpendicular to the magnetic field direction, v = v∥ + v⊥. Since v∥ ×B = 0, the
equation of motion consists of

dv∥

dt
= 0,

dv⊥
dt

=
q

γmc
v⊥ ×B. (3.2.8)

The first equality implies that v∥ = constant, and as remarked previously in Sec. 3.1, the
velocity v = |v| is also a constant quantity. Together this implies that v⊥ ≡ |v⊥| = constant.
Therefore, given a uniform field B, the motion of the particle then becomes helical. Projected
onto the normal plane, this motion is circular, as can be seen in Fig. 3.1.

B

Figure 3.1: Helical motion of a charged particle in a uniform magnetic field B.
Projected onto a plane normal to B, the motion is circular.

Since we have circular motion, it is a simple matter to calculate the radius of the circle r by
equating the magnitude of the perpendicular Lorentz force F with the centripetal force Fc. The
centripetal acceleration is given by ac = v2⊥/r, and we find

|Fc| = |γmac|= γmac = γm
v2⊥
r
, (3.2.9a)
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|F| =
∣∣∣q
c
v ×B

∣∣∣ = |q|
c
v⊥B, (3.2.9b)

where B ≡ |B| is the strength of the magnetic field. This leads to

r =
γmcv⊥
|q|B . (3.2.10)

The period of the circular motion is T = 2πr/v⊥, and we obtain the angular frequency of
rotation, or gyration frequency,

ωB = 2πνB =
2π

T
=
v⊥
r

=
|q|B
γmc

, (3.2.11)

where νB = 1/T is the frequency. Revisiting the magnitude of our Lorentz force expression in
Eq. (3.2.9),

γma⊥ = |F| = |q|
c
v⊥B, (3.2.12)

we obtain

a⊥ =
|q|B
γmc

v⊥ = ωBv⊥. (3.2.13)

We can now find an expression for the total emitted power using the perpendicular velocity.
Inserting Eq. (3.2.13) into Eq. (3.2.7),

P =
2q2

3c3
γ4

q2B2

γ2m2c2
v2⊥ =

2

3
γ2
q4B2

m2c5
v2⊥. (3.2.14)

This can further be simplified to

P =
2

3
r20cβ

2
⊥γ

2B2, (3.2.15)

using the classical electron radius r0 ≡ q2/(mc2) and β⊥ = v⊥/c. We would like an expression
for the power dependent on β and not its perpendicular component. For this we take the angle
α between the magnetic field B and the velocity v, called the pitch angle1, and average over all
possible values. This is valid for an isotropic distribution of velocities, and gives

〈
β2⊥
〉
=
β2

4π

∫
sin2 αdΩ =

2

3
β2, (3.2.16)

using the solid angle dΩ = sinαdαdφ. We then obtain our final expression for the total power
emitted by the particle,

P =

(
2

3

)2

r20cβ
2γ2B2. (3.2.17)

It is also common to write the total emitted power in terms of the magnetic energy density
UB = B2/8π and the Thomson cross section σT = 8πr20/3, which gives

P =
4

3
σT cβ

2γ2UB. (3.2.18)

For a fixed energy E = γmc2 of the relativistic particle, the total emitted power in Eq. (3.2.17)
depends on the particle mass only through r0 and γ, and we have that P ∝ 1/m4. This means
that the smaller the mass of the particle, the higher is the contribution to synchrotron radiation.
We can essentially disregard all particles except for the electron, due to its low mass compared
to other charged particles. From now on, we will therefore assume that m = me and write
q = −e.

1Not to be confused with the pitch angle for magnetic fields defined in Eq. (2.5.5).
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3.3 Relativistic beaming

When we have emission from a relativistic particle, an important consideration is that the
radiation is beamed in the particle’s direction of motion. We therefore do not have isotropic
radiation when the velocity of the particle is close to the light speed c. For an observer at some
position in space, the detected radiation will have a strong dependence on the angle between
the particle’s velocity and its position relative to the observer. In the following, we will study
this so-called relativistic beaming in more detail.

We consider an observer at rest in a reference frame S and a charged particle in the reference
frame S′ moving at a velocity v in the x-direction relative to the observer. Then the Lorentz
transformations for position and time are given by

dt = γ
(
dt′ +

v

c2
dx′
)
, (3.3.1a)

dx = γ
(
dx′ + vdt′

)
, (3.3.1b)

dy = dy′, (3.3.1c)

dz = dz′. (3.3.1d)

It is straightforward to find that

ux =
dx

dt
=

u′x + v

1 + vu′x/c
2
, (3.3.2a)

uy =
dy

dt
=

u′y
γ(1 + vu′x/c

2)
, (3.3.2b)

uz =
dz

dt
=

u′z
γ(1 + vu′x/c

2)
. (3.3.2c)

We may generalise these equations, assuming that the frame S′ moves with velocity v in an
arbitrary direction. Then, if a point has velocity u′ in the frame S′, we can express the parallel
and perpendicular components of the velocity u with respect to v in the frame S as

u∥ =
u′∥ + v(

1 + vu′∥/c
2
) , u⊥ =

u′⊥

γ
(
1 + vu′∥/c

2
) . (3.3.3)

From our choice of coordinates, the azimuthal angle ϕ = ϕ′ is unchanged. Given u′ ≡ |u′|, the
polar angle θ changes according to the aberration formula,

tan θ =
u⊥
u∥

=
u′ sin θ′

γ (u′ cos θ′ + v)
. (3.3.4)

We now simplify by setting θ′ = π/2 corresponding to a photon emitted at right angles to v in
the frame S′. The velocity of the photon is u = u′ = c, and hence

tan θ =
c

γv
. (3.3.5)

When the particle moves at velocities v close to the speed of light, γ ≫ 1 and θ becomes small.
Then the approximation tan θ ≃ θ is valid, giving

θ ≃ 1

γ
, (3.3.6)

where we also set v ≃ c. We can therefore conclude that a fast moving source, such as an ultra-
relativistic electron, emits photons mainly in the forward direction within a cone of opening
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angle θ ≃ 1/γ. An illustration of the beaming of the radiation is shown in Fig. 3.2. In the
reference frame S′ of the particle, the radiation is emitted isotropically, while it is beamed in
the reference frame S of the observer. As an example, an electron with a Lorentz factor of 105,
that is an energy of approximately 50GeV, will emit photons beamed within a cone of opening
angle θ = 10−5 rad ≃ 2 arcsec.

S′ S

θ

Figure 3.2: Relativistic beaming for a charged particle in its rest frame S′ and in
the reference frame S of the observer.

3.4 Geometry

We now intend to describe the geometry of polarisation for synchrotron radiation using Fig. 3.3
as a reference. For the instant t = 0, we define a coordinate system such that the particle is in
the origin with velocity v along the x-axis. The unit vector n is pointing towards the observer
and lies in the xz-plane, and the angle θ is defined as the angle between −x and v. In Fig. 3.3
this corresponds to the angle between n and the x-axis. For this geometry, the magnetic field
B lies along the z-axis, giving an instantaneous orbit in the xy-plane with radius of curvature

a ≡ |a| = v

ωB sinα
. (3.4.1)

Here, α is the particle pitch angle, i.e. the angle between B and v, introduced in Sec. 3.2.
Another two unit vectors ϵ⊥ and ϵ∥ = n×ϵ⊥ are defined such that ϵ∥ lies along the y-axis, that
is in the acceleration direction, perpendicular to both the magnetic field B and to the velocity
v.

As seen in projection by the observer, the magnetic field B is perpendicular and parallel to the
vectors ϵ⊥ and ϵ∥, respectively. This geometry allows us to describe the two polarisation states
of synchrotron radiation that is observed.

3.5 Radiation field

The radiation field of an electron consists of the electric and magnetic field,

E(r, t) =
e

c

{ n

κ3R
× [(n− β′)× β̇

′
]
}
, (3.5.1a)

B(r, t) = n×E. (3.5.1b)

Here we have defined

β′ ≡ v′

c
, κ ≡ 1− n · β′, n ≡ R

R
, (3.5.2)

where R ≡ |R| such that n defines a unit vector, and E, B and n are mutually perpendicular.
The primes refers to evaluation at the retarded time,

t′ = t− R(t′)

c
, (3.5.3)
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y

z

x

n

θ

ϵ∥

ϵ⊥

a

Figure 3.3: Polarisation geometry of synchrotron radiation. At t = 0, the particle
is in the origin with velocity along the x-axis and B along the z-axis. The trajectory
then lies in the xy-plane with radius of curvature a. The vector n points towards the
observer.

where
R(t′) = r− r1(t

′), R(t′) ≃ r − n · r1(t′), (3.5.4)

for the assumption that r1 ≪ r, where r1 ≡ |r1| and r ≡ |r|. Differentiating the expression for
the retarded time, we get the time-interval ratio

∂t′

∂t
=

1

1− n · β′ =
1

κ
. (3.5.5)

We can also write the time t in terms of the retarded time t′ as

t = t′ +
R(t′)

c
= t′ +

r

c
− n · r1

c
. (3.5.6)

The charged particle will follow a periodic motion with frequency of rotation ωB. However,
we should distinguish between the received and emitted power. The power received by an
observer will be at a Doppler shifted frequency of rotation. The particle is therefore observed
at a frequency of rotation ωB/b, where b is a constant taking this Doppler effect into account,
considering the difference in periods at the source and at the field point. Whether or not to
include this factor depends on the situation. In most cases it is not necessary to include b as it
will not contribute in a physical sense. This factor does in fact drop out in our calculations of
the polarisation degree in chapter 5. For this reason we choose to not include the factor in the
following calculations, essentially setting b = 1, but keeping track of the factor throughout the
thesis to make the arguments as clear as possible.

Using the angular frequency of rotation ωB, we can now write the particle’s radiation field as a
superposition of harmonics of frequency 2π/ωB, that is [11]

E(r, t) =

∞∑
n=−∞

En exp (inωBt) , (3.5.7)
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where

En(r) =
ωB

2π

∫ 2π
ωB

0
E exp (inωBt) dt. (3.5.8)

Inserting Eq. (3.5.1a), we obtain

En(r) =
e

2πcr
ωB

∫ 2π
ωB

0

n× [(n− β′)× β̇
′
]

κ3
exp (inωBt) dt. (3.5.9)

Since we need to evaluate the expressions with primes at the retarded time, we use Eq. (3.5.5)
to write dt = κdt′. Then using the expression for the time t in terms of the retarded time t′ in
Eq. (3.5.6), we can write

exp(inωBt) = exp

[
inωB

(
t′ +

r

c
− n · r1(t′)

c

)]
= exp

(
inωB

r

c

)
exp

[
inωB

(
t′ − n · r1(t′)

c

)]
. (3.5.10)

Consequently, Eq. (3.5.9) becomes

En(r) =
e

2πcr
ωB exp

(
inωB

r

c

)∫ 2π
ωB

0

n× [(n− β′)× β̇
′
]

κ2
exp

[
inωB

(
t′ − n · r1(t′)

c

)]
dt′.

(3.5.11)

Using the identity

n× [(n− β′)× β̇
′
]

κ2
=

d

dt′

[
n× (n× β′)

κ

]
, (3.5.12)

and integrating by parts, Eq. (3.5.11) simplifies to

En(r) =
e

2πcr
ω2
Bin exp

(
inωB

r

c

)∫ ∞

−∞
n× (n× β′) exp

[
inωB

(
t′ − n · r1(t′)

c

)]
dt′. (3.5.13)

We are interested in rewriting Eq. (3.5.13) by splitting the electric field into perpendicular and
parallel components. To do this we will use the coordinate system (n, ϵ⊥, ϵ∥) described in Sec.
3.4. As the particle moves in the orbit with radius of curvature a, the angular distance travelled
after a time t′ is vt′/a. This angle corresponds to the angle between the y-axis and a in Fig.
3.3. We find that

r1
(
t′
)
= 2a sin

(
vt′

2a

)[
ϵ⊥ sin

(
vt′

2a

)
+ n cos θ cos

(
vt′

2a

)
− ϵ∥ sin θ cos

(
vt′

2a

)]
. (3.5.14)

The velocity is then given by

v′ = v

[
ϵ⊥ sin

(
vt′

a

)
+ n cos θ cos

(
vt′

a

)
− ϵ∥ sin θ cos

(
vt′

a

)]
. (3.5.15)

Using that n× ϵ⊥ = ϵ∥, n× ϵ∥ = −ϵ⊥ and n× n = 0, we obtain

n× (n× β′) = β

[
− sin

(
vt′

a

)
ϵ⊥ + sin θ cos

(
vt′

a

)
ϵ∥

]
. (3.5.16)

One finds, by inserting the expression for r1(t
′) from Eq. (3.5.14), that

t′ − n · r1 (t′)
c

= t′ − a

c
cos θ sin

(
vt′

a

)
. (3.5.17)
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Making an expansion to third order gives us

t′ − n · r1 (t′)
c

= t′
(
1− v

c

)
+
v

c

θ2

2
t′ +

v3

6ca2
t′3. (3.5.18)

Here we have assumed that θ and vt′/c are small, and made the expansions

cos θ ≃ 1− θ2

2
, (3.5.19)

sin

(
vt′

a

)
≃ vt′

a
− v3t′3

6a3
. (3.5.20)

We now write (1− v/c) = 1/2γ2 since v ≃ c and γ ≫ 1. Using this approximation and setting
v = c, Eq. (3.5.18) can be simplified to

t′ − n · r1 (t′)
c

≃ 1

2γ2

[
t′
(
1 + γ2

v

c
θ2
)
+
v3γ2t′3

3ca2

]
=

1

2γ2

[
t′
(
1 + γ2θ2

)
+
c2γ2t′3

3a2

]
. (3.5.21)

To simplify the term n× (n× β′), we will use the result of Legg and Westfold [12] to evaluate
the expression to the order of γ−2 instead of γ−1 as done by [9, 10]. In our notation, we get
that

n× (n× β′) ≃
[
−vt

′

a
ϵ⊥ +

(
θ − 1

2

{
vt′

a

}2

cotα

)
ϵ∥

]
. (3.5.22)

We now introduce some convenient substitutions, defining

θ2γ ≡ 1 + γ2θ2, y ≡ γct′

aθγ
, η ≡

nωBaθ
3
γ

3cγ3
. (3.5.23)

The expression in the exponential inside the integral in Eq. (3.5.13) can consequently be
simplified to give

inωB

(
t′ − n · r1(t′)

c

)
= i

3

2
η

(
y +

1

3
y3
)
. (3.5.24)

Changing the variable of integration from t′ to y gives the differential dt′ = (aθγ/γc)dy. We also
see that vt′/a = yθγ/γ, when v = c. With all the mentioned substitutions, the perpendicular
and parallel components of En may be written as

E⊥ = − e

2πcr
ω2
Bin exp

(
inωB

r

c

)∫ ∞

−∞

θγ
γ
y exp

[
i
3

2
η

(
y +

1

3
y3
)]

aθγ
γc

dy

= − e

2πcr
ω2
Bin exp

(
inωB

r

c

)(aθ2γ
γ2c

)∫ ∞

−∞
y exp

[
i
3

2
η

(
y +

1

3
y3
)]

dy, (3.5.25)

and

E∥ =
e

2πcr
ω2
Bin exp

(
inωB

r

c

)∫ ∞

−∞

(
θ −

θ2γ
2γ2

y2 cotα

)
exp

[
i
3

2
η

(
y +

1

3
y3
)]

aθγ
γc

dy

=
e

2πcr
ω2
Bin exp

(
inωB

r

c

)∫ ∞

−∞

(
aθθγ
γc

−
aθ3γ
2γ3c

y2 cotα

)
exp

[
i
3

2
η

(
y +

1

3
y3
)]

dy, (3.5.26)

respectively. Now it remains to calculate the integrals in Eq. (3.5.25) and (3.5.26). In appendix
A.1 we present full derivations of integrals denoted Iγ,s. Using these, it is straightforward to
find that ∫ ∞

−∞
y2 exp

[
i
3

2
η

(
y +

1

3
y3
)]

dy = − 2√
3
K1/3(η), (3.5.27a)
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∫ ∞

−∞
y exp

[
i
3

2
η

(
y +

1

3
y3
)]

dy = i
2√
3
K2/3(η), (3.5.27b)∫ ∞

−∞
exp

[
i
3

2
η

(
y +

1

3
y3
)]

dy =
2√
3
K1/3(η). (3.5.27c)

Here, K2/3 and K1/3 are the modified Bessel functions of order 2/3 and 1/3, respectively. These
functions are plotted in Fig. 3.4 to illustrate their behaviour. The modified Bessel function
K2/3(x) dominates over K1/3(x) for small values of x, while they both fast approach zero for
larger values of x. For large values of x, one can obtain the asymptotic expansion of the modified
Bessel function [42],

Kν(x) ≃
(π
2

)1/2
e−xx−1/2

(
1 +

4ν2 − 1

8x

)
, x≫ 1. (3.5.28)

For the cases ν = 2/3 and ν = 1/3, we have that

K2/3(x) ≃
(π
2

)1/2
e−xx−1/2

(
1 +

7

72x

)
, x≫ 1, (3.5.29a)

K1/3(x) ≃
(π
2

)1/2
e−xx−1/2

(
1− 5

72x

)
, x≫ 1. (3.5.29b)
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Figure 3.4: Modified Bessel functions Kν(x) of order ν = 2/3 and ν = 1/3.

Using now the integrals in Eq. (3.5.27), the expressions in Eq. (3.5.25) and (3.5.26) finally
become

E⊥ = − e√
3πcr

ω2
Bn exp

(
inωB

r

c

)(aθ2γ
γ2c

)
K2/3(η), (3.5.30a)

E∥ =
e√
3πcr

ω2
Bin exp

(
inωB

r

c

)(aθθγ
γc

+
aθ3γ
2γ3c

cotα

)
K1/3(η). (3.5.30b)

The obtained components of the radiation field depend strongly on the argument of the modified
Bessel functions. From Fig. 3.4, it is clear that the radiation field becomes small for increasing
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η as Kν approaches zero. The variable η is in turn proportional to θ3γ . By keeping the other
variables constant, we see that this dependence leads to a stronger radiation field for smaller
angles θ. This is what we would expect from our discussion of relativistic beaming in Sec. 3.3.

We note that in keeping the factor b, corresponding to taking the Doppler shift into account
for the observed frequency, only would correspond to substituting ωB for ωB/b in the obtained
equations. The components of the radiation field in Eq. (3.5.30) would therefore depend on b
if this factor was considered. However, what we are interested in are the polarisation degrees,
and as mentioned, the factor will disappear once these are calculated in chapter 5.





Chapter 4

Spectrum of synchrotron radiation

We now intend to describe the spectrum of synchrotron radiation. We will begin by looking
at the intensity spectrum of a single electron, and then extend the treatment to a power-law
electron distribution. The intensity spectrum can be found as a special case of the discussion of
the polarisation degree in chapter 5. However, the treatment in chapter 5 is more complicated.
We therefore choose to follow the approach of the books by Rybicki and Lightman [9] and
Longair [10] in this chapter. This serves to familiarise ourselves with the calculations, and the
behaviour of the intensity spectrum. In the final section of this chapter we will consider the
conditions for when classical electrodynamics is valid.

4.1 Intensity spectrum

We consider the two polarisation states determined by the unit vectors ϵ⊥ and ϵ∥ as shown in
Fig. 3.3. Then the total intensity spectrum, or energy per angular frequency ω per solid angle
Ω, is defined as

dW

dωdΩ
=

c

4π2

∣∣∣∣∫ RE(t)eiωtdt

∣∣∣∣2 = e2

4π2c

∣∣∣∣∫ [n× {(n− β′)× β̇
′}κ−3

]
eiωtdt

∣∣∣∣2 . (4.1.1)

We can split the intensity spectrum into a sum of the perpendicular and parallel spectra, that
is

dW

dωdΩ
≡ dW⊥

dωdΩ
+

dW∥

dωdΩ
. (4.1.2)

We have already calculated the components of the nth harmonic of the electric field in Sec. 3.5,
so we can reuse many of the arguments presented there to find the intensity spectrum. In Sec.
3.5, we denoted the angular frequency of rotation ωB, which in this section becomes ω, since
we are considering an arbitrary angular frequency. We also want to consider the total radiation
field E, not the nth harmonic En. We will essentially replace the summation by an integral,
assuming a continuous distribution of modes. By the same assumptions made leading to Eq.
(3.5.11), we obtain

dW

dωdΩ
=
e2ω2

4π2c

∣∣∣∣∫ n× (n× β′) exp

[
iω

(
t′ − n · r1(t′)

c

)]
dt′
∣∣∣∣2 . (4.1.3)

The term n × (n × β′) is split into a perpendicular and parallel component according to Eq.
(3.5.22), however we omit the second order approximation in 1/γ and write as in [9] and [10],

n×
(
n× β′) ≃ (−vt′

a
ϵ⊥ + θϵ∥

)
. (4.1.4)

35
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We also recall the third order approximation made in Eq. (3.5.21). The perpendicular and
parallel components of the intensity spectrum can then be written as

dW⊥
dωdΩ

=
e2ω2

4π2c

∣∣∣∣∫ ct′

a
exp

[
iω

2γ2

(
θ2γt

′ +
c2γ2t3

3a2

)]
dt′
∣∣∣∣2 , (4.1.5a)

dW∥

dωdΩ
=
e2ω2θ2

4π2c

∣∣∣∣∫ exp

[
iω

2γ2

(
θ2γt

′ +
c2γ2t3

3a2

)]
dt′
∣∣∣∣2 . (4.1.5b)

We again introduce some convenient substitutions,

θ2γ ≡ 1 + γ2θ2, y ≡ γct′

aθγ
, η ≡

ωaθ3γ
3cγ3

. (4.1.6)

θγ and y are the same variables as defined in Sec. 3.5, but η is slightly different. The only
change is that ωB has become ω and n = 1. These substitutions allow us to write Eq. (4.1.5a)
and (4.1.5b) as

dW⊥
dωdΩ

=
e2ω2

4π2c

(
aθ2γ
γ2c

)2 ∣∣∣∣∫ ∞

−∞
y exp

[
3

2
iη

(
y +

1

3
y3
)]

dy

∣∣∣∣2 , (4.1.7a)

dW∥

dωdΩ
=
e2ω2θ2

4π2c

(
aθγ
γc

)2 ∣∣∣∣∫ ∞

−∞
exp

[
3

2
iη

(
y +

1

3
y3
)]

dy

∣∣∣∣2 . (4.1.7b)

Using Eq. (3.5.27b) and (3.5.27c), we obtain the intensity spectrum in the two polarisation
states,

dW⊥
dωdΩ

=
e2ω2

3π2c

(
aθ2γ
γ2c

)2

K2
2/3(η), (4.1.8a)

dW∥

dωdΩ
=
e2ω2θ2

3π2c

(
aθγ
γc

)2

K2
1/3(η). (4.1.8b)

It is convenient to define the critical angular frequency,

ωc ≡
3

2
γ3ωB sinα, (4.1.9)

which corresponds to the frequency at which the electron emits most strongly. Above this
frequency, the power spectrum is expected to fall of rapidly. We will comment further on this
at the end of this section.

A plot of the angular variation of the intensity of synchrotron radiation given a constant pitch
angle α = 90◦ is shown in Fig. 4.1. Both the perpendicular components (solid lines) and
parallel components (dashed lines) are plotted using Eq. (4.1.8a) and (4.1.8b), respectively.
Four different values of constant x = ω/ωc are plotted and the intensities are normalised to
the peak value for each x, that is the perpendicular component for θ = 0. Although the
perpendicular intensity is maximum for θ = 0, the parallel component is maximum at some
angle θ > 0. It is clear that large values of x lead to a total intensity much more concentrated
around θ = 0.

We have not yet discussed the polarisation, however we can still make some conclusions based
on Fig. 4.1. We see that the radiation is linearly polarised in the plane perpendicular to the
magnetic field direction at θ = 0, since the parallel component of the intensity is zero. For
increasing θ we get an increase in the parallel intensity, which means that the polarisation
increases in the parallel plane [43].



4.1. INTENSITY SPECTRUM 37

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Re
lat

iv
e i

nt
en

sit
y

x
0.01
0.1
1
3

Figure 4.1: Relative intensity of synchrotron radiation as a function of x = ω/ωc

given pitch angle α = 90◦ for the perpendicular component (solid lines) and the parallel
component (dashed lines).

We now wish to get rid of the solid angle dependence of the intensity spectrum. From Sec. 3.3
we know that the radiation will be almost completely confined to the shaded area in Fig. 4.2,
that is the area within an angle 1/γ of a cone of half-angle equal to the pitch angle α. We are
therefore able to take the element of solid angle dΩ = 2π sinαdθ, and the integration limits
can be taken to be from −∞ to ∞ as the radiation is concentrated to small angles around α.
Integrating Eq. (4.1.8a) and (4.1.8b) over Ω gives then

I⊥(ω) =
dW⊥
dω

=
2e2ω2a2 sinα

3πc3γ4

∫ ∞

−∞
θ4γK

2
2/3(η)dθ, (4.1.10a)

I∥(ω) =
dW|

dω
=

2e2ω2a2 sinα

3πc3γ2

∫ ∞

−∞
θ2γθ

2K2
1/3(η)dθ. (4.1.10b)

By noting that we can write η = 1
2θ

3
γx for x = ω/ωc, these integrals can be solved using the

integrals in Eq. (A.2.6) and (A.2.3) in appendix A. After some reduction, we have that

I⊥(ω) =
dW⊥
dω

=

√
3e2γ sinα

2c
[F (x) +G(x)], (4.1.11a)

I∥(ω) =
dW∥

dω
=

√
3e2γ sinα

2c
[F (x)−G(x)], (4.1.11b)

for x = ω/ωc and

F (x) ≡ x

∫ ∞

x
K5/3(ξ)dξ, (4.1.12a)

G(x) ≡ xK2/3(x). (4.1.12b)

The behaviour of these two functions is shown in Fig. 4.3, as a normal plot and a log-log plot.
One usually considers the asymptotic forms of F (x) and G(x) for large values of x, which are
given by [11]

F (x) ≃
(π
2

)1/2
e−xx1/2

(
1 +

55

72x

)
, x≫ 1, (4.1.13a)
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G(x) ≃
(π
2

)1/2
e−xx1/2

(
1 +

7

72x

)
, x≫ 1. (4.1.13b)

One can also obtain these relations using the expression for the asymptotic behaviour of the
modified Bessel functions presented in Eq. (3.5.28). To the lowest order, the functions obtained
are the same for large x, as Fig. 4.3 also might suggest. On the other hand, for small values of
x one can obtain for F (x) [9],

F (x) ≃ 4π√
3Γ(13)

(x
2

)1/3
, x≪ 1. (4.1.14)

α

θ

B

Figure 4.2: Synchrotron emission from a particle in a magnetic field B with pitch
angle α. The shaded area is where most of the radiation is confined.

The results in Eq. (4.1.11a) and (4.1.11b) are expressions for the energy per frequency range
radiated per orbit in the projected normal plane. By dividing these equations by the orbital
period of the charge, that is T = 2π/ωB, we get expressions for the emitted power per frequency,

P⊥(ω) =

√
3e3B sinα

4πmc2
[F (x) +G(x)], (4.1.15a)

P∥(ω) =

√
3e3B sinα

4πmc2
[F (x)−G(x)]. (4.1.15b)

The total emitted power per frequency is then given by the sum of the two components,

P (ω) =

√
3e3B sinα

2πmc2
F (x). (4.1.16)
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Figure 4.3: The functions F (x) and G(x) in terms of x = ω/ωc as (a) a normal plot
and (b) a log-log plot.

To analyse the spectrum of synchrotron radiation, that is the behaviour of the total emitted
power per frequency, we need to look at the function F (x), shown in Fig. 4.3. The electron
should emit more strongly around ωc, that is for values of x around 1. In particular, half of the
emitted power should come from frequencies ω < ωc and half from ω > ωc. This means that
the area under the function F (x) in Fig. 4.3 should be equally divided to the left and right of
x = 1.

4.2 Spectrum of a power-law electron distribution

We now want to look at the power per frequency for a power-law distribution of energies,

ne(E)dE = C ′E−pdE, (4.2.1)

for a constant C ′ and the particle distribution index p. The term ne(E)dE represents the
number density of electrons with energies in the interval E to E + dE. The minimum energy
of an electron is given by its rest mass energy, E0 = mc2, while the relativistic electron energy
is E = γmc2. We can therefore write γ = E/E0, and the power-law distribution can be written
as

ne(γ)dγ = Cγ−pdγ. (4.2.2)

The constant C is different to the constant C ′ in Eq. (4.2.1). Note also that C must have units
of cm−3. Consequently, the power per frequency per unit volume is given by

P(ω) = C

∫
P (x)γ−pdγ. (4.2.3)

Here we have expressed the power per frequency P in terms of x = ω/ωc. We will in the
following assume a fixed pitch angle α and integrate contributions of electrons for different
energies to a fixed x. For a relativistic electron, we find that

x =
ω

ωc
=

ω
3
2γ

3ωB sinα
=

2ω

3γ3 sinα

γmc

eB
=

1

γ2
2ωmc

3eB sinα
≡ A

γ2
. (4.2.4)
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We have used that the critical angular frequency is ωc = 3
2γ

3ωB sinα and that the angular
frequency of rotation is ωB = eB/γmc. Now the integral in Eq. (4.2.3) can be rewritten using
the total power per frequency in Eq. (4.1.16). Since γ = (A/x)1/2,

dγ = −1

2
A1/2x−3/2dx, (4.2.5)

and the limits of integration have changed to ∞ to 0, we get

P(ω) = −C
√
3e3B sinα

2πmc2

∫ 0

∞
F (x)

(
A

x

)−p/2 1

2
A1/2x−3/2dx

= C

√
3e3B sinα

4πmc2
A−(p−1)/2

∫ ∞

0
x(p−3)/2F (x)dx. (4.2.6)

The following relations for the integrals over the functions F and G can be derived1 [9],∫ ∞

0
xµF (x)dx =

2µ+1

µ+ 2
Γ

(
µ

2
+

7

3

)
Γ

(
µ

2
+

2

3

)
, (4.2.7a)∫ ∞

0
xµG(x)dx = 2µΓ

(
µ

2
+

4

3

)
Γ

(
µ

2
+

2

3

)
, (4.2.7b)

where Γ is the gamma function. For µ = (p− 3)/2 this leads to

P(ω) = C

√
3e3B sinα

2πmc2(p+ 1)

( ωmc

3eB sinα

)−(p−1)/2
Γ

(
p

4
+

19

12

)
Γ

(
p

4
− 1

12

)
, (4.2.8)

where we have also inserted for the quantity A defined earlier. Converting from angular fre-
quency to frequency by ω = 2πν gives

P(ν) = C

√
3e3B sinα

2πmc2(p+ 1)

(
2πmc

3eB sinα

)−(p−1)/2

Γ

(
p

4
+

19

12

)
Γ

(
p

4
− 1

12

)
ν−(p−1)/2. (4.2.9)

The pitch angles α are likely to be isotropic and we therefore use that the probability distribution
is 1

2 sinαdα. Then integrating over α gives

1

2

∫ π

0
(sinα)(p+3)/2dα =

√
π

2

Γ
(
p+5
4

)
Γ
(
p+7
4

) . (4.2.10)

Finally, the power per frequency per unit volume is

P(ν) = C

√
3πe3B

4πmc2(p+ 1)

(
2πmc

3eB

)−(p−1)/2 Γ
(p
4 + 19

12

)
Γ
(p
4 − 1

12

)
Γ
(
p+5
4

)
Γ
(
p+7
4

) ν−(p−1)/2. (4.2.11)

4.3 Synchrotron self-absorption

The ultra-relativistic particles emitting synchrotron radiation will also be able to absorb pho-
tons. This process is called synchrotron self-absorption, and in this section we will intend to
calculate the total absorption coefficient. It can be shown that this coefficient is given by2

αν = − c2

8πν2

∫
dEP (ν,E)E2 ∂

∂E

[
ne(E)

E2

]
, (4.3.1)

1These integrals will also be presented in chapter 5, with derivations in appendix A.3.
2See Rybicki and Lightman [9] for the derivation of this formula.



4.3. SYNCHROTRON SELF-ABSORPTION 41

for P (ν,E) = 2πP (ω) where P (ω) is the total emitted power per frequency in Eq. (4.1.16). For
a power-law electron distribution, we have that

∂

∂E

[
ne(E)

E2

]
=

∂

∂E

[
C ′E−(p+2)

]
= −(p+ 2)C ′E−(p+1) = −(p+ 2)

ne(E)

E
. (4.3.2)

It follows that the absorption coefficient is given by

αν =
(p+ 2)c2

8πν2

∫
P (ν,E)

ne(E)

E
dE =

(p+ 2)c2

8πν2

∫
P (ν,E)E−1C ′E−pdE. (4.3.3)

In terms of the Lorentz factor, we get that

αν =
(p+ 2)c2

8πν2

∫
P (ν,E)E−1

0 Cγ−(p+1)dγ = C
(p+ 2)

8πmν2

∫
P (ν,E)γ−(p+1)dγ, (4.3.4)

where we have used that E = γmc2 = γE0. As in the previous section, we use Eq. (4.2.5) to
change the integration variable from γ to x, and obtain

αν = C
(p+ 2)

8πmν2

√
3e3B sinα

mc2

∫
F (x)γ−(p+1)dγ

= −C
√
3(p+ 2)e3B sinα

8πm2c2ν2
1

2
A1/2A−(p+1)/2

∫ 0

∞
F (x)x−3/2x(p+1)/2dx

= C

√
3(p+ 2)e3B sinα

16πm2c2ν2
A−p/2

∫ ∞

0
x(p−2)/2F (x)dx

= C

√
3(p+ 2)e3B sinα

16πm2c2ν2

(
3eB sinα

4πνmc

)p/2 2p/2+1

p+ 2
Γ

(
3p+ 22

12

)
Γ

(
3p+ 2

12

)
= C

√
3e3

8πm2c2

(
3e

2πmc

)p/2

(B sinα)p/2+1Γ

(
3p+ 22

12

)
Γ

(
3p+ 2

12

)
ν−p/2−2. (4.3.5)

As we did for the total emitted power per frequency per unit volume, we assume that the pitch
angles α are isotropic with probability distribution 1

2 sinαdα. Using that

1

2

∫ π

0
(sinα)p/2+2dα =

√
π

2

Γ
(
p+6
4

)
Γ
(
p+8
4

) , (4.3.6)

we obtain

αν = C

√
3πe3

16πm2c2

(
3e

2πmc

)p/2

Bp/2+1
Γ
(
3p+22
12

)
Γ
(
3p+2
12

)
Γ
(
p+6
4

)
Γ
(
p+8
4

) ν−p/2−2. (4.3.7)

We have that αν ∝ ν−p/2−2 and from Eq. (4.2.11), P ∝ ν−(p−1)/2. We can compare the emitted
power per frequency and the absorption coefficient by finding that

αν

P ∝ ν−5/2. (4.3.8)

It is clear that the electrons emit far more radiation than they absorb above some critical
frequency, which will be an important consideration in chapter 6.
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4.4 Restrictions to classical electrodynamics

In this chapter and the previous, we have provided an in-depth description of synchrotron
radiation. However, we have not considered the regimes in which our treatment no longer is
valid, and therefore restricts our theory. In strong magnetic fields, non-linear quantum effects
become important [44]. In these cases, particle interactions and electromagnetic fields enters
the radiation-dominated regime, and we are in the field of high-intensity particle physics. An
extensive description of these quantum effects is beyond the scope of this thesis, but we proceed
to present the relevant restrictions.

Strong electromagnetic fields are characterised through the comparison with a critical field. In
quantum electrodynamics (QED), the critical magnetic field is given by [44]

Bcr =
m2c3

eℏ
≃ 4.41× 1013G. (4.4.1)

Here, ℏ is the reduced Planck’s constant, and m, c and e is the electron mass, speed of light and
electron charge, respectively. One can similarly obtain the critical electric field by Ecr = cBcr,
which is often called the Schwinger field. In classical electrodynamics, it is possible to define
equivalent critical magnetic and electric fields. These fields are a few orders of magnitude higher,
in fact they differ only by a factor of 1/α, where α ≃ 1/137 is the fine-structure constant [44].
As the classical critical fields are higher, they are less relevant, and we consider the QED critical
field in the following. In particular, from Sec. 2.1, we know that astrophysical objects such as
neutron stars and magnetars can have magnetic fields stronger than Bcr in Eq. (4.4.1). The
non-linear quantum effects become important in these cases.

We may define the quantum non-linearity parameter for electrons [44],

χ ≡ |p⊥|
mc

B

Bcr
. (4.4.2)

For relativistic electrons, the momentum is given by p = γmc, and so we instead write

χ ≃ γ
B

Bcr
. (4.4.3)

We therefore restrict the classical theory to hold in the case of χ ≪ 1. In the cases when χ
approaches or exceeds 1, we are in the regime of where the non-linear quantum effects should
be considered.

We can now rewrite the parameter x defined previously in this chapter, to include the parameter
χ. Using that ωB = eB/γmc, we first get

x =
ω

ωc
=

2ω

3γ3ωB sinα
=

2ωmc

3γ2eB sinα
. (4.4.4)

Inserting B = χBcr/γ and Bcr from Eq. (4.4.1), and simplifying gives

x =
2ℏω

3χγmc2 sinα
. (4.4.5)

We can correct this expression for quantum effects, which to first order in ℏ corresponds to the
substitution ω → ω(1 + ℏω/γmc2). Defining

fc =
ℏω
γmc2

, (4.4.6)
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as the fraction of the electron energy that is transferred to the photon during the emission
process [44], the parameter x becomes

x→ xq =
2ℏω

(
1 + ℏω

γmc2

)
3χγmc2 sinα

=
2fc

3χ sinα
(1 + fc) =

2fc
3χ sinα(1− fc)

(1− f2c )

≃ 2fc
3χ sinα(1− fc)

=
x

1− fc
. (4.4.7)

By substituting x with xq, we are introducing a quantum correction that will lead to a reduction
in the total emitted power. The first order correction used corresponds to a recoil effect for
χ ≳ 1, while spin effects only appear if one includes the second order term in ℏ. As discussed in
Sec. 4.1, in the classical description, half the emitted power should correspond to values x > 1.
For strong magnetic fields where χ ≳ 1, we would have that most of the radiation is carried
away by photons, in which each photon has an energy greater than the energy of the electron
[44]. In this case, the quantum correction becomes very important.

As we have seen, the function F (x) defined by Eq. (4.1.12a) determines the spectrum of
synchrotron radiation. This function is plotted in Fig. 4.3 for increasing x. In Fig. 4.4 one can
see the quantum-corrected spectrum of synchrotron radiation emitted by an electron in solid
lines compared to the classical spectrum in dashed lines. In particular, we have plotted the
function F (x̃(fc)) in terms of fc, that is x̃(fc) = xq in solid lines and x̃(fc) = x in dashed lines.
Four different values of χ have been chosen. As can be seen, the quantum-corrected spectrum
differs substantially from the classical spectrum as χ and fc increases.
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Figure 4.4: The function F (x̃(fc)) in terms of fc for x̃(fc) = xq (solid lines) and
x̃(fc) = x (dashed lines).





Chapter 5

Polarisation

We would now like to study the degree of polarisation for synchrotron radiation, which describes
to which extent the radiation emitted is polarised. For this we want to use the emission-
polarisation tensor and the Stokes parameters.

The following discussion uses the book by Rybicki and Lightman [9] to some extent, but the
articles by Westfold [11] and Legg and Westfold [12] are the main sources.

5.1 Emission-polarisation tensor

We begin by studying the average power radiated over a period 2π/ωB. Here we have also set
the factor b discussed in chapter 3 equal to 1. Introducing the Poynting vector [9],

S =
c

4π
E×B, (5.1.1)

we should have that ⟨S⟩ · ndS is the average power through a surface element dS. Following
the procedure of Westfold [11], the average of S can be calculated as

⟨S⟩ = ωB

2π

∫ 2π
ωB

0
Sdt =

ωB

2π

c

4π
n

∫ 2π
ωB

0
E2dt =

c

4π
n

(
E2

0 + 2
∞∑
n=1

|En|2
)
, (5.1.2)

where we have used the radiation field in Eq. (3.5.1b). Consider now the average power radiated
into the solid angle dΩ(n), denoted by ⟨P (n)⟩dΩ(n). We have that

⟨P (n)⟩ = 1

2
P0(n) +

∞∑
n=1

⟨Pn(n)⟩, (5.1.3)

where

⟨Pn(n)⟩ =
cr2

2π
|En|2, (5.1.4)

for the distance from the origin r. Therefore, for the nth harmonic, the average power radiated
into the solid angle dΩ(n) is given by ⟨Pn(n)⟩dΩ(n).
We can now define the emission-polarisation tensor for a single electron [12]1,

ρ =
cr2

2π
EnE

∗
n. (5.1.5)

1Legg and Westfold [12] use SI units and define the tensor as ρ = (2r2/µc)EnE
∗
n. In Gaussian-cgs units we

have the relation µ0 = 1/ϵ0c
2, where ϵ0 = 1/4π is dimensionless. Using µ = µ0 we obtain the desired result.

45
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Here n corresponds to the normal vector n, not the nth harmonic. The convenience of working
with polarisation tensors will become clear in Sec. 5.3 when we define the Stokes parameters.
For now we proceed to obtain expressions for the components of the tensor.

Because the average power in the nth harmonic consists of contributions from En in any two
orthogonal directions transverse to n, we take the perpendicular and parallel components of
the electric field given by Eq. (3.5.30a) and (3.5.30b), respectively. We can therefore write the
emission-polarisation tensor as

ρ =

 ρ11 ρ12

ρ21 ρ22

 =
cr2

2π

 E⊥E
∗
⊥ E⊥E

∗
∥

E∥E
∗
⊥ E∥E

∗
∥

 . (5.1.6)

The entries of the tensor are consequently

ρ11 =
e2

6π3c
ω4
Bn

2

(
a2θ4γ
γ4c2

)
K2

2/3(η), (5.1.7a)

ρ12 = − e2

6π3c
ω4
Bin

2

(
a2θθ3γ
γ3c2

+
a2θ5γ
2γ5c2

cotα

)
K2/3(η)K1/3(η), (5.1.7b)

ρ21 =
e2

6π3c
ω4
Bin

2

(
a2θθ3γ
γ3c2

+
a2θ5γ
2γ5c2

cotα

)
K2/3(η)K1/3(η), (5.1.7c)

ρ22 =
e2

6π3c
ω4
Bn

2

(
a2θ2θ2γ
γ2c2

+
a2θθ4γ
γ4c2

cotα+
a2θ6γ
4γ6c2

cot2 α

)
K2

1/3(η). (5.1.7d)

We now wish to convert the emission-polarisation tensor of Eq. (5.1.6) into a continuous func-
tion of frequency. This is possible for large-order harmonics, as the spectrum becomes quasi-
continuous [12]. We consider the average power in a frequency2 band of width dν, that is
⟨Pν(n)⟩dνdΩ(n) received within the solid angle dΩ(n). The frequency is, for νB = ωB/2π,

ν = nνB =
nωB

2π
, (5.1.8)

and we can write

⟨Pν(n)⟩ = ⟨Pn(n)⟩
1

νB
=

1

νB

cr2

2π
|En|2. (5.1.9)

We make the substitution
x =

ν

νc
, (5.1.10)

which gives us a dimensionless variable. Note that this is exactly the same variable as used
in the previous chapter, i.e. x = ω/ωc. For the radius of curvature a = c/(ωB sinα) by the
assumption that v ≃ c, the critical frequency is

νc =
ωc

2π
=

3
2γ

3ωB sinα

2π
=

3cγ3

4πa
. (5.1.11)

Substituting Eq. (5.1.8) and (5.1.11) into the expression for x and solving for n, we get

x =
4πa

3cγ3
ν =

4πa

3cγ3
nωB

2π
=

2aωBn

3cγ3
, (5.1.12)

n =
3cγ3

2aωB
x. (5.1.13)

2The frequency is denoted f by the articles [11, 12], but for consistency in notation we denote the frequency
by ν.
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Finally, the frequency polarisation tensor in terms of x is written as

ρx =
1

νB
ρ =

2π

ωB
ρ =

 ρx11 ρx12

ρx21 ρx22

 . (5.1.14)

Using the expression for n, writing η as

η =
nωBaθ

3
γ

3cγ3
=

3cγ3

2aωB
x
ωBaθ

3
γ

3cγ3
=

1

2
θ3γx, (5.1.15)

allows us to calculate the components of Eq. (5.1.14). For ρx11 we get

ρx11 =
2π

ωB
ρ11 =

2π

ωB

e2

6π3c
ω4
Bn

2

(
a2θ4γ
γ4c2

)
K2

2/3(η)

=
e2

3π2c
ω3
B

(
3cγ3

2aωB
x

)2
(
a2θ4γ
γ4c2

)
K2

2/3

(
1

2
θ3γx

)
=

3e2

4π2c
ωBx

2γ2θ4γK
2
2/3

(
1

2
θ3γx

)
, (5.1.16)

and similarly we obtain the other three components. The result is

ρx11 =
3e2

4π2c
ωBx

2γ2θ4γK
2
2/3

(
1

2
θ3γx

)
, (5.1.17a)

ρx12 = − 3e2

4π2c
ωBix

2γ3

(
θθ3γ +

θ5γ
2γ2

cotα

)
K2/3

(
1

2
θ3γx

)
K1/3

(
1

2
θ3γx

)
, (5.1.17b)

ρx21 =
3e2

4π2c
ωBix

2γ3

(
θθ3γ +

θ5γ
2γ2

cotα

)
K2/3

(
1

2
θ3γx

)
K1/3

(
1

2
θ3γx

)
, (5.1.17c)

ρx22 =
3e2

4π2c
ωBx

2γ4

(
θ2θ2γ +

θθ4γ
γ2

cotα+
θ6γ
4γ4

cot2 α

)
K2

1/3

(
1

2
θ3γx

)
. (5.1.17d)

The components of the frequency polarisation tensor in Eq. (5.1.17) are all proportional to ωB,
and thus inverse proportional to b, if this factor was included.

Since the obtained frequency polarisation tensor only describes one electron, it is necessary to
expand the model to describe a distribution of electrons. To stay consistent with the approx-
imation made by [12], including terms to O(γ−2) within the brackets, we will neglect the last
term of ρx22 in this calculation.

5.2 Polarisation tensor for a power-law electron distribution

We will assume a power-law distribution of electrons. For a constant C and the particle distri-
bution index p, the number density of electrons ne(γ) of a given Lorentz factor γ, satisfies Eq.
(4.2.2), that is

ne(γ)dγ = Cγ−pdγ. (5.2.1)

We define the emission-polarisation tensor in the frequency domain for a population of electrons
satisfying this power-law as

j =
1

2π

∫
ne(γ)

∫
ϕ(α)ρxdΩdγ. (5.2.2)
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The reason for the division of 2π, which differs from the definition used in [12], will become
clear in Sec. 5.3. The particle pitch angle distribution is denoted ϕ(α) and the solid angle is
dΩ(n) = 2π sinαdα. In Sec. 5.1, we denoted ⟨Pν(n)⟩dνdΩ(n) as the average power received
within the solid angle dΩ(n). However, the factor b must be included if we consider the average
power emitted into the solid angle dΩ(n), which gives b⟨Pν(n)⟩dνdΩ(n). Hence, the factor b
should appear in Eq. (5.2.2), however we have set b = 1. It is clear that the product of the
frequency polarisation tensor obtained in Eq. (5.1.17) with the factor b in the definition of j
will give us an expression independent of b.

To simplify the first integral in Eq. (5.2.2), we define a new angle ψ such that α = ψ+ θ, which
we call the pitch angle deviation3. The solid angle then becomes dΩ(n) = 2π sinαdθ. We still
have that α and θ is the pitch angle and the angle between −x and v, respectively. We want
to expand ϕ(α) sinα to the first order around ψ, and define functions f and g such that

f(α) ≡ ϕ(α) sinα, (5.2.3a)

g(α) ≡ f ′(α) = ϕ′(α) sinα+ ϕ(α) cosα. (5.2.3b)

Then to first order4,

ϕ(α) sinα = f(α) = f(ψ) + f ′(ψ)(α− ψ) = f(ψ) + g(ψ)θ. (5.2.4)

Now Eq. (5.2.2) becomes

j =

∫ ∞

0
ne(γ)

∫ ∞

−∞
[f(ψ) + g(ψ)θ] ρxdθdγ =

∫ ∞

0
Ixne(γ)dγ, (5.2.5)

where we have taken the range of θ between −∞ and ∞, and defined the integral

Ix ≡
∫ ∞

−∞
[f(ψ) + g(ψ)θ] ρxdθ. (5.2.6)

We note already now that the interval −∞ to ∞ is symmetric, and therefore the odd terms in
θ will cancel upon integration. We will have a sum of integrals of the form

Iabcd ∝
∫ ∞

−∞
θaθbγK

c
1/3

(
1

2
θ3γx

)
Kd

2/3

(
1

2
θ3γx

)
dθ, (5.2.7)

for some integers a, b, c, d. Since θ2γ = 1+γ2θ2 depends on the angle θ only through θ2, we have
that θγ is always greater than zero. As the Bessel functions are always positive, the integer a
being odd is sufficient to conclude that Iabcd = 0.

The emission-polarisation tensor obtained with entries in Eq. (5.1.17) is written in terms of the
parameter x. Since Eq. (5.2.5) includes the term ne(γ)dγ, it is convenient to also express γ in
terms of x and change the differential from dγ to dx. The frequency of a non-relativistic electron
is given by νB0 = eB/2πmc, only a factor γ different from the frequency in the relativistic case.
Hence, we can write νB0 = γνB, where νB = ωB/2π. The angular frequency of rotation can
therefore be written in terms of the constant non-relativistic frequency and the Lorentz factor,
that is ωB = 2πνB0/γ. The critical angular frequency at the angle ψ becomes

νc =
3
2γ

3ωB sinψ

2π
=

3

2
γ2νB0 sinψ. (5.2.8)

3This angle is denoted θ = α− ψ by [11, 12], where α is the pitch angle and ψ the angle between −x and v.
4Note that Legg and Westfold [12] writes the first order approximation (which they call second order) as

ϕ(α) sinα = ϕ(ψ) sinψ[1 + g(ψ)θ cotψ], where they have defined g(ψ) = 1 + [ϕ′(ψ)/ϕ(ψ)] tanψ. This is exactly
the same as writing ϕ(α) sinα = f(ψ)+ g(ψ)θ, corresponding to our expression for the first order approximation.
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We now have everything necessary to express γ in terms of x. We get that

x =
ν

νc
=

2

3

ν

νB0 sinψ

1

γ2
, (5.2.9)

and solving for γ gives

γ =

(
2

3

)1/2 ν1/2

(νB0 sinψ)
1/2

x−1/2, (5.2.10)

dγ = −1

2

(
2

3

)1/2 ν1/2

(νB0 sinψ)
1/2

x−3/2dx. (5.2.11)

The power-law distribution of energies can now be expressed as function of x, inserting the
expression for γ into the power-law,

ne(γ) = Cγ−p = C

(
3

2

)p/2 (νB0 sinψ)
p/2

νp/2
xp/2. (5.2.12)

Upon changing the variable of integration, the limits change from 0 to ∞ to ∞ to 0. Hence we
omit the minus sign from the expression of dγ in Eq. (5.2.11), setting the limits again to 0 to
∞, and finally have that

ne(γ)dγ = C
1√
6

(
3

2

)p/2 (νB0 sinψ)
(p−1)/2

ν(p−1)/2
x(p−3)/2dx. (5.2.13)

Solving for the components of j in Eq. (5.2.5) are lengthy calculations, so we need a careful
approach. The calculations contain several integrals which are given in appendix A, where we
also include derivations. In the following, it is useful to introduce the functions from appendix
A.3,

Jn =

∫ ∞

0
xn−2F (x)dx =

∫ ∞

0
xn−1

∫ ∞

x
K5/3(ξ)dξdx =

2
3 + n

n
Ln, (5.2.14a)

Ln =

∫ ∞

0
xn−2G(x)dx =

∫ ∞

0
xn−1K2/3(x)dx = 2n−2Γ

(
n

2
− 1

3

)
Γ

(
n

2
+

1

3

)
, (5.2.14b)

Rn =

∫ ∞

0
xn−2H(x)dx =

∫ ∞

0
xn−1K1/3(x)dx = 2n−2Γ

(
n

2
− 1

6

)
Γ

(
n

2
+

1

6

)
. (5.2.14c)

The first two functions, Jn and Ln, are valid for n > 2
3 , while Rn is valid for n > 1

3 . The
functions F (x) and G(x) are defined in Eq. (4.1.12a) and (4.1.12b), respectively, and we have
also defined

H(x) ≡ xK1/3(x). (5.2.15)

This function is shown in Fig. 5.1 along with F (x) and G(x), as a normal plot and a log-log
plot. The contribution from H(x) upon integration is smaller than that of F (x) and G(x).

Calculation of j11

We consider now the first component j11. Inserting Eq. (5.1.17a) into Eq. (5.2.6) gives

Ix11 =
3e2

4π2c
ωBx

2γ2
∫ ∞

−∞
[f(ψ) + g(ψ)θ] θ4γK

2
2/3

(
1

2
θ3γx

)
dθ. (5.2.16)

As discussed earlier, since the integral is taken between −∞ and ∞, the odd terms in θ will
cancel. In the case of Ix11 , this means the term proportional to g(ψ). Hence,

Ix11 =
3e2

4π2c
ωBx

2γ2f(ψ)

∫ ∞

−∞
θ4γK

2
2/3

(
1

2
θ3γx

)
dθ
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Figure 5.1: The functions F (x), G(x) and H(x) in terms of x = ω/ωc as (a) a normal
plot and (b) a log-log plot.

=
3e2

4π2c

eB

γmc
x2γ2f(ψ)

π√
3γx2

[F (x) +G(x)]

=

√
3e3B

4πmc2
f(ψ) [F (x) +G(x)] , (5.2.17)

where we have used Eq. (A.2.6) and that ωB = eB/γmc. Inserting into Eq. (5.2.5) gives

j11 =

∫ ∞

0
Ix11ne(γ)dγ

=

∫ ∞

0

√
3e3B

4πmc2
f(ψ) [F (x) +G(x)]C

1√
6

(
3

2

)p/2 (νB0 sinψ)
(p−1)/2

ν(p−1)/2
x(p−3)/2dx

= C
e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
ϕ(ψ)

∫ ∞

0
x(p−3)/2 [F (x) +G(x)] dx

= C
e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
ϕ(ψ)

[
J(p+1)/2 + L(p+1)/2

]
, (5.2.18)

using that f(ψ) = ϕ(ψ) sinψ, and the functions Ln and Jn defined in Eq. (5.2.14a) and
(5.2.14b), respectively.

Calculation of j22

For the other diagonal component j22 of the emission-polarisation tensor, we need

Ix22 =
3e2

4π2c
ωBx

2γ4
∫ ∞

−∞
[f(ψ) + g(ψ)θ]

(
θ2θ2γ +

θθ4γ
γ2

cotψ

)
K2

1/3

(
1

2
θ3γx

)
dθ. (5.2.19)

As before, we may remove the terms odd in θ, and using Eq. (A.2.3) and (A.2.18) in appendix
A.2 we get that

Ix22 =
3e2

4π2c
ωBx

2γ4
∫ ∞

−∞

(
f(ψ)θ2θ2γ + g(ψ)

θ2θ4γ
γ2

cotψ

)
K2

1/3

(
1

2
θ3γx

)
dθ
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=
3e2

4π2c

eB

γmc
x2γ4

π√
3γ3x2

[
f(ψ) {F (x)−G(x)}+ g(ψ)

cotψ

4γ2

{
2

x
H(x)−G(x) + F (x)

}]
=

√
3e3B

4πmc2
f(ψ) [F (x)−G(x)] . (5.2.20)

In the last line we have removed the higher order term in 1/γ, that is the term proportional to
g(ψ). We get the exact same expression as for Ix11 in Eq. (5.2.17) except for a negative sign
in front of G(x). The calculation of j22 proceeds by replacing L(p+1)/2 with −L(p+1)/2 in Eq.
(5.2.18), and we obtain the result

j22 = C
e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
ϕ(ψ)

[
J(p+1)/2 − L(p+1)/2

]
. (5.2.21)

Calculation of j12 and j21

The components ρx12 and ρx21 in Eq. (5.1.17b) and (5.1.17c), respectively, are equal except for
the sign. We will therefore consider the positive ρx21 component and know that j12 = −j21. We
have that

Ix21 = i
3e2

4π2c
ωBx

2γ3
∫ ∞

−∞
[f(ψ) + g(ψ)θ]

(
θθ3γ +

θ5γ
2γ2

cotψ

)
K2/3

(
1

2
θ3γx

)
K1/3

(
1

2
θ3γx

)
dθ

= i
3e2

4π2c
ωBx

2γ3
∫ ∞

−∞

(
g(ψ)θ2θ3γ + f(ψ)

θ5γ
2γ2

cotψ

)
K2/3

(
1

2
θ3γx

)
K1/3

(
1

2
θ3γx

)
dθ.

(5.2.22)

Noting that g(ψ) = [ϕ′(ψ) tanψ + ϕ(ψ)] cosψ and f(ψ) cotψ = ϕ(ψ) cosψ we can write

g(ψ)θ2θ3γ + f(ψ)
θ5γ
2γ2

cotψ = cosψ

(
[ϕ′(ψ) tanψ + ϕ(ψ)]θ2θ3γ + ϕ(ψ)

θ5γ
2γ2

)
. (5.2.23)

The integral becomes

Ix21 = i
3e2

4π2c
ωBx

2γ3 cosψ

{
[ϕ′(ψ) tanψ + ϕ(ψ)]T4 + ϕ(ψ)

1

2γ2
T5

}
= i

e3B cosψ

4
√
3πmc2

1

γx

{
[ϕ′(ψ) tanψ + ϕ(ψ)] [4G(x)− 2F (x)] + ϕ(ψ) [3xH(x) + 2G(x)− F (x)]

}
,

(5.2.24)

where we have used the integrals T4 and T5 in Eq. (A.2.11) and (A.2.14), respectively. Using
that

1

γx
=

√
3

2

(νB0 sinψ)
1/2

ν1/2
x−1/2, (5.2.25)

and integrating over γ gives

j21 = iC
e3B

8
√
3πmc2

(
3

2

)p/2

cotψ(sinψ)p/2+1
(νB0

ν

)p/2
×
{
[ϕ′(ψ) tanψ + ϕ(ψ)]

[
4Lp/2 − 2Jp/2

]
+ ϕ(ψ)

[
3Rp/2+1 + 2Lp/2 − Jp/2

]}
. (5.2.26)

Isotropic velocity distribution

Summarising this section, we have obtained the emission-polarisation tensor by calculations, and
its components are given by Eq. (5.2.18), (5.2.26) and (5.2.21). Considering now an isotropic
velocity distribution, we have that ϕ′(ψ) = 0 [12]. The components of j are then given by

j11 = C
e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
ϕ(ψ)

[
J(p+1)/2 + L(p+1)/2

]
, (5.2.27a)
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j12 = −iC

√
3e3B

8πmc2

(
3

2

)p/2

cotψ(sinψ)p/2+1
(νB0

ν

)p/2
ϕ(ψ)

[
Rp/2+1 + 2Lp/2 − Jp/2

]
, (5.2.27b)

j21 = iC

√
3e3B

8πmc2

(
3

2

)p/2

cotψ(sinψ)p/2+1
(νB0

ν

)p/2
ϕ(ψ)

[
Rp/2+1 + 2Lp/2 − Jp/2

]
, (5.2.27c)

j22 = C
e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
ϕ(ψ)

[
J(p+1)/2 − L(p+1)/2

]
. (5.2.27d)

5.3 Stokes parameters

Now that we have all the components of the emission-polarisation tensor for both the single
electron and the power-law electron distribution, we want to calculate the degree of circular
and linear polarisation. As we have seen, a general polarisation tensor can be constructed from
the radiation field components such that

N = ⟨EiE
∗
j ⟩, (5.3.1)

for i, j = 1, 2. That is

N =

 N11 N12

N21 N22

 =

 E1E
∗
1 E1E

∗
2

E2E
∗
1 E2E

∗
2

 . (5.3.2)

It is then convenient to define the Stokes parameters in terms of the general polarisation tensor
N ,

I = N11 +N22, Q = N11 −N22, U = N12 +N21, V = i(N12 −N21). (5.3.3)

This means that we can write

N11 =
1

2
(I +Q), N12 =

1

2
(U − iV ), N21 =

1

2
(U + iV ), N22 =

1

2
(I −Q). (5.3.4)

However, any linear combination of Stokes parameters can also be treated as Stokes parameters
[45]. The parameter I is proportional to the intensity (or total energy flux) of the wave [9].
This means we can write Nij = Iij/Itot, where Itot denotes the total intensity. The parameter
V is the circularity parameter such that V = 0 would imply linear polarisation. In the case of
Q = U = 0 we would have circular polarisation. Lastly, the case of Q = U = V = 0 implies no
polarisation at all.

We now conveniently define the Stokes vector as
I

Q

U

V

 =


E1E

∗
1 + E2E

∗
2

E1E
∗
1 − E2E

∗
2

E1E
∗
2 + E2E

∗
1

i(E1E
∗
2 − E2E

∗
1)

 . (5.3.5)

It is possible to write the Stokes parameters as an incoherent superposition of two waves, in
which the first wave is unpolarised and the second completely polarised,

I

Q

U

V

 =


Iu

0

0

0

+


Ip

Q

U

V

 . (5.3.6)
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Here, Ip =
√
Q2 + U2 + V 2, and the degree of elliptical polarisation is then defined as [45]

Π =
Ip
I

=

√
Q2 + U2 + V 2

I
. (5.3.7)

In the case of a monochromatic wave, Iu = 0 and we have pure elliptical polarisation. In this
case,

I2 = Q2 + U2 + V 2. (5.3.8)

In the case of quasi-monochromatic waves, Ip ≤ I and we instead have that

I2 ≥ Q2 + U2 + V 2. (5.3.9)

Since we are interested not only in the elliptical polarisation, or total polarisation, but also the
circular and linear polarisation, we further split the wave into a superposition of three waves,

I

Q

U

V

 =


Iu

0

0

0

+


Icirc

0

0

V

+


Ilin

Q

U

0

 . (5.3.10)

The first term still corresponds to a completely unpolarised wave, while the second term corre-
sponds to a circularly polarised wave and the the third term corresponds to a linearly polarised
wave. Furthermore, we have that Icirc =

√
V 2 and Ilin =

√
Q2 + U2. This leads to the definition

of the degree of circular and linear polarisation,

Πcirc =
Icirc
I

=

√
V 2

I
, (5.3.11)

Πlin =
Ilin
I

=

√
Q2 + U2

I
, (5.3.12)

respectively. The possible polarisation states for I = ±Q,±U,±V are shown in Fig. 5.2. The
representation shows the polarisation in the plane perpendicular to the direction of propagation,
defined by any two perpendicular basis vectors of the electric field. Note that the parameter I
is always positive, while the parameters Q, U and V can be negative.

Linear
(horizontal)

I = Q

Linear
(vertical)

I = −Q

Linear
(+45◦)

I = U

Linear
(−45◦)

I = −U

Circular
(right-hand)

I = V

Circular
(left-hand)

I = −V

Figure 5.2: Representation of possible pure polarisation states and their relation to
the Stokes parameters.

We would now like to calculate the Stokes parameters for the two cases considered, that is
for a single electron using the polarisation tensor ρx and for a power-law electron distribution
using the polarisation tensor j. We note already now that the off-diagonal components of our
emission-polarisation tensors are imaginary and equal except for the sign. This means that the
parameter U = 0 in both cases, and the degree of circular and linear polarisation is

Πcirc =

√
V 2

I
and Πlin =

√
Q2

I
, (5.3.13)
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respectively. We also recall that the I parameter should be proportional to the total intensity,
which would be the sum of the perpendicular and parallel component of the intensity obtained
in Eq. (4.1.8a) and (4.1.8b).

Single electron

Using the emission-polarisation tensor ρx with components given in Eq. (5.1.17), we obtain the
Stokes parameters

ρx,I =
3e2

4π2c
ωBx

2γ2θ2γ

[
θ2γK

2
2/3

(
1

2
θ3γx

)
+ γ2

(
θ2 +

θθ2γ
γ2

cotα+
θ4γ
4γ4

cot2 α

)
K2

1/3

(
1

2
θ3γx

)]
,

(5.3.14a)

ρx,Q =
3e2

4π2c
ωBx

2γ2θ2γ

[
θ2γK

2
2/3

(
1

2
θ3γx

)
− γ2

(
θ2 +

θθ2γ
γ2

cotα+
θ4γ
4γ4

cot2 α

)
K2

1/3

(
1

2
θ3γx

)]
,

(5.3.14b)

ρx,U = 0, (5.3.14c)

ρx,V =
3e2

2π2c
ωBx

2γ3

(
θθ3γ +

θ5γ
2γ2

cotα

)
K2/3

(
1

2
θ3γx

)
K1/3

(
1

2
θ3γx

)
. (5.3.14d)

Considering only the first order approximation in γ−1, all the terms in Eq. (5.3.14) proportional
to cotα are zero. In this case, as we have remarked previously in the analysis of the intensity
spectrum in Sec. 4.1, the condition θ = 0 implies linear polarisation, since the V parameter be-
comes zero. For any value θ > 0, we also have that V > 0, which implies some degree of circular
polarisation. It is also clear from Eq. (5.3.14a) that the I parameter in this approximation is
proportional to the total intensity when comparing with the results of Sec. 4.1.

Recall that for the single electron case, the factor b should still appear in the emission-polarisation
tensor ρx, as opposed to the power-law electron distribution case where the factor dropped out.
However, in any case, the polarisation degrees defined by Eq. (5.3.13) are quotients of the
Stokes parameters, and the factor b drops out.

Power-law electron distribution

For the power-law electron distribution, we find that the Stokes parameters for an isotropic
velocity distribution are given by

jI = C
e3B

2
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
ϕ(ψ)J(p+1)/2, (5.3.15a)

jQ = C
e3B

2
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
ϕ(ψ)L(p+1)/2, (5.3.15b)

jU = 0, (5.3.15c)

jV = C

√
3e3B

4πmc2

(
3

2

)p/2

cotψ(sinψ)p/2+1
(νB0

ν

)p/2
ϕ(ψ)

[
Rp/2+1 + 2Lp/2 − Jp/2

]
. (5.3.15d)

The expression for jI is exactly the same as Eq. (4.2.9) for the power per frequency derived in
Sec. 4.2 for the case of ϕ(ψ) = 1 and ψ = α. This can be seen by expressing

J(p+1)/2 =
2(p+1)/2

p+ 1
Γ

(
p

4
− 1

12

)
Γ

(
p

4
+

19

12

)
, (5.3.16)
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using Eq. (5.2.14a) and (5.2.14b). The division of 2π in Eq. (5.2.2) therefore becomes clear. We
have defined the polarisation tensor such that the Stokes parameter jI is not only proportional
to the power per frequency per unit volume in Eq. (4.2.9), but equal to it. Working with
polarisation degrees, this makes no difference, but this equality will be useful for chapter 6.

Note that our calculated expression for jV is a factor of 4/3 off from that of [12]. This may be
due to a difference in assumptions, some error in either calculation or choice of approximation.
However, jV appears only in the expression for the circular polarisation degree, which we will
see that in all practical cases can be neglected. We therefore proceed with our calculated value
of jV in Eq. (5.3.15d).

5.4 Degree of circular polarisation

We defined the degree of circular polarisation in Eq. (5.3.13) given that the parameter U
is zero. Now we will use the Stokes parameters obtained in the previous section to find the
circular polarisation degree for a single electron and electrons with a power-law distribution.
Once these are obtained, we will also provide plots to see the behaviour of the polarisation
degree for increasing magnetic field strength.

Single electron

Using the Stokes parameters in Eq. (5.3.14), the degree of circular polarisation is

Πcirc =
ρx,V
ρx,I

=
2γ
(
θθγ +

θ3γ
2γ2 cotα

)
K2/3

(
1
2θ

3
γx
)
K1/3

(
1
2θ

3
γx
)

θ2γK
2
2/3

(
1
2θ

3
γx
)
+ γ2

(
θ2 +

θθ2γ
γ2 cotα+

θ4γ
4γ4 cot2 α

)
K2

1/3

(
1
2θ

3
γx
) . (5.4.1)

For the lower order approximation O(γ−1), that is for very large γ, the terms proportional to
cotα are negligible and the circular polarisation can be written as

Πcirc =
2γθθγK2/3

(
1
2θ

3
γx
)
K1/3

(
1
2θ

3
γx
)

θ2γK
2
2/3

(
1
2θ

3
γx
)
+ γ2θ2K2

1/3

(
1
2θ

3
γx
) . (5.4.2)

This approximation also is correct for pitch angles α around 90◦, as cotα then becomes very
small. Let us try to reason how the function in Eq. (5.4.2) behaves in terms of the magnetic
field strength. The argument of the Bessel functions scales as

z ≡ 1

2
θ3γx ∝ 1

B
, (5.4.3)

since x ∝ a ∝ 1/ωB and ωB ∝ B. For increasing magnetic field strength B, the Bessel functions
will thus also increase, as is easily seen from the plot of the modified Bessel functions in Fig.
3.4. Since K2/3(z) increases faster than K1/3(z), we should expect that keeping every parameter
constant and varying B, will lead to a decrease of the circular polarisation when B becomes
very large. Furthermore, for large values of z, that is for small values of B, the modified
Bessel functions K2/3(z) and K1/3(z) can by approximated by the asymptotic expressions in
Eq. (3.5.29a) and (3.5.29b), respectively. For very large z, we ignore the second term in
both cases and hence K2/3(z) ≃ K1/3(z). The circular polarisation degree should therefore
become constant for small values of B. This can be seen in dashed lines in Fig. 5.3 for some
selected frequencies ν. In particular, the fixed values chosen are the velocity v = 0.9999c and
θ = 1/(2γ). The angle θ is chosen to lie well within the cone of half angle 1/γ, to ensure that
we are considering an angle where radiation is emitted.

In solid lines in Fig. 5.3, we see the case of a small pitch angle α = 1◦. Here, the higher
order approximation in γ−1 is necessary to include, and the circular polarisation degree changes
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Figure 5.3: Degree of circular polarisation for a single electron as function of mag-
netic field strength B for different frequencies ν. The pitch angle α is 90◦ for the
dashed lines and 1◦ for the solid lines. The other parameters are fixed, with velocity
v = 0.9999c and θ = 1/(2γ).

behaviour significantly. In fact, the circular polarisation degree is 1 for lower magnetic field
strengths before it decreases to zero.

We can compare this result with the degree of linear polarisation in the next section. However,
first we consider the power-law electron distribution.

Power-law electron distribution

Using Eq. (5.3.15a) and (5.3.15d), we get that the circular polarisation degree for a power-law
electron distribution can be written as

Πcirc =
jV
jI

= 2

√
2

3
cotψ(sinψ)1/2

(νB0

ν

)1/2 J(p+1)/2

Rp/2+1 + 2Lp/2 − Jp/2
. (5.4.4)

Using Eq. (5.2.14) one can rewrite the last fraction. This does not yield a nice answer, so we
leave the expression as it is.

It is clear that the circular polarisation degree only depends on the magnetic field through νB0 ,
and we have that Πcirc ∝ B1/2. The circular polarisation degree will increase with B, and
eventually exceed 1, which is physically impossible. This can be seen in Fig. 5.4. Here we have
plotted the degree of circular polarisation for a power-law electron distribution for different
values of the pitch angle deviation ψ, while keeping ν = 5 × 1014Hz and p = 1.4 fixed. The
impossible behaviour of the polarisation degree will be discussed in Sec. 8.1.

5.5 Degree of linear polarisation

We now move from circular polarisation to linear polarisation. The degree of linear polarisation
is the only polarisation degree considered in the discussion of synchrotron radiation in the
books by Rybicki and Lightman [9] and Longair [10]. Their approach considers the power per
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Figure 5.4: Degree of circular polarisation for a power-law electron distribution as
function of magnetic field strength B for different pitch angle deviations ψ. The other
parameters are fixed, with frequency ν = 5 × 1014Hz and particle distribution index
p = 1.4.

frequency discussed in chapter 4. In this section we will follow both their treatments, as well
as the approach using Stokes parameters, such that comparisons can be made.

Single electron

For particles with the same velocity, i.e. the same γ, the degree of linear polarisation is defined
by Rybicki and Lightman [9] and Longair [10] as

Πlin(ω) =
P⊥(ω)− P∥(ω)

P⊥(ω) + P∥(ω)
=
G(x)

F (x)
, (5.5.1)

where P⊥ and P∥ denote the perpendicular and parallel components of the power per frequency
defined in Eq. (4.1.15a) and (4.1.15b), respectively. Furthermore, F (x) and G(x) are the func-
tions defined in Eq. (4.1.12a) and (4.1.12b) for x = ω/ωc. A plot of the linear polarisation degree
using the functions F (x) and G(x) is shown in Fig. 5.5. We see that the linear polarisation
degree increases from a value of 0.50, and approaches 1 for large values of x.

We can also use the Stokes parameters in Eq. (5.3.14) to calculate the linear polarisation degree.
This gives the expression

Πlin =
ρx,Q
ρx,I

=
θ2γK

2
2/3

(
1
2θ

3
γx
)
− γ2

(
θ2 +

θθ2γ
γ2 cotα+

θ4γ
4γ4 cot

2 α
)
K2

1/3

(
1
2θ

3
γx
)

θ2γK
2
2/3

(
1
2θ

3
γx
)
+ γ2

(
θ2 +

θθ2γ
γ2 cotα+

θ4γ
4γ4 cot2 α

)
K2

1/3

(
1
2θ

3
γx
) . (5.5.2)

In the lower order approximation, which we recall is the order of approximation made in Sec.
4.1,

Πlin =
θ2γK

2
2/3

(
1
2θ

3
γx
)
− γ2θ2K2

1/3

(
1
2θ

3
γx
)

θ2γK
2
2/3

(
1
2θ

3
γx
)
+ γ2θ2K2

1/3

(
1
2θ

3
γx
) . (5.5.3)

This is the same as Eq. (5.5.1), except that we have not integrated over the solid angle dΩ as we
did with the intensity spectrum in Sec. 4.1. Hence Eq. (5.5.3) still includes the θ dependence.
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Figure 5.5: Linear polarisation degree as function of x = ω/ωc for a single electron
using the functions F (x) and G(x).

We plot the degree of linear polarisation as function of the magnetic field strength B, fixing the
values of v = 0.9999c and θ = 1/(2γ). The result is seen in Fig. 5.6 for different frequencies
ν and for pitch angle α of 90◦ (dashed lines) and 1◦ (solid lines). We see that the linear
polarisation degree approaches 1 for stronger magnetic fields. This is consistent with the result
for the circular polarisation degree seen in Fig. 5.3. For smaller values of B, the degree of linear
polarisation decreases, while the degree of circular polarisation increases. As for the circular
polarisation degree, the dependence on the pitch angle is significant.

Power-law electron distribution

Following the procedure of [9, 10], we integrate the perpendicular and parallel power per fre-
quency, P⊥ and P∥, over the power-law distribution of electrons defined by Eq. (4.2.2). Using
Eq. (4.1.15a) and (4.1.15b), we obtain

C

∫ ∞

0
P⊥(ω)γ

−pdγ = C

√
3e3B sinα

4πmc2

∫ ∞

0
[F (x) +G(x)]γ−pdγ, (5.5.4a)

C

∫ ∞

0
P∥(ω)γ

−pdγ = C

√
3e3B sinα

4πmc2

∫ ∞

0
[F (x)−G(x)]γ−pdγ. (5.5.4b)

Inserting these two equations into the definition of the linear polarisation degree in Eq. (5.5.1)
gives

Πlin =

∫∞
0 G(x)γ−pdγ∫∞
0 F (x)γ−pdγ

. (5.5.5)

Recall from Eq. (5.2.10) that γ ∝ x−1/2 and consequently that dγ ∝ x−3/2dx. Hence, the linear
polarisation degree in terms of x becomes

Πlin =

∫∞
0 G(x)x(p−3)/2dx∫∞
0 F (x)x(p−3)/2dx

, (5.5.6)
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Figure 5.6: Degree of linear polarisation for a single electron as function of magnetic
field strength B for different frequencies ν. The pitch angle α is 90◦ for the dashed lines
and 1◦ for the solid lines. The other parameters are fixed, with velocity v = 0.9999c
and θ = 1/(2γ).

as all the other factors cancel. Using Eq. (4.2.7a) and (4.2.7b) we have that µ = (p− 3)/2 and
obtain

Πlin =
2µ(µ+ 1)

2µ+1

Γ
(µ
2 + 4

3

)
Γ
(µ
2 + 7

3

) =
p+ 1

4

Γ
(
p−3
4 + 4

3

)
Γ
(
p−3
4 + 7

3

) . (5.5.7)

Setting z = p−3
4 + 4

3 and using the recurrence relation of the gamma function from Abramovitz
and Stegun [46], Γ(z + 1) = zΓ(z), we can write

Γ
(
p−3
4 + 4

3

)
Γ
(
p−3
4 + 7

3

) =
Γ
(
p−3
4 + 4

3

)
(
p−3
4 + 4

3

)
Γ
(
p−3
4 + 4

3

) =
12

3p+ 7
. (5.5.8)

Inserting this expression into Eq. (5.5.7) and simplifying yields

Πlin =
p+ 1

p+ 7
3

. (5.5.9)

We have found a very simple expression for the linear polarisation degree in terms of only
the particle distribution index p. The polarisation degree will be minima5 at p = 0, that is
Πlin = 3/7 ≃ 0.43, and it will approach 1 for increasing p.

For the frequency integrated radiation, we have that ω ∝ x and we can write

Πlin =

∫∞
0 G(x)dx∫∞
0 F (x)dx

. (5.5.10)

Comparing this with Eq. (5.5.6), it is clear that p = 3 gives equality. Inserting this into Eq.
(5.5.9), we obtain

Πlin =
4

3 + 7
3

= 0.75. (5.5.11)

5We only consider power-law distributions with positive particle distribution index p.
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Hence, the frequency integrated linear polarisation of synchrotron radiation is 75%, which is
quite high.

We can also calculate the degree of linear polarisation by using the Stokes parameters, and
compare with the result in Eq. (5.5.9). By using Eq. (5.3.15), it is simple to find that

Πlin =
jQ
jI

=
L(p+1)/2

J(p+1)/2
=

L(p+1)/2

2/3+(p+1)/2
(p+1)/2 L(p+1)/2

=
p+1
2

2
3 + p+1

2

=
p+ 1

p+ 7
3

. (5.5.12)

Here we have also used the relation in Eq. (5.2.14a), and the result is exactly Eq. (5.5.9). For
a given particle distribution index p, the linear polarisation degree is constant for any value of
the magnetic field strength B, frequency ν and pitch angle α. From Eq. (5.4.4) we have that
Πcirc ∝ B1/2, and we saw in Fig. 5.4 that the degree of circular polarisation is very small for
weak magnetic fields. For field strengths of the order of µG, as expected from the GMF, the
degree of linear polarisation is clearly dominant.



Chapter 6

Radiative transfer

We have already seen the properties of synchrotron radiation and calculated the most important
quantities such as the emission-polarisation tensor and its Stokes parameters. However, to get
a more complete picture of the process we need to take a small step back to consider radiative
transfer, as well as diffusion.

6.1 Radiative transfer equation

When radiation passes through a medium, it can interact by absorption, emission or scattering
processes, which leads to an increase or decrease in intensity, or energy. To describe these
processes, the radiative transfer equation (RTE) [9],

dIν
ds

= −ανIν + jν , (6.1.1)

is used. Here, Iν is the (specific) intensity such that dIν/ds describes the change in intensity
for propagation over a distance ds. Furthermore, αν is the absorption coefficient and jν is the
emissivity, or emission coefficient, in units power per frequency per unit volume. Since we have
described the polarised radiation through use of the Stokes parameters, we wish to rewrite the
RTE in terms of Stokes vectors. This gives [47]

d

ds


I

Q

U

V

 =


jI

jQ

jU

jV

−


αI αQ αU αV

αQ αI ρV ρU

αU −ρV αI ρQ

αV −ρU −ρQ αI




I

Q

U

V

 , (6.1.2)

where jI , jQ, jU and jV are the emission coefficients, αI , αQ, αU and αV are the emissivities,
and ρI , ρQ, ρU and ρV are the Faraday rotation coefficients. We can define

I ≡


I

Q

U

V

 and jI ≡


jI

jQ

jU

jV

 (6.1.3)

as the Stokes vector and the emissivity vector, respectively. Expressions for the components of
jI are already given in Sec. 5.3, and in particular we have that jU = 0. This was the result of

61
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choosing basis vectors parallel and perpendicular to the magnetic field. This choice aligns the
magnetic field with the Stokes parameter U , which means that we also have αU = ρU = 0.

We found in Sec. 4.3 that electrons following a power-law distribution of energies emit far more
radiation than they absorb. The relationship scales with the frequency through P ∝ ν5/2αν .
As absorption will contribute much less than emission, we will make the assumption that αI =
αQ = αU = αV = 0 to simplify the RTE.

Furthermore, in Sec. 2.2.1 we presented the Faraday rotation measure defined by Eq. (2.2.2).
Setting a constant electron density ne(s) = 1 cm−3 and a constant magnetic field strength
B∥(s) = 3µG and integrating over a distance of 1 kpc, we obtain RM ≃ 2400 radm−2. The
rotation angle is Φ = λ2RM, and since λ ∝ ν−1, the rotation angle is very small given the
calculated RM and high frequencies ν. We will in chapter 7 use the frequency ν = 408MHz and
the electron number density ne(0) ∼ 10−5 cm−3. Assuming the number density is constant over
the distance of 1 kpc, we find that RM ≃ 0.024 and Φ ≃ 0.01 rad. As a typical value of the GMF
is B = 3µG, we would expect even smaller values of B∥(s) as the direction of the magnetic
field changes, and the RM should realistically be even smaller. We can therefore reasonably
assume that Faraday rotation contributes little to the radiative transfer, and set all the Faraday
rotation coefficients ρI = ρQ = ρU = ρV = 0.

With only the emission coefficients left to consider, the RTE simplifies significantly, and can be
written as

d

ds
I = jI . (6.1.4)

6.2 Line-of-sight integral

We will in this section use the method of calculating the line-of-sight (LoS) integral. This will
be done for the polarisation as well as the total intensity from synchrotron radiation received
at Earth.

6.2.1 Polarisation

We would like to calculate the circular and linear polarisation degree received by an observer at
Earth using the radiative transfer equation in Eq. (6.1.4). We already have the expressions for
the components of jI from Sec. 5.3. However, since the emissivity vector is calculated in the
local frame of the electron, the coefficients must be transformed to the observed polarisation
basis. This is done by rotating the emissivity vector by multiplication with the matrix [47]1

R(χ) =


1 0 0 0

0 cos 2χ − sin 2χ 0

0 sin 2χ cos 2χ 0

0 0 0 1

 . (6.2.1)

The angle χ is defined to lie between the projected magnetic field B and the polarisation basis.
The factor of 2 in the arguments of the cosine and sine functions is due to the fact that χ is
periodic in π. That is, there is no difference in polarisation for the angles χ and χ+ π. We can
now write the RTE as

d

ds
I = R(χ)j. (6.2.2)

1Dexter [47] also takes into account general relativity, which is not considered in this thesis.
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To solve Eq. (6.2.2), we consider a line-of-sight integral in the z-direction, that is taking ŝ = ẑ.
The geometry of the LoS integral is shown in Fig. 6.1, where Fig. 6.1a illustrates along which
line ŝ we wish to integrate. We choose a coordinate system with the observer situated at the
origin (x, y, z) = (0, 0, 0), and the polarisation basis consists of the unit vectors x̂ and ŷ. The
angle χ is then the angle between the magnetic field vector projected onto the xy-plane and the
x-axis, as can be seen in Fig. 6.1b.

ŝ

B

(a) Line-of-sight direction ŝ, its perpendicular
plane and an arbitrary magnetic field vector.

x

y

Bxy

Bx

By

χ

(b) Projected magnetic field vector B onto the xy-
plane, where χ is the angle between Bxy and x̂.

Figure 6.1: Geometry for the line-of-sight integral. The plane in (a) is chosen to be
the xy-plane in (b) such that ŝ = ẑ.

We now wish to calculate

I =

∫
R(χ)jdz (6.2.3)

by summing up all the contributions of the emissivity R(χ)j for N particles with z-values in the
range [0, zmax], where zmax is some maximum value of z. The contributions to the emissivity
is consequently multiplied with the step size ∆z used in the numerical integration. We recall
that the emission from ultra-relativistic electrons is mainly in the forward direction, and lies
within a cone of opening angle θ ≃ 1/γ. As the angle θ is very small, it is reasonable to assume
that an observer at Earth only receives contributions from electrons moving right towards them.
Therefore, we will assume that each particle has a velocity along −ẑ and given the magnetic
field direction, it is possible to calculate the pitch angle α at each point. It is clear that both α
and χ are constant at each point in the case of a uniform magnetic field. This means that given
a frequency ν, the contribution of R(χ)j to the Stokes vector I is constant along the LoS. The
more interesting case is when the magnetic field vector changes magnitude and direction along
the LoS, e.g. for a turbulent magnetic field.

6.2.2 Intensity

We would also like to perform a LoS integral to calculate the synchrotron intensity

Iν =
dE

dAdtdΩdν
. (6.2.4)

In this case, the geometry is much more simple as we do not need to consider the polarisation
angle or transform our coefficients into the polarisation basis. At each point along the LoS, we
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simply need to add up all the contributions to the intensity from electrons emitting towards the
observer. We will consider the (differential) number density of electrons2 with energy E,

n(z, E) =
dN

dEdV
, (6.2.5)

and assume the electrons follow a power-law distribution, that is dN/dE ∝ E−p, and that we
choose the line-of-sight ŝ = ẑ. The power-law distribution in Eq. (4.2.1) becomes

n(z, E)dE = n′0E
−pdE. (6.2.6)

Here, n′0 is the normalisation constant. By choosing a reference energy Eref, we can write the
power-law as

n(z, E) = n(z, Eref)

(
E

Eref

)−p

= n(z, Eref)

(
γ

γref

)−p

, (6.2.7)

where γref = Eref/E0 for the rest mass energy E0. We wish to consider the number density

n(z, γ) =
dN

dγdV
=

dN

dEdV

dE

dγ
= n(z, E)E0. (6.2.8)

In terms of the Lorentz factor, we therefore obtain the power-law

n(z, γ) = n(z, Eref)E0

(
γ

γref

)−p

= n(z, Eref)E0γ
p
refγ

−p = n(z, Eref)
Ep

ref

Ep−1
0

γ−p. (6.2.9)

Hence, the new normalisation constant becomes

nγ(z) ≡ n(z, Eref)
Ep

ref

Ep−1
0

= n0g(z), (6.2.10)

such that
n(z, γ)dγ = nγ(z)γ

−pdγ. (6.2.11)

Here we have assumed that n(z, Eref) = n(0, Eref)g(z), where g(z) is some scaling function
dependent on z, the distance along the line-of-sight. Therefore n0 becomes a normalisation
constant independent of this distance.

Now, the LoS integral is given by

Iν =

∫
jνdz, (6.2.12)

where jν is the emissivity at some point in space given by

jν =
dE

dV dtdΩdν
=

1

4π

∫
P (ν)n(z, γ)dγ =

1

4π
P(ν). (6.2.13)

Here, P(ν) denotes the total power per frequency per unit volume found in Eq. (4.2.9) with
C = nγ(z). As for the LoS integral in the previous section, we will assume that the particles have
velocity along −ẑ, towards the observer. This means that the angle θ is zero and consequently
the pitch angle deviation ψ is equal to the pitch angle α. Therefore, we have that the emissivity,
or power per frequency per unit volume, corresponds to jI in Eq. (5.3.15a) for ψ = α and
ϕ(ψ) = ϕ(α) = 1. Hence, we write

jν = nγ(z)
e3B

8
√
2π2mc2

(
3

2

)p/2

(sinα)(p+1)/2
(νB0

ν

)(p−1)/2
J(p+1)/2. (6.2.14)

2For simplicity, we will from now on write the electron number density as n instead of ne, dropping the
subscript.
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6.2.3 Angular resolution

When performing the LoS integral given a generated turbulent magnetic field with a (finite)
correlation length3 Lc, we need to consider the angular resolution, or angular field of view
(FOV), if we wish to compare with measurements. We therefore have to average over the FOV
at each point along the LoS. Given the angular FOV ϑ, at a distance s from the observer the
area is

A ≃ π

[
s tan

(
ϑ

2

)]2
. (6.2.15)

We assume that ϑ is small, e.g. 1◦, such that we are able to approximate the area on the sphere
of radius s as a circle in the plane perpendicular to ŝ. As can be seen from Fig. 6.2, the area A2

is larger than A1 given that its distance s2 is greater than s1. We consider that the turbulent
magnetic field consists of boxes of area L2

c , and will therefore have to average the intensity over
the number of boxes fitting within the observed area A.

A1

A2

ϑ

ŝ

s1

s2

Figure 6.2: Geometry of the field of view, including the angular FOV ϑ and the
observed areas A1 andA2 at the two distances from the observer s1 and s2, respectively.

Given the correlation length of the magnetic field Lc, we may estimate the number of points
contributing within the area A at a distance s from the observer as

N ≃
⌊
A

L2
c

⌋
. (6.2.16)

The intensity should consequently be calculated N times, and the average of these contributions
should account for the intensity at the point s along the LoS. In the case of N = 0, no averaging
is done, and only one contribution to the intensity is made.

3A regular field essentially has infinite correlation length.
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In many cases we will perform a large number of simulations and average over the results to
obtain mean values of intensity. If the number of simulations is large enough, it is expected
that the process of averaging over the FOV is redundant, as the fluctuations around the mean
are already removed. We therefore keep in mind that considering the angular resolution only
amounts to a longer computation time in many cases. Similarly, at very large distances s, the
number of points contributing within the area A may be very large. To avoid unnecessary extra
computation time, one can set an upper bound on N as well.

6.3 Diffusion

We have seen in Sec. 2.4 that Kolmogorov’s theory is based on a slope γ = 5/3, however
other energy spectra may be considered. An example is the Iroshnikov–Kraichnan theory where
γ = 3/2 [13]. In either case, the parameter γ may be related to the diffusion coefficient. In
addition, the diffusion coefficient can also be used in estimating the electron number density.

6.3.1 Random walk

We will consider the case of a pure isotropic turbulent field and derive the diffusion coefficient
accordingly. For this, we will use the method of a random walk in three dimensions. The
random walk describes the random path of particles interacting and diffusing within the ISM.
One assumes that an electron takes N steps in a random direction, where each step has length
L, known as the mean free path. After N steps, the particle will have a net vector displacement

d =

N∑
i=1

Li. (6.3.1)

We wish to find the norm of this displacement, and therefore calculate

d2 = d · d =

N∑
i=1

N∑
j=1

Li · Lj . (6.3.2)

As each of the steps Li has length equal to the mean free path L, we get that

d2 = NL2 + L2
N∑
i=1

N∑
j=1
j ̸=i

cos θij , (6.3.3)

where θij is the angle between Li and Lj . Since the steps are chosen at random, the an-
gles are isotropically distributed and the sum of the cosine terms should approach zero. The
displacement can therefore be estimated as

d =
√
NL. (6.3.4)

This displacement is a RMS distance, while the expected value of the distance from the origin
after N steps is a different quantity. This value is smaller than the RMS distance and may be
expressed, in one dimension, as [48]

⟨|d|⟩ = L

√
2N

π
. (6.3.5)

While the RMS distance d is related to the SD with zero mean, the expected value of the
distance ⟨|d|⟩ is related to the mean absolute deviation (MAD).
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We now consider the diffusion coefficient. The diffusion equation combines Fick’s law and the
continuity equation [49],

j = −D∇n, (6.3.6)

∇ · j = −∂n
∂t
, (6.3.7)

respectively. Here, j is the current, n is the number density and D is the diffusion coefficient.
For an isotropic medium, this gives the diffusion equation

∂n

∂t
= ∇ · (D∇n) . (6.3.8)

This partial differential equation (PDE) is analogous to the heat equation, and its fundamental
solution may be found as [50]

n(r, t) =
1

(4πDt)m/2
exp

(
− r2

4Dt

)
, (6.3.9)

given that n(r, 0) = δ(r). The variable m is the number of dimensions, in our case three. The
solution is therefore a Gaussian function where the mean distance travelled by the particle is
d =

√
2Dt, that is the standard deviation usually denoted by σ in statistics. As the particle has

travelled a total distance of NL according to our random walk model, we estimate the velocity
to be v = NL/t. Equating Eq. (6.3.4) with the mean distance from the fundamental solution
of the diffusion equation, we get that

D ∝ NL2

t
= vL. (6.3.10)

By more precise analyses, the diffusion coefficient is estimated to be D = vL/3 [51]. The key
point, however, is that the diffusion coefficient depends on the mean free path L of the particle.

For the propagation of CRs, the diffusion coefficient is dependent on the energy through [25]

D(E) ∝ Eβ, (6.3.11)

for some spectral index β. On the other hand, the diffusion coefficient scales with the Larmor
radius RL as

D(E) ∝ R2−γ
L , (6.3.12)

and as the Larmor radius is proportional to E/B, we get the relationship β = 2− γ. Hence, for
Kolmogorov turbulence, the diffusion coefficient scales with E1/3 and B−1/3, and for Iroshnikov–
Kraichnan turbulence it scales with E1/2 and B−1/2.

6.3.2 Stationary case

Let us now consider the stationary case of the diffusion equation in Eq. (6.3.8) in one dimension.
The stationary condition means that the time derivative on the LHS is zero. We have that

d

dz

(
D(z)

dn

dz

)
= 0. (6.3.13)

Equivalently, we may write

D(z)
dn

dz
= const. ≡ −j0, (6.3.14)

where j0 is some constant. We are left with a much simpler ordinary differential equation (ODE)
than that of Eq. (6.3.8), and the solution can be expressed as

n(z) = n0 − j0

∫ z

0

dz′

D(z′)
, (6.3.15)
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given the condition that n0 ≡ n(0). Assuming that the diffusion coefficient changes with distance
z, we cannot simplify the equation further without considering the expression for D. We expect
the number density n to decrease for increasing z, as we assume the number of particles should
be larger towards the centre of the Galaxy. We may therefore take the diffusion coefficient,

D(z) = D0 exp

(
z

z0

)
, (6.3.16)

as an example, where D0 ≡ D(0) and z0 is some constant parameter. It is a simple calculation
to show that

n(z) = n0 +
j0z0
D0

[
exp

(
− z

z0

)
− 1

]
. (6.3.17)

Depending on the physical constants, it is important to note that this expression can be negative.
This happens for some values of z when j0z0/D0n0 > 1. As a negative number density is
physically impossible, we must impose a cut-off at some zc where n(zc) = nc and set n(z) = nc
for all z > zc. Here nc represents some constant “background” number density, which should
be small, but could be non-zero. For the case when j0z0/D0n0 < 1, the number density will
decrease and approach a constant positive value.



Chapter 7

Numerical simulations and results

In this chapter we will present our numerical simulations and their results. The focus will lie on
testing the numerical models from Sec. 2.5 in terms of intensity and polarisation of synchrotron
radiation. In addition, we will consider an alternative simplified magnetic field model.

In most of the numerical simulations we use the frequency ν = 408MHz, due to the physical
data we will use for comparisons. We note that for this frequency we are well within the region
where synchrotron radiation dominates the Galactic emission spectrum, as seen in Fig. 1.1. We
therefore do not have to take into account processes such as free-free and dust emission.

7.1 Pure turbulent fields

The pure turbulent fields are generated using the ELMAG program. However, this program is
dependent on several input parameters, and it is therefore necessary to investigate the effects
of varying these.

7.1.1 Number of turbulent modes

The number of turbulent modes nk should be looked into to ensure that the turbulence gener-
ated by ELMAG is sufficiently irregular. We know that the polarisation degree should decrease
for increasing distances, as the turbulence ensures additions in random polarisation directions
according to the pitch angle α. In comparison, the polarisation degree for a uniform field stays
constant as the pitch angle does not change over distance. As a simplified view on the ELMAG

turbulent field model, we can assume that it generates boxes of side lengths equal to the corre-
lation length Lc where the magnetic field is uniform. In each box, the direction of the uniform
field should be random. By performing a LoS integral over a number of N boxes, we therefore
have a case of a random walk as discussed in Sec. 6.3.1, and the polarisation degree should
approximately decrease with length z = NLc as 1/

√
N .

The number of turbulent modes determines the “degree” of turbulence, and we may expect that
for fewer turbulent modes, the polarisation degree will saturate and stabilise at higher values.
In Fig. 7.1 we see this behaviour. Using the method from Sec. 6.2.1, we have simulated 500
different turbulent fields using ELMAG and performed a LoS integral for polarisation, for the
number of turbulent modes nk = 10, 100, 1000. The correlation length is Lc = 20pc, the RMS
strength of the magnetic field is Brms = 3µG, the particle distribution index is p = 2.4 and
the frequency is ν = 50MHz. The figure shows the mean polarisation degree as a function of
distance z and the expected behaviour of 1/

√
N is plotted in dashed lines. The stabilisation in

polarisation degree happens at values of Π ≈ 0.32, 0.10, 0.03 for nk = 10, 100, 1000, respectively.
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Figure 7.1: Mean degree of polarisation as function of distance z for three different
numbers of turbulent modes nk = 10, 100, 1000 as (a) a normal plot and (b) a log-log
plot. The parameters used are Lc = 20pc, Brms = 3µG, p = 2.4 and ν = 50MHz.
The function 1/

√
N is plotted in dashed lines over distances z = NLc.

We see from Fig. 7.1 that a LoS integral over a distance of more than approximately 6 kpc
requires a larger amount of turbulent modes than each of the cases considered to ensure the
randomness of the field. However, increasing nk leads to a significant increase of computation
time and one should therefore be careful in choosing the necessary number of turbulent modes
for each specific simulation.

7.1.2 Normalisation

We would like to consider the synchrotron intensity using the turbulent magnetic field model of
ELMAG. Unlike the treatment of polarisation, we are now required to consider the normalisation
of our relevant expressions.

In chapter 6 we discussed the LoS integral over intensities. The last step missing is finding the
constant n0 and the function g(z) to obtain an expression for the normalisation nγ(z) ≡ n0g(z)
in Eq. (6.2.14). For this we will use data from the Alpha Magnetic Spectrometer (AMS),
a particle detector on the International Space Station (ISS) [52]. The AMS has since 2011
provided data on CRs in the range of MeV to TeV. We use the AMS-02 data for the combined
electron and positron spectrum measured [53]. The energy spectrum is seen in Fig. 7.2a, in
units of eV cm−1 s−1 sr−1. The dashed lines indicate the energy of an electron given the magnetic
field strengths 10µG and 1µG. Here we have used that most radiation is emitted at the critical
frequency, in which the average is given by

⟨νc⟩ =
⟨ωc⟩
2π

=
3eBγ2

4πmc
⟨sinα⟩. (7.1.1)

We have that ⟨sinα⟩ = π/4 by averaging over the solid angle dΩ = sinαdαdφ. Furthermore,
we use that ⟨νc⟩ = 408MHz and the energy is then obtained through E = γmc2. In Fig. 7.2b,
we show the number density spectrum in units of eV−1 cm−3, where the conversion from the
energy spectrum is done by

n(E) =
4π

c
I(E). (7.1.2)
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For high-energy electrons and positrons, we see that the number density follows an approximate
power-law,

n(E)dE = E−pdE, (7.1.3)

as we have assumed throughout the thesis in the calculation of emissivities. By performing a
fit, we obtain a particle distribution index and a normalisation constant of

p = 2.98 and n0 ≃ 2.74× 10−5 cm−3, (7.1.4)

respectively. This very simple analysis of the CR electron and positron spectrum serves as a
starting point for investigating the possible parameters defining our problem.
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Figure 7.2: The electron and positron spectrum measured by AMS-02 for (a) energy
and (b) number density. In the case of number density, a power-law fit has been made.
The dashed lines indicate the energy of an electron with an average critical frequency
⟨νc⟩ = 408MHz in magnetic fields of strengths 10µG and 1µG.

Note that for low-energy electrons and positrons, the shape of the spectrum bends and no longer
follows the power-law. This is likely due to solar modulation effects on the CRs. As CRs enter
the heliosphere, they interact with the turbulent solar wind including its magnetic field, which
leads to variations in energy and intensity [54]. The spectrum for low-energy electrons and
positrons therefore appears different than that of high-energy electrons and positrons. In Fig.
7.3 we show the computed electron local interstellar spectra (LIS) along with the modulated
electron spectrum at Earth from Bisschoff et al. [55]. The V1 electron observations1 from
[56] are done at 122AU, while the PAMELA observations2 from [57] are done at 1AU. For
low-energy electrons, we therefore expect that the spectrum bends less than that in Fig. 7.2.
However, a power-law fit should yield a somewhat lower particle distribution index p in this
region, as well as a lower electron density normalisation constant n0.

It now remains to determine the scaling function g(z). In addition, we also wish to determine
how the magnetic field strength scales with the position. That means finding f(z) such that
B = f(z)Brms, thus redefining the function in Eq. (2.5.4). We will use the method of [58],
which uses the numerical model DRAGON [35] to compute CR propagation, in order to model the

1Voyager 1 (V1) is a space probe which has been observing the LIS from Galactic CRs since 2012.
2This electron spectrum was measured by the Payload for Antimatter Matter Exploration and Light-nuclei

Astrophysics (PAMELA) from 2006 to 2009, and fitted with a solar modulation model.
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Figure 7.3: Computed electron LIS and modulated electron spectrum at Earth.
From Bisschoff et al. [55].

e± spectra. It is there shown that the turbulent component of the GMF dominates over the
regular component for the desired setup. Hence, we consider only the turbulent component of
the GMF in this section as well. The model also assumes a diffusive halo, and we define its
effective scale height zt, such that the diffusion coefficient scales as

D(z)−1 ∝ exp

(
−|z|
zt

)
. (7.1.5)

The values of zt in kpc considered by [58] are {1, 2, 4, 8, 16} and we will proceed with the
same values. Furthermore, from the same article, the magnetic field strength B of the random
component scales with D(z)−1. However, from Sec. 6.3, we know that this implies turbulence
with an energy spectrum with γ = 1, i.e. not Kolmogorov turbulence. Upon using the ELMAG

program, this must therefore be taken into consideration as γ is an input parameter. We can
now define our magnetic field scaling function as

f(z) = exp

(
−|z|
zt

)
. (7.1.6)

As for the scaling of the number density of electrons, we consider the vertical profile with

g(z) = exp

(
−a |z|

zt

)
, (7.1.7)

where we set the constant a = 2 in our simulations. This profile can be seen in Fig. 7.4, which
corresponds to an approximation of the vertical profile in the article by [58], that is the bottom
panel of their figure 5.

Furthermore, [58] provides a normalisation for the RMS magnetic field strength in terms of the
scale height. For Brms in µG and zt in kpc, we use that

Brms =

√
148.06

zt
+ 19.12. (7.1.8)

The set of scale heights considered along with their corresponding approximate values of Brms

are given in Tab. 7.1. For smaller scale heights, the intensity observed at Earth should decrease



7.1. PURE TURBULENT FIELDS 73

30 20 10 0 10 20 30
z [kpc]

0.0

0.2

0.4

0.6

0.8

1.0

g(
z)

zt [kpc]
1
2
4
8
16

Figure 7.4: Scaling function g(z) for the electron number density in terms of the
vertical distance z.

as we get less contribution for larger distance z. However, as is clear from the normalisation of
Brms, the magnetic field strength increases in this case, which should assure that the intensity
also increases due to a larger contribution of intensity at each point along z.

Table 7.1: Approximate normalisation values for the RMS magnetic field strength
Brms given the scale height zt.

Scale height
zt [kpc]

Magnetic field strength
Brms [µG]

1 12.93

2 9.65

4 7.49

8 6.13

16 5.33

7.1.3 Intensity latitude profiles

With the normalisation from the previous section, we now have all the necessary parameters to
perform the LoS integral over intensities. We will look at the latitude profile of the synchrotron
emission, and compare with figure 7 of [58]. We consider the latitude to be 0◦ in the centre of
the disk of the Galaxy, 90◦ in the direction ẑ and −90◦ in the direction −ẑ. Our intention is to
calculate the intensity received at Earth for different latitudes, that is different line-of-sights.
It is therefore important to distinguish the z-value in the scaling functions f(z) and g(z) to
the s-value of the LoS. It is clear the intensity along the LoS where z = 0 will keep increasing
with distance, as there is no scaling into the Galactic disk. The result of the LoS integral in
the central region, around latitude 0◦, is not accurate. As in [58], we will therefore exclude the
region of latitudes [−10◦, 10◦]. The result is given in Fig. 7.5a for the different values of the
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scale height zt. The frequency is chosen as ν = 408MHz and the integral is performed over a
distance of 50 kpc. The plot does not show the intensity Iν , but T × ν2.5 in units of KMHz2.5,
however we will still call the plots “intensity” latitude profiles in the following. The conversion
to temperature is done using the Rayleigh-Jeans law,

T =
Iνc

2

2ν2kB
, (7.1.9)

where kB is Boltzmann’s constant and c is the light speed as usual. The number of turbulent
modes is nk = 100, and the correlation length Lc is chosen to be 2×10−3 pc, which is very small.
We note however that smaller correlation lengths only ensure the smoothness of the lines, it
will not change the overall tendency.

The result in Fig. 7.5 also shows the radio data with uncertainties taken from figure 7 of [58].
These data are derived from [59] which provides a global sky model of the diffuse Galactic radio
emission. At 408MHz, this data is in turn derived from the Haslam map [60]. Comparing Fig.
7.5a with figure 7 of [58], we see that our result resembles theirs, but our temperature, and
hence intensity, is smaller by approximately one order of magnitude. The overall shape of the
latitude profiles correlate well, however there is a wider spread in intensity over scale heights in
our results. The differences could be due to the different models used in [58] and this thesis, but
the choice in parameters and normalisation should be the biggest uncertainty. In particular,
the intensity is proportional to the normalisation constant n0, and it is clear that increasing
this parameter will shift the latitude profiles vertically in the plot.

Choosing a power-law with a slightly less steep slope of p = 2.8 and the same number density
normalisation constant as before gives the result of Fig. 7.5b. The plot demonstrates the
sensitivity to the parameter p, as the intensity is now in a range closer to that of the results
in [58] as well as the radio data. When performing the normalisation on the AMS-02 data, we
know that our fit is not accurate for the low-energy electrons and positrons around 109−1010 eV.
To assume the spectrum is more accurately modelled by a power-law with a less steep slope as
indicated by Fig. 7.3 is therefore reasonable.

7.2 Regular fields

We will now consider the regular fields from the UF23 model described in Sec. 2.5.2, and look
at both the polarisation degree as well as intensity. In all the simulations we assume that the
Earth is located at the coordinates x = −8 kpc and y = z = 0.

7.2.1 Polarisation

The regular fields from UF23 do not contain any turbulent field, and we expect that this leads
to high polarisation degrees. This is seen in Fig. 7.6. As the circular polarisation degree
contributes little to the total degree of polarisation, we consider here only the degree of linear
polarisation. In Fig. 7.6a, the particle distribution index is p = 2.98 and in Fig. 7.6b it is
p = 2.8. The plots show the contribution to the linear polarisation degree considering LoS
integrals over lengths z on the x-axis. The magnetic field is zero beyond approximately 30 kpc
in the UF23 models, and hence the polarisation degree stays constant for any distance larger
than this. We see that the polarisation degree decreases slightly with the particle distribution
index p, however the linear polarisation is very high.

7.2.2 Intensity latitude profiles

Using the same normalisation constant n0 = 2.74× 10−5 cm−3 as before, we set the value of the
electron number density constant along z, that is n(z) = n0. Using the models of UF23, we get
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Figure 7.5: Latitude profiles of synchrotron emission for different scale heights zt,
with normalisation taken from the AMS-02 fit, with (a) particle distribution index
p = 2.98 and (b) a reduced particle distribution index of p = 2.8. The electron
number density normalisation constant is n0 = 2.74× 10−5 cm−3 and the frequency is
ν = 408MHz.
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Figure 7.6: Degree of linear polarisation for the eight different regular magnetic field
models of UF23 for (a) particle distribution index p = 2.98 and (b) a reduced particle
distribution index of p = 2.7. The frequency is ν = 408MHz.

intensity latitude profiles as shown in Fig. 7.7 for the particle distribution indices p = 2.98 and
p = 2.8. Compared with the radio data, we see that the intensity in both cases is much too
low using only the regular fields. It is also clear that a non-constant and decreasing electron
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number density will further decrease the intensity, but we note that decreasing p or increasing
n0 will lead to an increase in the intensity.
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Figure 7.7: Latitude profiles of synchrotron emission for the eight different regular
field models of UF23 for (a) particle distribution index p = 2.98 and (b) a reduced
particle distribution index of p = 2.7. The electron number density normalisation
constant is n0 = 2.74× 10−5 cm−3 and the frequency is ν = 408MHz.

7.3 Combination of ELMAG and UF23

The combination of the models from ELMAG and UF23 was described in Sec. 2.5.3. We will now
look at the polarisation degree and latitude profiles of the resulting fields.

7.3.1 Polarisation

For the combination the turbulent fields generated by ELMAG and regular fields generated by
the eight models of UF23, we find the mean degree of linear polarisation for different values
of β and p using the LoS integral along ẑ. The results are summarised in Tab. 7.2 for a
selection of parameters. The polarisation values are calculated by taking the average of the
linear polarisation degree for N = 104 independent runs for each of the eight models. As usual,
the circular polarisation degree is negligible.

As an example, the base and expX models are taken with β = 0.5 and p = 2.8, giving the plots
for the linear polarisation degrees in Fig. 7.8. Here, we have included the confidence intervals
1σ and 2σ, as each realisation of the turbulent field gives different magnetic fields. That is,
for the N runs, about 68% lies within the darker shaded region and 95% lies within the lighter
shaded region. In all the simulations, we have chosen the frequency ν = 408MHz, the number of
turbulent modes nk = 1000 and the correlation length Lc = 20pc of the turbulent component.

Recall that we defined the parameter β to be the fraction of turbulent to regular magnetic field
strength, and expect a realistic model of the GMF to have β in the range 0 to a value not much
larger than 1 to preserve the large-scale regular field structure. However, the results show much
too high polarisation degrees in any of the cases in Tab. 7.2. It is clear that increasing β or
decreasing the particle distribution index p implies a decrease in Πlin, but no combination of
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Table 7.2: Mean degree of linear polarisation for the combination of ELMAG and the
eight models of UF23 for different values of β and p. All simulations have frequency
ν = 408MHz, number of turbulent modes nk = 1000 and correlation length Lc = 20pc.

Parameters Degree of linear polarisation

β p base neCL expX spur cre10 synCG twistX nebCor

0.5 2 0.52 0.55 0.54 0.56 0.45 0.56 0.49 0.49

0.5 2.4 0.56 0.58 0.56 0.59 0.51 0.59 0.55 0.54

0.5 2.8 0.59 0.6 0.59 0.61 0.55 0.61 0.58 0.58

1 2 0.3 0.32 0.31 0.34 0.24 0.35 0.28 0.27

1 2.4 0.33 0.35 0.34 0.37 0.29 0.37 0.33 0.32

1 2.8 0.37 0.38 0.36 0.39 0.33 0.39 0.36 0.35

1.5 2 0.18 0.19 0.18 0.21 0.14 0.21 0.17 0.16

1.5 2.4 0.2 0.22 0.21 0.23 0.18 0.23 0.20 0.19

1.5 2.8 0.23 0.24 0.23 0.24 0.2 0.25 0.23 0.22

10 2.0 0.1 0.09 0.09 0.09 0.09 0.09 0.1 0.1

10 2.4 0.11 0.11 0.1 0.1 0.11 0.11 0.11 0.11

10 2.8 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

100 2 0.1 0.1 0.1 0.09 0.1 0.1 0.1 0.1

100 2.4 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

100 2.8 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

variables in the realistic range produce average polarisation degrees lower than 0.1. It should
be kept in mind that a larger turbulent component will increase the uncertainties and widen
the 1σ and 2σ intervals.

We also included large values of β, specifically β = 10 and β = 100, in Tab. 7.2. Very high
values of β means the magnetic field strength of the turbulent component is very large, and
the regular field may be neglected. However, since we have a set correlation length and a field
that is zero beyond approximately 30 kpc, we still do not expect that the polarisation degree
approaches zero. We see that the mean polarisation degree stabilises at values around 0.1 for
the given parameters. Therefore, in addition to being unrealistic, larger values of β does not
necessarily solve the issue with the low measured polarisation degrees.

7.3.2 Intensity latitude profiles

Seeing that the polarisation degree is too high for the combination of ELMAG and UF23, we know
that it not sufficient as a description of the GMF. Nevertheless, we still look into the intensity
latitude profiles.

The addition of a turbulent field component to the regular field, should amount to an addition
of intensity along the LoS. This is because we are adding the term s(x)BELMAG(x) in Eq. (2.5.8),
increasing the total field strength. Taking the average of 100 simulations for the combined field
with the base and expX models for different values of β gives the results in Fig. 7.9. We have
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Figure 7.8: Mean degree of linear polarisation for the combination of ELMAG and the
regular magnetic field models (a) base and (b) expX of UF23 with confidence intervals
1σ and 2σ, given β = 0.5 and p = 2.8. The frequency, number of turbulent modes and
correlation length is ν = 408MHz, nk = 1000 and Lc = 20pc, respectively.

used the particle distribution index p = 2.8, the frequency ν = 408MHz and the correlation
length Lc = 20pc. For β = 0, we get the same regular field latitude profiles as in Fig. 7.7,
while increasing the parameter β increases the intensity. The shape of the profiles do not change
significantly as we are taking the average of many simulations. For a single simulation, we might
get more skewed profiles depending on the behaviour of the turbulent field.

For the given parameters, we need very high values of β to get intensity profiles in the region
of the physical data. Hence, high values of β are required both for realistic polarisation degrees
and intensity profiles.

7.4 Simplified total field model

It is clear from the previous section that by combining the turbulent magnetic field model of
ELMAG and the regular magnetic field models of UF23, we were not able to produce satisfactory
fields for the polarisation of synchrotron radiation. We intend to investigate a possible simplified
magnetic field model to see for which geometry and set of parameters we can reproduce the
expected intensity latitude profiles and low polarisation degrees.

From the discussion of the different components of the GMF in Sec. 2.1, we will assume the
Galaxy is divided into three regions; the disk, halo and corona. The magnetic field in the disk
and corona will be assumed to be random, where the strength should be stronger in the disk. In
the halo we will assume a coherent field that is near uniform except for some small fluctuations.

As a starting point, we will consider the setup defined by Tab. 7.3. For each component,
the size in the z-direction is denoted by l such that the total size of the Galaxy becomes
ltot = ldisk + lhalo + lcorona. Each component has a different correlation length Lc, where the
halo field correlation length is the same as the halo size lhalo. The scale heights for both the
magnetic field strength and the electron number density are also included in the table. In the
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Figure 7.9: Latitude profiles of synchrotron emission for the combination of ELMAG
and the (a) base and (b) expX model of UF23 for different values of β. The particle
distribution index is p = 2.8, the frequency is ν = 408MHz, the number of turbulent
modes nk = 1000 and the correlation length is Lc = 20pc.

disk we assume that the magnetic field is constant with B0 ≡ 4µG. The field then decreases
outwards once z > ldisk, with a minimum value of Bmin ≡ 0.5µG. That is, once the magnetic
field reaches this value for some z∗, we keep it constant for z > z∗. We assume that the electron
number density decreases with a constant scale height zt,n throughout the entire Galaxy, with
a minimum value of nmin = n(zc)/n0 = 0.1.

Table 7.3: Setup for the simplified total magnetic field model, including the size,
correlation length and scale heights of the different components of the GMF.

Component l [kpc] Lc [kpc] zt,B [kpc] zt,n [kpc]

Disk 0.2 5× 10−3 ∞ 5

Halo 10 10 5/3 5

Corona 250 50× 10−3 5/3 5

We recall Eq. (6.3.17), and using the scale height z0 = zt,n and normalising the equation gives

n(z)

n0
= 1 +

j0zt,n
D0n0

[
exp

(
− z

zt,n

)
− 1

]
. (7.4.1)

We approximate the constant
j0zt,n
D0n0

≃ 2.0. (7.4.2)

Upon changing e.g. the electron number density n0, we will still assume that the constant in
Eq. (7.4.2) stays the same, essentially modifying the other parameters accordingly. This is to
assure a somewhat realistic electron number density profile that decreases fast outwards from
the disk and stays constant at a minimum value once this is reached. The scale height zt,n is
still an important parameter, determining the rate of the decrease.
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Obtaining Eq. (6.3.17), we made the assumption that the diffusion coefficient D scales with
exp(z/zt,n), and we know from Sec. 6.3.1 that B ∝ D−1/3 for Kolmogorov turbulence. Although
we will generate uniform random magnetic field directions, we will still use this relationship,
assuming that the turbulence follows a power-law with γ = 5/3. Therefore, we have that the
magnetic field scale height must be zt,B = zt,n/3.

To generate an isotropic unit vector for the magnetic field in the disk and corona, one chooses
the azimuthal angle uniformly on [0, 2π] and the cosine of the polar angle cosϑ uniformly on
[−1, 1]. Then the magnetic field direction is generated by

B

B
=


sinϑ cosϕ

sinϑ sinϕ

cosϑ

 . (7.4.3)

At each step in the halo, which we have assumed to be a regular field, we will take the same
angles ϕ and ϑ as the previous step, but introduce some small fluctuations. By denoting the
step by k, we choose

ϕk+1 = ϕk +
π

6
u, (7.4.4a)

ϑk+1 = ϑk +
π

12
v, (7.4.4b)

where u and v are random numbers uniformly distributed on [−1, 1]. The difference in the
factors π/6 and π/12 is chosen due to the fact that ϕ ∈ [0, 2π] while ϑ ∈ [0, π].

Upon performing the LoS integral, we will take the step size Lc in the turbulent disk and corona,
while in the halo we will choose Lc/10. This is because the regular field essentially has infinite
correlation length. As we have defined lhalo = Lc,halo, we instead take 10 steps within this
correlation length to make sure the small fluctuations are included.

In the following, we will consider both polarisation and intensity, as well as Faraday RM.
We should keep in mind that over large distances, regular fields should contribute to both
intensity and polarisation, while pure turbulent random fields should only contribute to the
intensity. As discussed in Sec. 7.1.1, this is because the random magnetic field vectors implies
additions in random polarisation directions, and the polarisation degree should decrease as
1/

√
N for N = z/Lc. This means that over large enough distances, the regular fields should be

dominant component that determines the polarisation degree measured. However, we might get
contributions from the turbulent fields in the disk and corona in the case that ldisk and lcorona
are not large enough, given the magnetic field strength and electron number density, or that
the scale heights are too small. To obtain low polarisation degrees, we therefore expect that the
regular field cannot be too large. In addition, we need to have a combination of the components
and parameters that also fits the total intensity. The existence of both a regular and turbulent
component of the GMF is therefore expected.

7.4.1 Polarisation

Performing 104 independent simulations of the simplified total field model with the initial setup
gives the density of polarisation in Fig. 7.10 for three selected particle distribution indices p.
The average polarisation is approximately Π = 0.19, 0.17, 0.15 for p = 3, 2.8, 2.6, respectively.
For e.g. p = 2.6, there is 0% chance for any polarisation greater than 0.23.

For the case of p = 2.6, Fig. 7.11 shows the degree of polarisation as function of distance for the
whole Galaxy, including the disk, halo and corona, as well as for the region around the division
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Figure 7.10: Density of polarisation for the simplified total field model for 104

independent simulations, for different particle distribution indices. The frequency is
ν = 408MHz.

of the disk and halo. The dashed lines indicate the division of the components. At z = ltot,
the mean degree of polarisation is approximately 0.15, as we also found earlier this section.
The confidence intervals are greater below the mean, which corresponds to the results from Fig.
7.10. At z = ltot there is no polarisation greater than 0.23 but obtaining a polarisation below
the mean, in the range [0, 0.15], is non-zero.

We see the large change in polarisation going from the disk to the halo in Fig. 7.11b. In the disk,
the turbulent field gives a decreasing polarisation degree as the magnetic field directions are
chosen at random. In the halo, the magnetic field direction is coherent, with small fluctuations.
The intensity in almost equal directions are added up, so the decrease is not very fast in this
region as the polarisation directions do not cancel each other as effectively. The large “jump”
in polarisation degree in the division of the disk and halo is due to their large difference in
correlation length Lc. Since the step size in the LoS integral is chosen to be Lc,disk = 0.005 kpc
in the disk and Lc,halo/10 = 1 kpc in the halo, the contribution from the halo will dominate. If
we had chosen a smaller step size, the change in polarisation from the disk to the halo should
be more smooth.

7.4.2 Relative intensity

From the setup in Tab. 7.3, we have defined the disk to be very thin compared to the halo and
corona. However the magnetic field is much stronger and the electron number density much
higher in the disk. We wish to investigate the contribution to intensity in the different regions.
We know from the polarisation in Fig. 7.11b that there is a significant jump in polarisation from
the disk to halo. In Fig. 7.12 we have plotted the relative intensity as function of distance z for
some particle distribution indices p. The dashed lines indicate the division of the components of
the disk, halo and corona. The plot is made by averaging over the intensity from 104 independent
simulations, and normalising.

It is clear that around 20% of the intensity is due to the disk field, around 20− 30% is due to
the halo field and the rest is due to the corona field. From our parameters we have that the
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Figure 7.11: Mean degree of polarisation for the simplified total field model for
(a) the entire Galaxy and (b) the region around the division of the disk and halo.
Confidence intervals 1σ and 2σ are included, and the dashed lines indicate the division
of the components of the Galaxy; the disk, halo and corona. The particle distribution
index is p = 2.5 and the frequency is ν = 408MHz.
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Figure 7.12: Relative intensity for the simplified total field model for (a) the entire
Galaxy and (b) the region around the division of the disk and halo, for different particle
distribution indices p. The dashed lines indicate the division of the components of the
Galaxy; the disk, halo and corona. The frequency is ν = 408MHz.

disk field strength is B0 = 4µG. The field then decreases in the halo and corona through

B = B0 exp

(
−z − ldisk

zt,n/3

)
, (7.4.5)
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for zt,n = 5kpc. The magnetic field strength reaches its minimum value Bmin = 0.5µG at
z∗ ≃ 3.7 kpc, and stays constant at Bmin for all z > z∗. From Eq. (7.4.1), the normalised
electron number density reaches its minimum value nmin = 0.1 at zc ≃ 3 kpc and stays constant
at nmin for all z > zc. This means that at distances z > z∗ > zc, both the magnetic field
strength and the electron number density is constant. This leads to the linear increase of the
average intensity in the halo and corona in Fig. 7.12a.

7.4.3 Faraday rotation and energy losses

As our model is very simple, we should look into whether or not the model is reasonable with
respect to the Faraday RM and the energy loss of ultra-relativistic electrons.

The Faraday RM was defined in Eq. (2.2.2), and performing 105 simulations of the RM for
the initial setup in Tab. 7.3 with n0 = 2.74 × 10−5 cm−3, gives RMs fairly uniform in the
approximate range [−0.13, 0.13] radm−2. As an example, three arbitrary initialisations of the
magnetic field gives the relative RMs in Fig. 7.13. As to be expected, most of the contribution
to the RM comes from the halo where the field is regular. In the turbulent disk and corona, the
contributions to the RM from positive and negative values of B∥ along the LoS should cancel
each other out. The argument for the large change in RM from the disk to the halo is the same
as that for the polarisation in Fig. 7.11. That is, the step size in the halo is much larger than
that in the disk.
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Figure 7.13: Relative Faraday RM for the simplified total field model for (a) the en-
tire Galaxy and (b) the division of the disk and halo, for three arbitrary initialisations
of the magnetic field. The dashed lines indicate the division of the components of the
Galaxy; the disk, halo and corona.

From Eq. (2.2.1), the extrema RM = ±0.13 radm−2 give rotation angles Φ ≃ ±0.07 rad. That
is a maximum 4◦ rotation. This rotation is small enough to assume that we may neglect Faraday
rotation effects on our results. From [61] we have that the excess in residual rotation measure
(RRM)3 from nearby galaxies at low frequencies is |RRM| ≃ 3.7 radm−2 with uncertainty up
to ±1.3 radm−2. This is much higher than our maximum RM, indicating that the model does
not produce too high RMs for our Galaxy compared to external galaxies.

3The RRM is the RM where the Galactic component has been removed, that is RRM = RM−GRM, where
GRM is the Galactic rotation measure. This is the only way to study the RM from extragalactic sources.
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Another consideration to make is the energy loss of the ultra-relativistic electrons. The total
power emitted by a single particle is given by Eq. (3.2.17). For β ≃ 1, that is

P = −dE

dt
=

(
2

3

)2

r20cγ
2B2. (7.4.6)

We solve this ODE by integrating over the energy E = γmc2 from E0 to E, and over the time
t from t0 to t, assuming that the energy at time t0 and t is E0 and E, respectively. Hence,

∆t ≡ t− t0 =

(
3

2

)2 (mc2)2

r20cB
2

(
1

E
− 1

E0

)
. (7.4.7)

This expression is the time t it takes for the particle to loose the energy E given that it has an
initial energy E0. We will consider the half-life t1/2 of the electron, that is the time it takes for
its energy to be reduced to half the initial energy. Setting t0 = 0 and E = E0/2, this leads to
the expression

t1/2 = ∆t (E = E0/2) =

(
3

2

)2 mc

r20B
2

1

γ0
, (7.4.8)

for γ0 = E0/mc
2. In Fig. 7.14 we show the half-life in terms of the age of the Galaxy4 as

function of the Lorentz factor γ0 for given magnetic field strengths. We have included the
maximum and minimum magnetic field strength of the simplified total field model B0 = 4µG
and Bmin = 0.5µG, corresponding to the disk and most of the corona. Similarly to the analysis
leading to the dashed lines in Fig. 7.2 for the energy, we include the Lorentz factor of an electron
emitted at the average critical frequency ⟨νc⟩ = 408MHz in dashed lines for the two magnetic
field strengths.
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Figure 7.14: Half-life of an electron in terms of the age of the Galaxy as function of
the Lorentz factor γ0, for different magnetic field strengths. The dashed lines indicate
the Lorentz factor of an electron with an average critical frequency ⟨νc⟩ = 408MHz in
magnetic fields of the same strengths.

Given a power-law distribution of electrons, we assume more electrons with lower energies, or
Lorentz factors, than electrons with higher energies. Additionally, in the corona, we expect that

4The age of the Milky Way is estimated to be approximately 13.6× 109 years.
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the half-lives of most of the electrons are comparable to the age of the Galaxy as indicated by
the intersection of the solid and dashed green lines. As electrons will spend considerable time
in the corona, we may therefore proceed by ignoring the effects of energy losses.

7.4.4 Intensity latitude profiles

For the simplified total field model with the setup in Tab. 7.3, the intensity latitude profiles for
p = 2.8 and p = 2.98 are calculated and shown in Fig. 7.15. The same normalisation constant
n0 = 2.74×10−5 cm−3 for the electron number density is used and the frequency is ν = 408MHz
as usual. We have done the simulation 103 times and taken the average of the results. It is
clear that the intensity is too low in the considered cases of the particle distribution index, and
that the profile needs a slight adjustment to fit the shape of the physical data.
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Figure 7.15: Latitude profiles of synchrotron emission for the simplified total field
model for two different particle distribution indices. The electron number density
normalisation constant is n0 = 2.74× 10−5 cm−3 and the frequency is ν = 408MHz.

We have a set of free parameters that we wish to optimise to obtain a good fit for the intensity
latitude profile. These are given in Tab. 7.4.

7.4.5 Chi-square test

To find a better fit for the parameters in Tab. 7.4, we consider a goodness-of-fit test. The data
points provided by [58] contain errors σ± at each given latitude. As the errors are asymmetrical,
we define σ+ to be the error in positive intensity and σ− to be the error in negative intensity.
We use the chi-square statistic

χ2 =
N∑
i=1

(Oi − Ci)
2

σ2i
, (7.4.9)

where

σi =

{
σi,+ if Oi − Ci ≥ 0,

σi,− if Oi − Ci < 0.
(7.4.10)

Each data point is denoted by i = 1, 2, . . . , N , where we have N = 14 in our case. The quantity
Oi is the observed value of point i, while Ci is the calculated value of this point dependent on
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Table 7.4: List of free parameters for the simplified total field model.

Parameter Symbol

Correlation length of corona Lc,corona

Correlation length of disk Lc,disk

Correlation length of halo Lc,halo

Disk field strength B0

Electron number density normalisation constant n0

Electron number density scale height zt,n

Magnetic field strength scale height zt,B

Minimum electron number density fraction nmin

Minimum magnetic field strength Bmin

Particle distribution index p

Size of corona lcorona

Size of disk ldisk

Size of halo lhalo

the free parameters. The best fit for our parameters is the case that minimises χ2. For our
application, there is no need to take into account overfitting. We must keep in mind, however,
that a good fit for the intensity latitude profiles may give a much too high polarisation.

Effectively we have 13 different variables in Tab. 7.4 to optimise using the chi-square test.
However, this is not only computationally heavy, but also of little use, as we are considering a
very simplified model based on relatively weak assumptions. We will therefore begin by choosing
a subset of the parameters.

Recall that the energy spectrum in Fig. 7.2 bends in the µG range of the magnetic field
strength as indicated by the dashed lines. As this is the region we are interested in, we expect
a lower normalisation constant n0. However, the effect of changing the electron number density
normalisation constant n0 amounts to a vertical shift in the intensity profile. We have seen
that this is also the case for the particle distribution index p. We will therefore assume that
n0 is constant at the calculated value from the AMS-02 data, that is n0 = 2.74 × 10−5 cm−3,
and optimise p accordingly. Furthermore, we assume that the size and correlation length of
each component is constant and given by Tab. 7.3, and that we consider a Kolmogorov energy
spectrum, which means that zt,B = zt,n/3 in the halo and corona.

For our first chi-square test, we assume that both the minimum electron number density nmin =
0.1 and the minimum magnetic field strength Bmin = 0.5µG are constant. This leaves us with
three free parameters; p, zt,n and B0. We choose 7 equally spaced values for p ∈ [2.4, 3], and 5
equally spaced values for zt,n ∈ [2, 6] kpc and B0 ∈ [3, 7]µG. At each latitude with data point
Oi we average over 103 simulations of the intensity to obtain our value for Ci. The chi-square
values at each point are added up according to Eq. (7.4.9), and the five best results of the test
are summarised in Tab. 7.5. The last column of the table also includes the mean degree of
polarisation for the given parameters, calculated by the LoS integral along ẑ.
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Table 7.5: Chi-square values and mean degree of polarisation for the five best set
of parameters for varying p, zt,n and B0 of the simplified total field model. The
parameters nmin and Bmin are fixed.

p zt,n [kpc] B0 [µG] nmin Bmin [µG] χ2 ⟨Π⟩
2.7 2 6 0.1 0.5 0.22 0.15

2.7 4 5 0.1 0.5 0.41 0.17

2.7 3 5 0.1 0.5 0.47 0.15

2.7 6 4 0.1 0.5 0.63 0.17

2.7 3 6 0.1 0.5 0.67 0.17

Values of p around 2.7 are clearly favoured for this test. The choice of zt,n and B0 may vary
more, and we see that the best χ2 value corresponds to a disk field strength B0 larger than
that of the initial guess of 4µG and an electron number density scale height zt,n smaller than
that of the initial guess of 5 kpc. For the three best fits of the parameters, Fig. 7.16 shows the
intensity latitude profiles.
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Figure 7.16: Latitude profiles of synchrotron emission for the simplified total field
model for the three best results from Tab. 7.5.

We see that the best fits for this model give mean polarisation degrees around 0.16, which is still
quite high. We therefore consider the parameters nmin and Bmin next. As one would expect low
values of the electron number density and magnetic field strength in the corona, we will intend
to decrease these values in our model. However, decreasing either of these parameters should
increase the polarisation degree and decrease the intensity, due to the smaller contribution from
the turbulent corona. On the other hand, from Fig. 7.10 and 7.15 we know that a smaller value
of the particle distribution index p corresponds to a higher intensity and lower polarisation.
We will therefore fix the disk field strength B0 = 6µG and the electron density scale height
zt,n = 2kpc, and decrease nmin and Bmin, as well as decrease p.
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Choosing 6 equally spaced values for p ∈ [2.65, 2.7] and nmin ∈ [0.05, 0.1], and 3 equally spaced
values for Bmin ∈ [0.3, 0.5]µG, gives us the results of the chi-square test in Tab. 7.6. In Tab.
7.6a we show the five best intensity latitude fits, while in Tab. 7.6b we have sorted the mean
polarisation degree values given that the test yields a chi-square value less than 0.5.

Table 7.6: Chi-square values and mean degree of polarisation for varying p, nmin and
Bmin of the simplified total field model for (a) the ten best set of parameters and (b)
the ten best set of parameters with χ2 < 0.5 and lowest degree of polarisation. The
parameters zt,n and B0 are fixed.

(a) Sorted by χ2.

p zt,n [kpc] B0 [µG] nmin Bmin [µG] χ2 ⟨Π⟩
2.66 2 6 0.1 0.1 0.09 0.3

2.66 2 6 0.05 0.1 0.09 0.39

2.66 2 6 0.09 0.1 0.09 0.32

2.66 2 6 0.07 0.1 0.09 0.35

2.66 2 6 0.06 0.1 0.1 0.37

2.66 2 6 0.08 0.1 0.1 0.34

2.66 2 6 0.06 0.2 0.1 0.3

2.66 2 6 0.05 0.2 0.11 0.33

2.67 2 6 0.05 0.3 0.12 0.28

2.67 2 6 0.07 0.3 0.12 0.24

(b) Sorted by ⟨Π⟩, given that χ2 < 0.5.

p zt,n [kpc] B0 [µG] nmin Bmin [µG] χ2 ⟨Π⟩
2.69 2 6 0.1 0.5 0.37 0.15

2.69 2 6 0.09 0.5 0.27 0.15

2.7 2 6 0.1 0.5 0.22 0.15

2.69 2 6 0.1 0.4 0.19 0.16

2.7 2 6 0.09 0.5 0.22 0.16

2.67 2 6 0.09 0.4 0.5 0.17

2.68 2 6 0.08 0.5 0.43 0.17

2.69 2 6 0.08 0.5 0.21 0.17

2.68 2 6 0.1 0.4 0.26 0.17

2.7 2 6 0.1 0.4 0.35 0.17

The best parameters for the intensity latitude profiles are those with reduced values of nmin

and Bmin. These fits are very good, and Fig. 7.17 shows the latitude profile for the best case,
χ2 = 0.09. However, the parameters of Tab. 7.6a give high mean degrees of polarisation. From
the good fits with χ2 < 0.5, the lowest polarisation degrees corresponds to values of nmin and
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Bmin in our defined upper bounds of the test. The test shows that, given the fixed parameters,
decreasing the particle distribution index p cannot balance the decrease of nmin and Bmin to
keep the mean degree of polarisation from increasing. These results point to the existence of a
relatively significant corona field in our simple model.
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Figure 7.17: Latitude profiles of synchrotron emission for the simplified total field
model for the best result from Tab. 7.6a, with a chi-square value of χ2 = 0.09.





Chapter 8

Discussion

Both from the theoretical part of the thesis, as well as from the numerical simulations, we have
presented results that require further comments. We will begin the discussion by considering
the polarisation degrees derived in chapter 5, and then move on to the results of chapter 7.

8.1 Theory of polarisation

From Sec. 5.4 there are several points to be discussed. In particular, we wish to further analyse
the difference from the single electron case to the power-law electron distribution case, as well
as the behaviour of the polarisation degrees for strong magnetic fields.

8.1.1 From a single electron to a power-law electron distribution

As already mentioned in Sec. 5.3, the Stokes parameter jV for the power-law electron distribu-
tion was found to be a factor of 4/3 off from the derived quantity by Legg and Westfold [12]. For
any practical application, the degree of circular polarisation is negligible as argued by [9, 10].
The radiation of the electron will be elliptically polarised when viewed at any angle, however
we recall that the radiation of an ultra-relativistic electron is almost completely confined within
an angle θ ≃ 1/γ. The observed radiation therefore only consists of electrons whose trajectory
lies within this angle of the LoS. Considering now a distribution of pitch angles ϕ(α), all the
electrons contributing to the intensity observed will be elliptically polarised. As long as the
pitch angle distribution ϕ varies smoothly with the pitch angle α, the elliptical components will
cancel. We will have an equal contribution of emission cones from both sides of the line-of-sight.
Therefore, the radiation should be characterised by the degree of linear polarisation. As jV only
appears in the expression for the circular polarisation degree, the factor of 4/3 should not signif-
icantly affect any of our results in chapter 7. As an example, we show the density of linear and
total polarisation for the simplified total field model in Fig. 8.1. The linear polarisation degree
is clearly dominant in relation to the circular polarisation degree, as it seems to be equal to the
total polarisation degree. In fact, the average degree of circular polarisation for this simulation
is of the order of 10−5.

It is, however, still interesting to consider the behaviour of the circular polarisation degree.
Both the degree of circular and linear polarisation change significantly from the single electron
case to the power-law electron distribution case. The circular polarisation degree of the single
electron overall decreases (Fig. 5.3), while for a power-law electron distribution it increases
(Fig. 5.4) as function of the magnetic field strength B. Similarly, the linear polarisation degree
overall increases (Fig. 5.6) for a single electron, while for a power-law electron distribution it
stays constant (Eq. (5.5.9)) as function of the magnetic field strength B. We would expect
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Figure 8.1: Density of linear and total degree of polarisation for the simplified total
field model for 104 independent simulations. The parameters p = 2.7, zt,n = 2kpc,
B0 = 6µG, nmin = 0.1 and Bmin = 0.5µG are chosen, and the frequency is ν =
408MHz.

the same behaviour of the polarisation degrees going from a single electron to a collection of
electrons.

One should note the errors that might appear due to the integration over energies. The limits
of integration are taken between 0 and ∞ and this energy range may be unrealistic. In general,
it is difficult to know the effect of such an approximation, but it should be kept in mind.

Furthermore, from the discussion of the Stokes parameters in Sec. 5.3, we know that the
general polarisation tensor N consists of components of the form EiE

∗
j . This structure means

the circular polarisation degree can be written as

Πcirc =
V

I
=

2
√
uv

u+ v
, (8.1.1)

for some u and v. This is true in the case of U = 0, that is E1E
∗
2 = E2E

∗
1 . Hence the factor of

2 appears since V = 2iE1E
∗
2 . In the case of the single electron we would have

u ≡ C1K2/3(z), v ≡ C2K1/3(z), (8.1.2)

where z = 1
2θ

3
γx and where we have defined constants C1 and C2 that are independent of

x ∝ 1/B. The maximum of Eq. (8.1.1) is 1, which corresponds to the diagonal where u = v.
The circular polarisation degree is therefore correctly normalised, and Eq. (8.1.1) should hold
for any perpendicular and parallel intensity. The form of the equation should not change upon
integration over energies, however, this is not true for the integration over pitch angle. In this
case we are making an expansion and pick out the even and odd terms in θ. Thus, this procedure
violates the form of Eq. (8.1.1). The situation is the same for the degree of linear polarisation.
Here, for the same u and v defined above,

Πlin =
Q

I
=
u− v

u+ v
. (8.1.3)
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This has a maximum of 1 along v = 0, and also provides a correctly normalised expression.
Upon integration over pitch angle, the form of Eq. (8.1.3) is violated. It is clear that the
violations of Eq. (8.1.1) and (8.1.3) might lead to the strange behaviour of the polarisation
degrees for a power-law electron distribution. A possible solution should be to evaluate the
integral over pitch angle numerically in Eq. (5.2.2) for the emission-polarisation tensor j.

8.1.2 Degree of polarisation for strong magnetic fields

In Sec. 5.4 we found that the degree of circular polarisation for a power-law distribution is
proportional to B1/2 and therefore exceeds 1 for strong magnetic fields. In Fig. 5.4 we see that
this happens for magnetic field strengths around 105 − 108G for the given choices of ψ. We
note that values of B in this interval do not correspond to the critical magnetic field in Eq.
(4.4.1) which is of the order 1013G, and hence B ≪ Bcr. However, we require χ ≃ γB/Bcr ≪ 1
to conclude that the change in behaviour is not due to the quantum effects discussed in Sec.
4.4. We can write γ ≪ Bcr/B, and for e.g. B = 107G, this corresponds to a Lorentz factor
γ ≪ 106. As B increases, the Lorentz factor have to decrease to satisfy this requirement, and
at some point γ will be too small for the electrons to be considered ultra-relativistic. To make
an estimate of the Lorentz factor for the parameters in Fig. 5.4, we use the fact that most of
the emission happens at the critical frequency νc = ωc/2π where ωc is defined by Eq. (4.1.9).
This means that

γ =

(
4πνcmc

3eB sinα

)1/2

. (8.1.4)

The Lorentz factor is proportional to B−1/2, and will decrease for increasing magnetic field
strength. For νc = 5 × 1014Hz, Fig. 8.2 shows the Lorentz factor γ as a function of magnetic
field strength B for different pitch angle deviations ψ. We see that γ decreases with both B and
ψ. The figure shows results that are clearly within our requirement that γ ≪ Bcr/B, however
for ultra-relativistic electrons we expect higher γ-factors for values of B higher than ∼ 105G. As
the electrons no longer stay in the ultra-relativistic regime, we are not considering synchrotron
radiation. We may therefore conclude that the results for the circular polarisation degree only
are valid for weaker magnetic fields, and not in the region where it exceeds 1.
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Figure 8.2: Lorentz factor γ as function of magnetic field strength B for different
pitch angle deviations ψ. The frequency is ν = 5× 1014Hz.
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In appendix B we comment on the proposed solution by [62] of considering the second order
pitch angle distribution approximation. The results of that analysis show that the second order
approximation does not affect the circular polarisation degree for the valid weaker magnetic
field strengths, and is therefore not relevant in the ultra-relativistic synchrotron regime.

8.2 Galactic magnetic field models

The results of the numerical simulations in chapter 7 show the difficulties in describing the GMF
by use of numerical models. We may summarise the main results as the following.

(i) The ELMAG turbulent field model produces sufficiently turbulent magnetic fields only up
to a certain distance dependent on the number of turbulent modes.

(ii) Generating pure turbulent magnetic fields using ELMAG can reproduce intensity latitude
profiles similar to those in [58], dependent on the electron number density normalisation.

(iii) Neither the UF23 model nor the combination of UF23 and the ELMAG turbulent field model
can reproduce the low polarisation degree values measured by the C-BASS project for
realistic parameters. In both cases, the intensity profiles are too low given the calculated
electron number density normalisation.

(iv) The simplified total field model may fit the low polarisation degrees as well as the intensity
latitude profiles for optimised parameters. There are, however, many free parameters.

8.2.1 ELMAG and UF23

We start by looking at the first three points concerning the pure turbulent field from ELMAG and
the combination of ELMAG and the UF23 models.

Number of turbulent modes

The number of turbulent modes nk for the ELMAG turbulent magnetic field model considered
in Sec. 7.1.1 has a significant effect on the polarisation degree. We note that the polarisation
degree will stabilise at higher values of z for an increase of the particle distribution index p.
Furthermore, for increasing number of turbulent modes nk, the computation time1 increases
linearly as in Fig. 8.3. For each number of modes nk, one simulation of the turbulent field is
done with Lc = 20pc, Brms = 3µG, p = 2.4 and ν = 50MHz.

We do not expect that the number of turbulent modes nk to significantly influence the intensity
latitude profiles, given that nk is not “too small”. As long as we have relatively random field
vectors, the averaging over many simulations should make sure that any effects from the number
of turbulent modes are unnoticeable. However, this could be looked further into.

The problems with the number of turbulent modes for ELMAG may therefore only influence the
results of the polarisation degrees, that is Tab. 7.2 and Fig. 7.8 for the total field. Since the
magnetic field is zero beyond 30 kpc in the UF23 models, we know that the distance of the
LoS integral should be much larger than the distance where the polarisation degree starts to
saturate as shown in Fig. 7.1. However, the magnetic field should also be much weaker at
larger distances, and the effect of the number of turbulent modes on the polarisation degree
in the combined ELMAG and UF23 model may be minimal, which is what we see from Fig. 8.4.
Here we have plotted the degree of linear polarisation for the combined ELMAG and UF23 model
base with the setup in Tab. 7.2 as function of the number of turbulent modes nk. The case

1We define the computation time as the CPU elapsed time, which is calculated in Fortran 90 by using the
function cpu time.
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Figure 8.3: Computation time as function of the number of turbulent modes nk for
calculation of polarisation degrees using the ELMAG turbulent magnetic field model.

of β = 10 from Tab. 7.2 is not included as it is approximately the same as for β = 100. For
high values of β, we see that more turbulent modes are required. However, as the polarisation
degree approaches a constant value as a function of nk, the number of turbulent modes should
not be an issue for the results in Sec. 7.3. Choosing nk around 1000 should be sufficient.
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Figure 8.4: Degree of linear polarisation as function of the number of turbulent
modes nk for the combined ELMAG and UF23 model base for different values of β. The
frequency is ν = 408MHz, the particle distribution index is p = 2.4 and the correlation
length is Lc = 20pc.
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Normalisation

The normalisation done in Sec. 7.1.2 gave us the approximate particle distribution index
p = 2.98 and electron number density normalisation constant n0 ≃ 2.74 × 10−5 cm−3. Upon
calculating intensity latitude profiles and polarisation degrees, we have assumed that n0 is con-
stant at this value, and varied p some small amounts. It is important to keep in mind that these
values are the result of a very simple analysis and that we have not considered any uncertain-
ties. Furthermore, we made a power-law fit for high-energy electrons, although for magnetic
field strengths in the range 1− 10µG, the electrons are expected to have energies in the region
where the spectrum starts to bend. A more detailed analysis should include uncertainties and
take into consideration the bend in the spectrum for low-energy electrons.

We also considered the assumption by [58] that B ∝ D(z)−1 which corresponds to an energy
spectrum with slope γ = 1. However, in their simulations, [58] have used an Iroshnikov–
Kraichnan, or “KRA”, setup. As we have mentioned, Iroshnikov–Kraichnan turbulence implies
an energy spectrum with slope γ = 3/2 and not γ = 1. This inconsistency is not expected to
be an issue, as the assumptions of the normalisation are loosely based on the analysis of the
stationary case of the diffusion equation discussed in Sec. 6.3.2.

A comment should also be made on the radio data with uncertainties taken directly from [58].
We have not made any attempt to reproduce the analysis leading to these data points, and it
may be of interest to take this analysis into consideration. The radio data are derived from [59]
which uses the Haslam map [60]. An improved all-sky 408MHz temperature map from [63] is
reconstructed2 in Fig. 8.5.

10 250
T [K]

Figure 8.5: All-sky 408MHz temperature map with a logarithmic colour scale. Con-
structed from the improved Haslam all-sky map of Remazeilles et al. [63].

To consider the latitude profile of the brightness temperature from the Haslam data, the points
along the vertical central line in Fig. 8.5 are extracted. Visualising the latitude profile from
the extracted data gives the plot in Fig. 8.6. Here we have also included the radio data from
[58], and the plot gives us an indication that the analysis of the article provides data points in

2The data is provided in a FITS file, commonly used in astronomy for storing large datasets. This can easily
be read using the HEALPix framework [64] which provides a structure for the pixelisation of data on the sphere.
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some agreement with the all-sky map. The exact analysis of [58] should still be investigated,
especially as the data points include uncertainties.
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Figure 8.6: Latitude profile of the 408MHz temperature data along with radio data.
Constructed from the improved Haslam all-sky map of Remazeilles et al. [63].

Other uncertainties of the normalisation for the intensity latitude profiles in Fig. 7.5 are the
scaling function g(z) and the magnetic field normalisation by [58] in Eq. (7.1.8). We have simply
made an approximation to the g(z) profile and as in the article, assumed that the synchrotron
spectrum is reproduced by the described setup in Sec. 7.1.2. However, the intensity latitude
profiles in Fig. 7.5 indicate that our assumptions and normalisation of the AMS-02 data provides
profiles that agree relatively well with the results of [58].

Inconsistency with intensity and polarisation data

We have already seen that we were not able to reproduce the intensity and polarisation data
using the UF23 models or the combination of ELMAG and UF23. For the polarisation, it is evident
that the UF23 models alone are not sufficient as they describe the large-scale regular GMF and
do not include the small-scale turbulent component. Therefore, the polarisation degrees are
much too high compared with the results of the C-BASS project. Additionally, the intensity is
too low for our given normalisation, but there are several uncertainties around this procedure.

The introduction of a turbulent component using the ELMAG turbulent field model gives lower
polarisation degrees, however not sufficiently. The results in Tab. 7.2 show that the mean
degrees of linear polarisation are still very high. For these simulations, Fig. 8.7 shows the
density of linear polarisation for the model base, for different values of β. Given Lc = 20pc
(solid lines) and β = 2, which means the turbulent component is twice as strong as the regular
component, close to 30% of the simulations give polarisation degrees below 0.1. This is a
relatively reasonable result, however β = 2 is arguably too high considering what one would
expect to be realistic. In the case of β = 1.5, less than 0.5% of the simulations give polarisation
degrees below 0.1, and for the last two cases, the percentage is zero. For realistic values of β
in the range [0, 1], we would never obtain a polarisation degree low enough to fit the measured
data with this model.
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Figure 8.7: Density of linear polarisation for the combined ELMAG and UF23 model
base for 104 independent simulations, for different values of β. The correlation length
is Lc = 20pc (solid lines) and Lc = 2pc (dashed lines). The frequency is ν = 408MHz,
the particle distribution index is p = 2.4 and the number of turbulent modes is nk =
1000.

A comment should be made on the correlation length Lc. In Fig. 8.7 we have also included the
case with Lc = 2pc in dashed lines. Upon using the combined field model we have effectively
considered a LoS integral with step size Lc, and calculated the Stokes parameters given both the
regular and turbulent field at each point. Decreasing the correlation length Lc should therefore
not change the mean degree of polarisation, as additional contributions from the turbulent field
are balanced by additional contributions from the regular field. However, in this case, we expect
that the density is more concentrated around the mean, as can be seen in Fig. 8.7. This is
because the number of steps increase for decreasing Lc, and more of the turbulent contributions
cancel each other out.

One possible solution to the combined ELMAG and UF23 model is to introduce a turbulent corona
field as in the simplified total field model described in Sec. 7.4. Depending on the strength,
extent and correlation length of this field, it may reduce the polarisation degree substantially
as well as increase the intensity.

8.2.2 Simplified total field model

The simplified total field model produces the magnetic field by using random field vectors,
either chosen isotropically or through Eq. (7.4.4). From e.g. the case of p = 2.8 in Fig. 7.10,
around 20% of the simulations give polarisation degrees lower than or equal to 0.1. For the
given parameters, the model therefore implies that in about 20% of cases, we get a choice of
magnetic field vectors that will give low polarisation degrees similar to the measured values of
the C-BASS project.

The parameters listed in Tab. 7.4, as well as Eq. (7.4.1) along with Eq. (7.4.2) and the
assumptions following, are large uncertainties. In particular, we note the value of 2 chosen for
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the expression j0zt,n/D0n0 and the method of generating the regular halo field in Eq. (7.4.4).
In both these cases, we have simply made assumptions that “seem” reasonable, but without
any further comments or explanations.

By assuming that we may divide the GMF into a disk, halo and corona, we have little detailed
knowledge of the most realistic values of the parameters. As we have seen, varying the free
parameters in Tab. 7.4 may lead to several possible fits for the intensity latitude profiles.
The effect of these parameters on our relevant quantities, the intensity and polarisation, is
summarised in Tab. 8.1. Here, “↑” corresponds to an increase in the parameter or quantity, “↓”
a decrease and “–” no change. We look at how the intensity and polarisation degree change by
increasing each parameter, while keeping everything else constant. It is important to note that
this is an average effect on the quantities, and depending on the random magnetic field vectors,
the quantities may not behave according to Tab. 8.1 for a single simulation.

Table 8.1: The effect on the intensity and polarisation degree by increasing each
value of the free parameters for the simplified total field model.

Parameter Value Intensity Polarisation

Lc,corona ↑ – ↑
Lc,disk ↑ – ↑
Lc,halo ↑3 ↑ ↑
B0 ↑ ↑ ↑
n0 ↑ ↑ –

zt,n ↑ ↑ ↑
zt,B ↑ ↑ ↑
nmin ↑ ↑ ↓
Bmin ↑ ↑ ↓
p ↑ ↓ ↑

lcorona ↑ ↑ ↓
ldisk ↑ ↑ ↓
lhalo ↑ ↑ ↑

The overview in Tab. 8.1 may give us an idea of how the parameters should be varied to fit both
the intensity and polarisation. However, as already mentioned, there are many free parameters
and consequently many choices that will give reasonable results. We cannot conclude on a single
set of parameters as there is not enough information to accurately determine the right choice.
Furthermore, we should not forget the simplicity of the model. We cannot expect the model to
be anything but an approximation to the structure of the GMF, that may or may not be based
on the sufficiently “correct” assumptions.

3Increasing Lc,halo in our simulations corresponds to also increasing lhalo, as we have defined the regular field
to have Lc,halo = lhalo. We still always take 10 steps in the halo.





Chapter 9

Conclusion

In this thesis we have provided an in depth description of the theory of synchrotron radiation
and its polarisation effects, as well as investigated different possible Galactic magnetic field
models. The theory of synchrotron radiation was mainly based on the books by Rybicki and
Lightman [9] and Longair [10], and the theory of polarisation on the classical treatments in the
articles by Westfold [11] from 1959 and Westfold and Legg [12] from 1968.

In chapter 2 we discussed turbulent magnetic fields, with a focus on the GMF. As magnetic fields
are present everywhere, they are important in the study of the structure and dynamics of our
Universe. Their existence and characteristics can be analysed through different processes, and
we introduced measurement techniques including Faraday rotation, synchrotron radiation, dust
emission and the Zeeman effect. A few comments on MHD and MHD turbulence, in particular
Kolmogorov’s theory, was also provided. The chapter was ended by introducing two magnetic
field models, the turbulent field model of the ELMAG [32] program and the regular field model
UF23 [22], as well as a method for combining these.

In chapter 3 we began the theoretical treatment of synchrotron radiation, which was continued
in chapter 4. The important result of relativistic beaming was obtained for ultra-relativistic
electrons. That is, the radiation emitted by an electron is confined within a cone of opening
angle θ ≃ 1/γ. We also provided expressions for the perpendicular and parallel component
of the radiation field and used this to describe the intensity spectra of synchrotron radiation.
Finally, we commented on the restrictions of synchrotron radiation, in particular the non-linear
quantum effects that appear for strong magnetic fields.

Following the basic theory of synchrotron radiation, chapter 5 discussed polarisation in which our
main equations were derived. We followed the treatments in [11, 12] to find expressions for the
emission-polarisation tensor ρx for a single electron and j for a power-law electron distribution.
The derivation leads to a circular polarisation degree Πcirc ∝ B1/2, which consequently will
exceed 1 for large values of the magnetic field strength B. Therefore, as intended by [62], in
appendix B the calculation of j is extended to include the approximation to second order in
the pitch angle distribution function. However, in Sec. 8.1, we discuss this behaviour further
and conclude that electrons cease to be ultra-relativistic in strong magnetic fields where the
polarisation degree exceeds 1. In these cases we may no longer consider the process to be
synchrotron emission. We also argued that the linear polarisation degree is dominant and the
circular polarisation degree may be ignored for any practical application. Furthermore, we
discuss that the expansion over the pitch angle in the calculation of the emission-polarisation
tensor j should not be performed, as this violates the form of the circular and linear polarisation
degree upon integration. A solution may be to evaluate the integral numerically.
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A brief introduction to radiative transfer was presented in chapter 6, where the LoS integral
frequently used in the numerical simulations also was introduced. The discussion of the LoS
integral included descriptions of the method of how both the intensity and polarisation of
synchrotron radiation is calculated, as well as the consideration of angular resolution. In the
last section we considered diffusion, in particular we looked at its relation to the random walk
model and solved the stationary case of the diffusion equation. The end of this chapter marked
the conclusion of the theoretical part of the thesis.

The numerical simulations and results were presented in chapter 7. We began by considering
pure turbulent fields using the magnetic fields generated by the ELMAG program in Sec. 7.1.
Most important was the electron number density normalisation. We obtained this by using
data from AMS-02, and the result was given in Eq. (7.1.4). This normalisation was used as
the standard in most of the following simulations, with some variation. However, there are
large uncertainties for this normalisation, considering the spectrum does not follow a perfect
power-law. We also considered the treatment by Di Bernardo et al. [58] in Sec. 7.1. Using
their approach, we found intensity latitude profiles of synchrotron radiation using the ELMAG

turbulent field model which were reasonable compared with radio data.

Further comments on the pure turbulent fields was provided in Sec. 8.2.1. The fact that
the ELMAG program may only produce sufficiently turbulent fields up to a certain distance
dependent on the number of turbulent modes was discussed. It was shown, however, that
none of the results of the simulations were likely affected by this. We may conclude that the
number of turbulent modes is an important consideration upon using the ELMAG turbulent field,
but the described issue is not problematic for our application. Additionally, we discussed the
normalisation procedure and the uncertainties around this. By using our assumptions on the
magnetic field dependence on the diffusion coefficient and the slope of the energy spectrum, the
article [58] gave an inconsistent description of their model. The derived radio data provided
may also be favourable to look into.

In Sec. 7.2 and 7.3 we looked at the models of UF23 in relation to intensity and polarisation,
both alone and in combination with the turbulent field of the ELMAG program. We provided
both intensity latitude profiles and calculation of polarisation degrees. The GMF models did
not provide good fits for the intensity radio data given the calculated normalisation or the
measured polarisation from the C-BASS project, and this was further discussed in Sec. 8.2.1.
The greatest issue is the polarisation degrees which are much too high. Even when considering
a strong turbulent component along with the regular fields of UF23, the degree of polarisation
is not low enough to match the C-BASS data. A possible solution, however, is to introduce an
extended turbulent magnetic field beyond the regular field.

The last GMF model we investigated was the simplified total field model described in Sec. 7.4.
In this model we divided the Galaxy into three regions; the disk, halo and corona. In the disk
and corona, the magnetic field direction was assumed to be isotropic random, while in the halo
it was assumed to be regular, or constant with small random fluctuations. We made simple
approximations and assumptions on the diffusion equation and magnetic field strength, and
were left with a set of free parameters listed in Tab. 7.4. We tested the model for a chosen
set of parameters, and obtained polarisation and intensity plots. The polarisation degrees were
much lower than for the previous tested models, but the intensity latitude profiles were too low.
We therefore intended to optimise the free parameters to fit the profiles, however because of the
large number of parameters, we performed a chi-square test by varying only a few at a time.
The results of the tests gave good fits for many sets of parameters, while the best combinations
of chi-square value and mean degree of polarisation were around 0.22 and 0.15, respectively. A
mean degree of polarisation around 0.15 means a significant amount of the simulations with the
given parameters gave polarisation degrees low enough to be in agreement with the measured
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values of the C-BASS project. The simplified total field model was further commented on in
the discussion in Sec. 8.2.2. Here we presented an overview of the effect on the intensity and
polarisation in Tab. 8.1 of changing each parameter, and we commented on the uncertainties
of the approximations and assumptions made.

In summary, we conclude that the GMF models of UF23, alone or in combination with a turbu-
lent magnetic field generated by the ELMAG program, do not produce magnetic fields in agreement
with the low measured synchrotron polarisation by the C-BASS project. A possible solution
is to include an extended turbulent magnetic field. The properties of this field, such as the
strength, extent and correlation length, could be looked into. Furthermore, a simplified total
field model consisting of a turbulent disk and corona field, and a regular halo field, may be
used to describe the measured radio intensity data and the low polarisation degrees. However,
the model is very simple and based on weak assumptions, as well as it includes many free pa-
rameters. Without further knowledge or data, we cannot know to which extent this model is a
sufficiently realistic description of the structure of the GMF.





Appendix A

Useful integrals

Several integrals without derivations have been used throughout the thesis as well as in appendix
B. Here we present all the relevant integrals along with derivations.

A.1 Airy functions

The Airy function Ai(x) along with the function Bi(x) are defined as linearly independent
solutions to the differential equation [46]

d2x

dy2
− xy = 0. (A.1.1)

By using the properties from Abramowitz and Stegun [46] we may express the Airy function
through the integral

Ai(x) =
1

2π

∫ ∞

−∞
exp

[
i

(
xz +

1

3
z3
)]

dz. (A.1.2)

Additionally, one can relate the Airy function to the modified Bessel functions K1/3 and K2/3

by the properties

K1/3

(
2

3
x3/2

)
= π

√
3

x
Ai(x), (A.1.3a)

K2/3

(
2

3
x3/2

)
= −π

√
3

x
Ai′(x). (A.1.3b)

In particular, we find that

Ai′(x) = i
1

2π

∫ ∞

−∞
z exp

[
i

(
xz +

1

3
z3
)]

dz, (A.1.4a)

Ai′′(x) = − 1

2π

∫ ∞

−∞
z2 exp

[
i

(
xz +

1

3
z3
)]

dz = xAi(x), (A.1.4b)

where we have used the differential equation in Eq. (A.1.1) in the last equality for the double
derivative. As the Airy function is related to the modified Bessel functions, we present some of
their general properties. It is known that the modified Bessel functions satisfy K−n(x) = Kn(x)
and the following recurrence relations [46],

Kn+1(x) = Kn−1(x) +
2n

x
Kn(x), (A.1.5a)

d

dx
Kn(x) = −1

2
[Kn−1(x) +Kn+1(x)] , (A.1.5b)
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for n = 1/2, 3/2, . . . , as well as the fact that

lim
x→∞

Kn(x) = 0. (A.1.6)

We now wish to find solutions to the integral1

Iγ,s ≡
∫ ∞

−∞
exp

[
iγ

(
µy +

1

3
y3
)]

ysdy, (A.1.7)

for s = −3,−2,−1, 0, 1, 2. Most of these are presented in [12], but we will also provide deriva-
tions here. We should first recall the definitions of the functions F , G and H in Eq. (4.1.12a),
(4.1.12b) and (5.2.15), respectively. That is

F (x) ≡ x

∫ ∞

x
K5/3(ξ)dξ, (A.1.8a)

G(x) ≡ xK2/3(x), (A.1.8b)

H(x) ≡ xK1/3(x). (A.1.8c)

Integral Iγ,0

Iγ,0 ≡
∫ ∞

−∞
exp

[
iγ

(
µy +

1

3
y3
)]

dy =

√
3

γµ
H

(
2

3
γµ3/2

)
(A.1.9)

Derivation. We will use the substitution z = γ1/3y, which corresponds to dy = γ−1/3dz. We
obtain

Iγ,0 = γ−1/3

∫ ∞

−∞
exp

[
i

({
µγ2/3

}
z +

1

3
z3
)]

dz

= γ−1/32πAi
(
µγ2/3

)
= 2πγ−1/3 1√

3π

(
µγ2/3

)1/2
K1/3

(
2

3

{
µγ2/3

}3/2
)

=
2√
3
µ1/2K1/3

(
2

3
γµ3/2

)
=

√
3

γµ
H

(
2

3
γµ3/2

)
. (A.1.10)

Integral Iγ,1

Iγ,1 ≡
∫ ∞

−∞
exp

[
iγ

(
µy +

1

3
y3
)]

ydy = i

√
3

γµ1/2
G

(
2

3
γµ3/2

)
(A.1.11)

Derivation. Using the same substitution as before,

Iγ,1 = γ−2/3

∫ ∞

−∞
exp

[
i

({
µγ2/3

}
z +

1

3
z3
)]

zdz

= −γ−2/32πiAi′
(
µγ2/3

)
= 2πiγ−2/3 1√

3π
µγ2/3K2/3

(
2

3

{
µγ2/3

}3/2
)

= i
2√
3
µK2/3

(
2

3
γµ3/2

)
= i

√
3

γµ1/2
G

(
2

3
γµ3/2

)
. (A.1.12)

1The variable γ should not be confused with the Lorentz factor.
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Integral Iγ,2

Iγ,2 ≡
∫ ∞

−∞
exp

[
iγ

(
µy +

1

3
y3
)]

y2dy = −
√
3

γ
H

(
2

3
γµ3/2

)
(A.1.13)

Derivation. Once again, defining z = γ1/3y gives

Iγ,2 = γ−1

∫ ∞

−∞
exp

[
i

({
µγ2/3

}
z +

1

3
z3
)]

z2dz

= −γ−12πµγ2/3Ai
(
µγ2/3

)
= −2πµγ−1/3 1√

3π

(
µγ2/3

)1/2
K1/3

(
2

3

{
µγ2/3

}3/2
)

= − 2√
3
µ3/2K1/3

(
2

3
γµ3/2

)
= −

√
3

γ
H

(
2

3
γµ3/2

)
. (A.1.14)

Integral Iγ,−1

Iγ,−1 ≡
∫ ∞

−∞
exp

[
iγ

(
µy +

1

3
y3
)]

y−1dy = −i

√
3

γµ3/2

[
2G

(
2

3
γµ3/2

)
− F

(
2

3
γµ3/2

)]
(A.1.15)

Derivation. This derivation is a little more complicated, and we will use a trick, seeing that

d

dµ
Iγ,−1 =

∫ ∞

−∞

d

dµ
exp

[
iγ

(
µy +

1

3
y3
)]

y−1dy = iγIγ,0 = i

√
3

µ
H

(
2

3
γµ3/2

)
= i

√
3

µ

2

3
γµ3/2K1/3

(
2

3
γµ3/2

)
= i

2√
3
γµ1/2K1/3

(
2

3
γµ3/2

)
= i

2√
3
γ

(
3

2
γ−1

)1/3

x1/3K1/3(x), (A.1.16)

for x ≡ 2
3γµ

3/2, or µ =
(
3
2γ

−1x
)2/3

. It is possible to write

dx

dµ
= γµ1/2 = γ

(
3

2
γ−1x

)1/3

γ

(
3

2
γ−1

)1/3

x1/3. (A.1.17)

Now we can use the property of the Bessel in Eq. (A.1.5b), writing

d

dx
K2/3(x) = −1

2

[
K1/3(x) +K5/3(x)

]
. (A.1.18)

Integrating Eq. (A.1.16) gives therefore

Iγ,−1 = i
2√
3
γ

(
3

2
γ−1

)1/3 ∫ ∞

µ
x1/3K1/3(x)dµ = i

2√
3

∫ ∞

2
3
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2√
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3
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−
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2√
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)−1 [
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(
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√
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(
2

3
γµ3/2

)
− F

(
2

3
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)]
. (A.1.19)
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Integral Iγ,−2

Iγ,−2 ≡
∫ ∞

−∞
exp

[
iγ

(
µy +

1

3
y3
)]

y−2dy =

√
3

µ1/2

[
G

(
2

3
γµ3/2

)
− F

(
2

3
γµ3/2

)]
(A.1.20)

Derivation. Here, we will use integration by parts, utilising the integrals already found. Setting
u = exp

[
iγ
(
µy + 1

3y
3
)]
, that is du = iγ exp

[
iγ
(
µy + 1

3y
3
)]

(µ + y2), and dv = y−2, that is
v = −y−1, we get

Iγ,−2 = iγ

∫ ∞

−∞
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1

3
y3
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√
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√
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=

√
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(
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3
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. (A.1.21)

We have used that the expression
{
−y−1 exp

[
iγ
(
µy + 1

3y
3
)]}∞

−∞ is zero.

Integral Iγ,−3

Iγ,−3 ≡
∫ ∞

−∞
exp

[
iγ

(
µy +

1

3
y3
)]

y−3dy

= i

√
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(
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(
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+ µ−1H

(
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)}
(A.1.22)

Derivation. Once again we use integration by parts. It follows that

Iγ,−3 = iγ
1

2

∫ ∞

−∞
exp

[
iγ

(
µy +

1

3
y3
)]

(µy−2 + 1)dy

= iγ
1

2
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√
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+

√
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√
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. (A.1.23)

A.2 Theta integrals

The Airy function can be used to calculate relevant θ-integrals. We will now demonstrate a
set of these integrals used throughout the thesis in the calculations of emissivities. Before we
begin, we note a few useful integrals,∫ ∞

−∞
exp

(
iay2

)
dy =

√
πei

π
4 a−1/2, (A.2.1a)∫ ∞

−∞
y exp

(
iay2

)
dy = 0, (A.2.1b)∫ ∞

−∞
y2 exp

(
iay2

)
dy = −

√
π

2
e−iπ

4 a−3/2, (A.2.1c)
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∫ ∞

−∞
y4 exp

(
iay2

)
dy =

3
√
π

4
e−i 3π

4 a−5/2, (A.2.1d)

where a is a constant. The results of the integrals Iγ,s from the previous section will also be
used heavily in the following calculations, and with that, it is convenient to define

µ ≡
(
3

4
x

)2/3

. (A.2.2)

Integral T1

T1 =

∫ ∞

−∞
θ2γθ

2K2
1/3

(
1

2
θ3γx

)
dθ =

π√
3γ3x2

[F (x)−G(x)] (A.2.3)

Derivation. We begin by writing the Bessel functions in terms of Airy functions, finding

K2
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(
1
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θ3γx

)
= K2
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(
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{
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∫ ∞
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∫ ∞
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∫ ∞
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∫ ∞
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∫ ∞
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∫ ∞
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∫ ∞
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y−1/2dy. (A.2.4)

In the third line we have substituted v for −v, while in the fourth line we have defined 2y = u−v
and 2z = u + v. This gives u = y + z and v = z − y, and dudv = 2dydz. In the final line we
have used Eq. (A.2.1a). We now integrate over θ, recalling the definition of θ2γ ≡ 1 + γ2θ2,

T1 =
3
√
π

2
√
2µ
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4

∫ ∞
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∫ ∞
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∫ ∞
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∫ ∞
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∫ ∞
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[F (x)−G(x)] =
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[F (x)−G(x)] . (A.2.5)

In the fourth line, Eq. (A.2.1c) has been used, and the integral I2,−2 in the following line. In
the last equation we have inserted the expression for µ and the derivation is concluded.

Integral T2

T2 =

∫ ∞

−∞
θ4γK

2
2/3

(
1

2
θ3γx

)
dθ =

π√
3γx2

[F (x) +G(x)] (A.2.6)
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Derivation. Similarly to the previous integral, we write the Bessel functions in terms of Airy
functions, or in this case the derivatives of the Airy function. We get

K2
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∫ ∞
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∫ ∞
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∫ ∞
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∫ ∞

−∞
uv exp

[
i

(
µθ2γ{u− v}+ 1

3
{u3 − v3}

)]
dudv

=
3

2µ2θ4γ

∫ ∞
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∫ ∞
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∫ ∞
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∫ ∞
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We have used the same substitutions as before. Now performing the integral over θ gives
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∫ ∞
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√
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Integral T3

T3 =

∫ ∞
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H(x) +G(x)− F (x)

]
(A.2.9)

Derivation. As we already know the integral expression for the square of the Bessel function
from the derivation of integral T2, we find that
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√
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Integral T4

T4 =

∫ ∞
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Derivation. For this integral, we need to find an integral expression for the product of the two
Bessel functions. We get that
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= i
3

2(µθ2γ)
3/2

∫ ∞

−∞

∫ ∞

−∞
(z − y) exp

[
2i

(
µθ2γy +

1

3
{y3 + 3yz2}

)]
dydz

= i
3

2(µθ2γ)
3/2

∫ ∞

−∞
exp

[
2i

(
µθ2γy +

1

3
y3
)]∫ ∞

−∞
(z − y) exp

[
2iyz2

]
dzdy

= −i
3
√
π

2
√
2(µθ2γ)

3/2
ei

π
4

∫ ∞

−∞
exp

[
2i

(
µθ2γy +

1

3
y3
)]

y1/2dy. (A.2.12)

As usual, we now perform the integral over θ and get

T4 = −i
3
√
π

2
√
2µ3/2

ei
π
4

∫ ∞

−∞
y1/2

∫ ∞

−∞
θ2 exp

[
2i

(
µθ2γy +

1

3
y3
)]

dθdy

= −i
3
√
π

2
√
2µ3/2

ei
π
4

∫ ∞

−∞
y1/2

∫ ∞

−∞
θ2 exp

[
2iµγ2yθ2

]
dθ exp

[
2i

(
µy +

1

3
y3
)]

dy

= i
3π

4
√
2µ3/2

(2µγ2)−3/2

∫ ∞

−∞
y−1 exp

[
2i

(
µy +

1

3
y3
)]

dy

=
3
√
3π

32µ9/2γ3
[2G(x)− F (x)] =

2π

3
√
3γ3x3

[2G(x)− F (x)] . (A.2.13)

Integral T5

T5 =

∫ ∞

−∞
θ5γK1/3

(
1

2
θ3γx

)
K2/3

(
1

2
θ3γx

)
dθ =

2π

3
√
3γx3

[3xH(x) + 2G(x)− F (x)] (A.2.14)

Derivation. Using the result from integral T4, we get

T5 = −i
3
√
π

2
√
2µ3/2

ei
π
4

∫ ∞

−∞
y1/2

∫ ∞

−∞
θ2γ exp

[
2i

(
µθ2γy +

1

3
y3
)]

dθdy

= −i
3
√
π

2
√
2µ3/2

ei
π
4

∫ ∞

−∞
y1/2

∫ ∞

−∞
(1 + γ2θ2) exp

[
2i

(
µθ2γy +

1

3
y3
)]

dθdy

= −i
3
√
π

2
√
2µ3/2

ei
π
4

∫ ∞

−∞
y1/2

∫ ∞

−∞
(1 + γ2θ2) exp

[
2iµγ2yθ2

]
dθ exp

[
2i

(
µy +

1

3
y3
)]

dy

=
3π

2
√
2µ3/2

(2µγ2)−1/2

∫ ∞

−∞
exp

[
2i

(
µy +

1

3
y3
)]

dy + γ2T4
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=
3
√
3π

8µ3γ
H(x) + γ2T4 =

2π√
3γx2

H(x) + γ2T4

=
2π

3
√
3γx3

[3xH(x) + 2G(x)− F (x)] . (A.2.15)

Integral T6

T6 =

∫ ∞

−∞
θ2γθ

4K2
1/3

(
1

2
θ3γx

)
dθ =

3π

4
√
3γ5x2

[
2

3x
H(x) +G(x)− F (x)

]
(A.2.16)

Derivation. In this case we also know the expression for K2
1/3 from the derivation of integral

T1. Therefore, we get that

T6 =
3
√
π

2
√
2µ

ei
π
4

∫ ∞

−∞
y−1/2

∫ ∞

−∞
θ4 exp

[
2i

(
µθ2γy +

1

3
y3
)]

dθdy

=
3
√
π

2
√
2µ

ei
π
4

∫ ∞

−∞
y−1/2

∫ ∞

−∞
θ4 exp

[
2iµγ2yθ2

]
dθ exp

[
2i

(
µy +

1

3
y3
)]

dy

= −i
9π

8
√
2µ

(2µγ2)−5/2

∫ ∞

−∞
y−3 exp

[
2i

(
µy +

1

3
y3
)]

dy

=
9
√
3π

128µ3γ5

{
2 [G(x)− F (x)] + µ−3/2H(x)

}
=

3π

4
√
3γ5x2

[
2

3x
H(x) +G(x)− F (x)

]
. (A.2.17)

Integral T7

T7 =

∫ ∞

−∞
θ4γθ

2K2
1/3

(
1

2
θ3γx

)
dθ =

π

4
√
3γ3x2

[
2

x
H(x)−G(x) + F (x)

]
(A.2.18)

Derivation. We use what we had from the derivation of integral T1, and get

T7 =
3
√
π

2
√
2µ

ei
π
4

∫ ∞

−∞
y−1/2

∫ ∞

−∞
θ2γθ

2 exp

[
2i

(
µθ2γy +

1

3
y3
)]

dθdy

=
3
√
π

2
√
2µ

ei
π
4

∫ ∞

−∞
y−1/2

∫ ∞

−∞
(θ2 + γ2θ4) exp

[
2iµγ2yθ2

]
dθ exp

[
2i

(
µy +

1

3
y3
)]

dy

= T1 + γ2T6

=
π√

3γ3x2
[F (x)−G(x)] +

3π

4
√
3γ3x2

[
2

3x
H(x) +G(x)− F (x)

]
=

π

4
√
3γ3x2

[
2

x
H(x)−G(x) + F (x)

]
. (A.2.19)

Integral T8

T8 =

∫ ∞

−∞
θ5γθ

2K1/3

(
1

2
θ3γx

)
K2/3

(
1

2
θ3γx

)
dθ =

π

3
√
3γ3x3

[F (x) +G(x)] (A.2.20)

Derivation. Using the result from integral T4, we get

T8 = −i
3
√
π

2
√
2µ3/2

ei
π
4

∫ ∞

−∞
y1/2

∫ ∞

−∞
θ2γθ

2 exp

[
2i

(
µθ2γy +

1

3
y3
)]

dθdy

= −i
3
√
π

2
√
2µ3/2

ei
π
4

∫ ∞

−∞
y1/2

∫ ∞

−∞
(θ2 + γ2θ4) exp

[
2i

(
µθ2γy +

1

3
y3
)]

dθdy
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= T4 − i
3
√
πγ2

2
√
2µ3/2

ei
π
4

∫ ∞

−∞
y1/2

∫ ∞

−∞
θ4 exp

[
2iµγ2yθ2

]
dθ exp

[
2i

(
µy +

1

3
y3
)]

dy

= T4 −
9πγ2

8
√
2µ3/2

(2µγ2)−5/2

∫ ∞

−∞
y−2 exp

[
2i

(
µy +

1

3
y3
)]

dy

= T4 −
9
√
3π

64µ9/2γ3
[G(x)− F (x)] = T4 −

π√
3γ3x3

[G(x)− F (x)]

=
π

3
√
3γ3x3

[F (x) +G(x)] . (A.2.21)

A.3 General modified Bessel function integrals

In this section we will present the relevant equations to derive the functions Jn, Ln and Rn in
Eq. (5.2.14), that is

Jn =

∫ ∞

0
xn−2F (x)dx =

∫ ∞

0
xn−1

∫ ∞

x
K5/3(ξ)dξdx =

2
3 + n

n
Ln, (A.3.1a)

Ln =

∫ ∞

0
xn−2G(x)dx =

∫ ∞

0
xn−1K2/3(x)dx = 2n−2Γ

(
n

2
− 1

3

)
Γ

(
n

2
+

1

3

)
, (A.3.1b)

Rn =

∫ ∞

0
xn−2H(x)dx =

∫ ∞

0
xn−1K1/3(x)dx = 2n−2Γ

(
n

2
− 1

6

)
Γ

(
n

2
+

1

6

)
, (A.3.1c)

as in [12]. We begin from the useful relation2 [46]∫ ∞

0
xn−1Kν(x)dx = 2n−2Γ

(
1

2
n− 1

2
ν

)
Γ

(
1

2
n+

1

2
ν

)
. (A.3.2)

This integral is valid for Re(n) > |Re(ν)|. It is clear that the derivations of Ln and Rn are
straightforward, however we require additional work for Jn. First we consider the integral which
we define as

I(x) ≡
∫ ∞

0
xn−1

∫ ∞

x
Kν+1(ξ)dξdx. (A.3.3)

We start by making the substitution ξ = x+ u, which gives us

I(x) =

∫ ∞

0

∫ ∞

x
xn−1Kν+1(x+ u)dudx. (A.3.4)

Now making another substitution with v = x + u and w = x − u, which corresponds to
dudx = 1

2dwdv. The limits over the new variable w will then go from −v to v. Consequently,
the integral may be written as

I(x) =
1

2

∫ ∞

0
Kν+1(v)

∫ v

−v

[
1

2
(v + w)

]n−1

dwdv. (A.3.5)

The innermost integral over w is∫ v

−v

[
1

2
(v + w)

]n−1

dw = 2
vn

n
, (A.3.6)

and so

I(x) =
1

n

∫ ∞

0
vnKν+1(v)dv. (A.3.7)

2The derivation of this relation is complicated and we proceed with no proof. The relation is the equation
11.4.22 in [46], as well as 10.43.19 in [65], and we reference the reader to chapter 13.21 of [42] for further context.
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Using Eq. (A.3.2), we find that

I(x) =
1

n
2n−1Γ

(
1

2
(n+ 1)− 1

2
(ν + 1)

)
Γ

(
1

2
(n+ 1) +

1

2
(ν + 1)

)
=

2

n
2n−2Γ

(
1

2
n− 1

2
ν

)
Γ

(
1

2
n+

1

2
ν + 1

)
=

2

n
2n−2 1

2
(n+ ν)Γ

(
1

2
n− 1

2
ν

)
Γ

(
1

2
n+

1

2
ν

)
=
n+ ν

n

∫ ∞

0
xn−1Kν(x)dx, (A.3.8)

where we have used the property that Γ(z + 1) = zΓ(z) in the second to last line. The integral
Jn follows by simply inserting ν = 2/3 in the expression for I(x).



Appendix B

Second order pitch angle
distribution approximation

In Sec. 5.2 we performed an approximation of ϕ(α) sinα to first order, and we now wish to con-
sider the effects on the polarisation if the second order approximation is made. This treatment
was attempted by De Búrca and Shearer [62], motivated by the degree of circular polarisation
exceeding 1 for strong magnetic fields as seen in Fig. 5.4. We will in this appendix present a
derivation of the Stokes parameters in the second order pitch angle distribution approximation,
as well as discuss the relevance of the resulting polarisation degrees.

B.1 Emission-polarisation tensor

Following a similar approach to that in chapter 5, we may write, to second order,

ϕ(α) sinα = f(α) = f(ψ) + f ′(ψ)(α− ψ) +
1

2
f ′′(ψ)(α− ψ)2

= f(ψ) + g(ψ)θ +
1

2
h(ψ)θ2, (B.1.1)

where f(α) and g(α) are the functions defined in Eq. (5.2.3), and

h(α) ≡ f ′′(α) = ϕ′′(α) sinα+ 2ϕ′(α) cosα− ϕ(α) sinα. (B.1.2)

The emission-polarisation tensor in Eq. (5.2.2) becomes

j =

∫ ∞

0
ne(γ)

∫ ∞

−∞

[
f(ψ) + g(ψ)θ +

1

2
h(ψ)θ2

]
ρxdθdγ, (B.1.3)

where the range of θ is taken between −∞ and ∞. It is clear that the second order pitch angle
distribution approximation implies the addition of the integral

j(2) ≡
∫ ∞

0
ne(γ)

∫ ∞

−∞

1

2
h(ψ)θ2ρxdθdγ =

∫ ∞

0
I(2)x ne(γ)dγ (B.1.4)

to the emission-polarisation tensor obtained in the first order approximation. We have here
defined

I(2)x ≡
∫ ∞

−∞

1

2
h(ψ)θ2ρxdθ. (B.1.5)
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Calculation of j11

Considering the first component of the polarisation tensor j(2), we get that

I(2)x11
=

3e2

4π2c
ωBx

2γ2
1

2
h(ψ)

∫ ∞

−∞
θ2θ4γK

2
2/3

(
1

2
θ3γx

)
dθ

=
3e2

8π2c

eB

γmc
x2γ2h(ψ)

π

4
√
3γ3x2

[
10

3x
H(x) +G(x)− F (x)

]
=

√
3e3B

32πmc2
h(ψ)

1

γ2

[
10

3x
H(x) +G(x)− F (x)

]
, (B.1.6)

using Eq. (A.2.9) in the second line. The addition of this term is not consistent with the
approximation in 1/γ followed throughout chapter 5. We proceed however without investigating
the possible higher order additions to the frequency polarisation tensor ρx in Eq. (5.1.17).

We note that
1

γ2
=

3

2

νB0 sinψ

ν
x, (B.1.7)

and recall the expression for ne(γ)dγ in Eq. (5.2.13). Integrating over the Lorentz factor γ
gives then

j
(2)
11 =

∫ ∞

0
I(2)x11

ne(γ)dγ

=

∫ ∞

0

3
√
2e3B

128πmc2
h(ψ)

[
10

3x
H(x) +G(x)− F (x)

]
C

(
3

2

)p/2 (νB0 sinψ)
(p+1)/2

ν(p+1)/2
x(p−1)/2dx

=
3h(ψ)

16

(νB0

ν

)
C

e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
Ij11 , (B.1.8)

where

Ij11 ≡
∫ ∞

0

[
10

3x
H(x) +G(x)− F (x)

]
x(p−1)/2dx

=
10

3
R(p+1)/2 + L(p+3)/2 − J(p+3)/2, (B.1.9)

by using the functions in Eq. (5.2.14). Including the j
(2)
11 term to the emission-polarisation

tensor term j11 from Eq. (5.2.18), we get that in the second approximation,

j11 = C
e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2

×
{
ϕ(ψ)

[
J(p+1)/2 + L(p+1)/2

]
+

3h(ψ)

16

(νB0

ν

)[10
3
R(p+1)/2 + L(p+3)/2 − J(p+3)/2

]}
.

(B.1.10)

Calculation of j22

We first note that as we are considering a higher order approximation in 1/γ, we need to
include the term proportional to g(ψ) in Eq. (5.2.20). In the first order pitch angle distribution
approximation, we therefore have to include the term

I ′x22
=

√
3e3B

16πmc2
g(ψ) cotψ

1

γ2

[
2

x
H(x)−G(x) + F (x)

]
. (B.1.11)

We see that this is the same expression as the expression in Eq. (B.1.6) multiplied by 2, except
for that the function H(x)/x is now proportional to 2 and not 10/3, as well as the signs in front
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of G(x) and F (x) are reversed. The function h(x) is also replaced with g(x) cotψ. It is then
simple to find that

j′22 =
3g(ψ) cotψ

8

(νB0

ν

)
C

e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
I ′j22 , (B.1.12)

where
I ′j22 ≡ 2R(p+1)/2 − L(p+3)/2 + J(p+3)/2. (B.1.13)

Now for the term in the second order pitch angle distribution approximation, we get that

I(2)x22
=

3e2

4π2c
ωBx

2γ4
1

2
h(ψ)

∫ ∞

−∞
θ2

(
θ2θ2γ +

θθ4γ
γ2

cotα

)
K2

1/3

(
1

2
θ3γx

)
dθ

=
3e2

8π2c

eB

γmc
x2γ4h(ψ)

∫ ∞

−∞
θ4θ2γK

2
1/3

(
1

2
θ3γx

)
dθ

=
3e3B

8π2mc2
x2γ3h(ψ)

3π

4
√
3γ5x2

[
2

3x
H(x) +G(x)− F (x)

]
=

3
√
3e3B

32πmc2
h(ψ)

1

γ2

[
2

3x
H(x) +G(x)− F (x)

]
. (B.1.14)

In the second line we have removed the second term within the parenthesis as this becomes
odd in θ and disappears upon integration, and in the following line we have used Eq. (A.2.16).
Once again, we see the similarities with (B.1.6), and get that

j
(2)
22 =

9h(ψ)

16

(νB0

ν

)
C

e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
Ij22 , (B.1.15)

where

Ij22 ≡ 2

3
R(p+1)/2 + L(p+3)/2 − J(p+3)/2. (B.1.16)

In the second order approximation, we therefore obtain the component

j22 = C
e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2

×
{
ϕ(ψ)

[
J(p+1)/2 − L(p+1)/2

]
+

3g(ψ) cotψ

8

(νB0

ν

) [
2R(p+1)/2 − L(p+3)/2 + J(p+3)/2

]
+

9h(ψ)

16

(νB0

ν

)[2
3
R(p+1)/2 + L(p+3)/2 − J(p+3)/2

]}
. (B.1.17)

Calculation of j12 and j21

By the same procedure as in Sec. 5.1, we consider only j21 and know that j12 = −j21. We get

I(2)x21
= i

3e2

4π2c
ωBx

2γ3
1

2
h(ψ)

1

2γ2
cotψ

∫ ∞

−∞
θ2θ5γK2/3

(
1

2
θ3γx

)
K1/3

(
1

2
θ3γx

)
dθ

= i
3e2

16π2c

eB

γmc
x2γh(ψ) cotψ

π

3
√
3γ3x3

[F (x) +G(x)]

= i

√
3e3B

48πmc2
h(ψ) cotψ

1

γ3x
[F (x) +G(x)] , (B.1.18)
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using Eq. (A.2.20). We have that

1

γ3x
ne(γ)dγ = C

3

4

(
3

2

)p/2 (νB0 sinψ)
p/2+1

νp/2+1
xp/2−1, (B.1.19)

and so

j
(2)
21 =

∫ ∞

0
I(2)x21

ne(γ)dγ

=

∫ ∞

0
i

√
3e3B

64πmc2
h(ψ) cotψ [F (x) +G(x)]C

(
3

2

)p/2 (νB0 sinψ)
p/2+1

νp/2+1
xp/2−1dx

=
3h(ψ)

8

(νB0

ν

)
iC

e3B

8
√
3πmc2

(
3

2

)p/2

cotψ(sinψ)p/2+1
(νB0

ν

)p/2
Ij21 , (B.1.20)

where

Ij21 ≡
∫ ∞

0
[F (x) +G(x)]xp/2−1dx = Jp/2+1 + Lp/2+1. (B.1.21)

Finally, the last component of the emission-polarisation tensor j in the second order pitch angle
distribution approximation is

j21 = iC
e3B

8
√
3πmc2

(
3

2

)p/2

cotψ(sinψ)p/2+1
(νB0

ν

)p/2
×
{
[ϕ′(ψ) tanψ + ϕ(ψ)]

[
4Lp/2 − 2Jp/2

]
+ ϕ(ψ)

[
3Rp/2+1 + 2Lp/2 − Jp/2

]
+

3h(ψ)

8

(νB0

ν

) [
Jp/2+1 + Lp/2+1

]}
. (B.1.22)

Isotropic velocity distribution

For an isotropic velocity distribution we used in Sec. 5.1 that ϕ′(ψ) = 0. Then ϕ′′(ψ) = 0 as
well, and we have that the functions f , g and h become

f(ψ) = ϕ(ψ) sinψ, (B.1.23a)

g(ψ) = ϕ(ψ) cosψ, (B.1.23b)

h(ψ) = −ϕ(ψ) sinψ. (B.1.23c)

Simplifying the components of the emission-polarisation tensor consequently give

j11 = C
e3B

4
√
2πmc2

(
3

2

)p/2

(sinψ)(p+1)/2
(νB0

ν

)(p−1)/2
ϕ(ψ)

×
{[

J(p+1)/2 + L(p+1)/2

]
− 3 sinψ

16

(νB0

ν

)[10
3
R(p+1)/2 + L(p+3)/2 − J(p+3)/2

]}
,

(B.1.24a)

j12 = −iC

√
3e3B

8πmc2

(
3

2

)p/2

cotψ(sinψ)p/2+1
(νB0

ν

)p/2
ϕ(ψ)

×
{[

Rp/2+1 + 2Lp/2 − Jp/2

]
− sinψ

8

(νB0

ν

) [
Jp/2+1 + Lp/2+1

]}
, (B.1.24b)

j21 = iC

√
3e3B

8πmc2

(
3

2

)p/2

cotψ(sinψ)p/2+1
(νB0

ν

)p/2
ϕ(ψ)

×
{[

Rp/2+1 + 2Lp/2 − Jp/2

]
− sinψ

8

(νB0

ν

) [
Jp/2+1 + Lp/2+1

]}
, (B.1.24c)



B.2. STOKES PARAMETERS AND POLARISATION 119
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B.2 Stokes parameters and polarisation

We now consider the Stokes parameters as defined in Sec. 5.3. We will assume an isotropic
velocity distribution and therefore use the components of the emission-polarisation tensor in
Eq. (B.1.24). The Stokes parameters are then
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The difference in the stokes parameters in the second order approximation as opposed to the
first order approximation is the addition of the terms proportional to νB0/ν within the curly
brackets. We have that

νB0

ν
≃ 106

ν
B

[
Hz

G

]
, (B.2.2)

and for e.g. the frequency ν ≃ 1014Hz, this factor only contributes significantly when B is very
large. It has to be of the order 106 − 108G, also depending on the angle ψ, to contribute to the
Stokes parameters. We therefore expect the degree of circular and linear polarisation to deviate
from the first order approximation at high values of the magnetic field strength B. In Fig. B.1
and B.2 we see exactly this. The degree of circular and linear polarisation changes significantly
from the first order approximation once the magnetic field strength reaches high enough values
for the additional terms to contribute.
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Figure B.1: Degree of circular polarisation for a power-law electron distribution as
function of magnetic field strength B for different pitch angle deviations ψ in the
second order pitch angle distribution approximation. The first order pitch angle dis-
tribution approximation is showed in dashed lines. The other parameters are fixed,
with frequency ν = 5× 1014Hz and particle distribution index p = 1.4.

101 103 105 107 109 1011 1013

Magnetic field [G]

0.0

0.2

0.4

0.6

0.8

1.0

De
gr

ee
 o

f l
in

ea
r p

ol
ar

isa
tio

n

0.1
1
2
5

Figure B.2: Degree of linear polarisation for a power-law electron distribution as
function of magnetic field strength B for different pitch angle deviations ψ in the
second order pitch angle distribution approximation. The first order pitch angle dis-
tribution approximation is showed in dashed lines. The other parameters are fixed,
with frequency ν = 5× 1014Hz and particle distribution index p = 1.4.



B.3. DISCUSSION 121

B.3 Discussion

There are several major differences from the work of De Búrca and Shearer [62] compared to
our results. In both cases the circular and linear polarisation degree changes behaviour in the
approximate range of magnetic field strength 105 − 108G. In [62], the degree of circular po-
larisation does not exceed 1, but this is not true with our calculations. In fact, the maximum
circular polarisation degree is about 1.15 for all ψ in the range where the second order approxi-
mation deviates from the first. The circular polarisation also clearly exceeds 1 for even stronger
magnetic fields. We may note, however, that upon using the formulas of [62], the circular po-
larisation degree does exceed 1 for larger values of the particle distribution index p. For the
frequency ν = 5× 1014Hz and pitch angle deviation ψ = 1◦, the maximum circular polarisation
degree as function of p using the formulas of [62] is plotted in Fig. B.3. Here we have used the
particle pitch angle distribution

ϕ(α) =
sinα

sinαmax
, (B.3.1)

where sinαmax is a constant that drops out upon calculating the polarisation degrees. The degree
of circular polarisation exceeds 1 for values of p greater than approximately 7.8. Although these
high values of p describe unlikely physical situations, these situations are entirely possible.
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Figure B.3: Maximum degree of circular polarisation function of particle distribution
index p in the second order pitch angle distribution approximation by [62]. The
frequency is ν = 5× 1014Hz and the pitch angle deviation is ψ = 1◦.

In Sec. 8.1 we argue that the degree of circular polarisation is only valid for weak magnetic fields.
It is therefore reasonable to assume that considering the second order pitch angle distribution
is redundant as it does not change the behaviour in the relevant range of B. The somewhat
strange behaviour of the polarisation degrees in the second order pitch angle distribution may
therefore be irrelevant to analyse any further.

It is still interesting to discuss the differences from the article [62] to the work done here. The
first thing to note is the approximation made in γ−1 in the derivation of the components of
the radiation field. We have used an approximation to the order γ−2, while [62] have only
considered the order γ−1. That is, the component proportional to cotα in Eq. (3.5.22) has not
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been included in the article. Legg and Westfold [12] argue that the higher order approximation
is necessary for the degree of circular polarisation.

Furthermore, we note the integrals used by [62] and derived in their supplementary materials.
The general θ-integrals
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2
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are defined for integers a and b. These are consequently simplified to
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and solved using modified Bessel function integrals easily derived from the properties in Eq.

(A.1.5). This is done by conveniently making the substitution ξ = x
(
1 +R2

)3/2
and integrating

over ξ instead of R. Then the new limits over ξ are from x to ∞. However, the simplifications
from Eq. (B.3.2) to Eq. (B.3.3) are not valid for arbitrary integers a and b. As an example, we
plot Eq. (B.3.2b), denoted LHS, against Eq. (B.3.3b), denoted RHS, for some selected values
of a and b in Fig. B.4. Clearly, the cases {a, b} = {2, 0}, {2, 1} and {4, 1} are not correct,
while the case {a, b} = {4, 0} seems to be accurate. There is a need for some restriction on the
integers a and b which is not given by [62].

The expressions in Eq. (B.3.3) are correct for most of the relevant set of integers {a, b} used in
the calculations by [62]. The only case used in the article where the simplification is not valid
is for Θ2 with a = 4 and b = 1 as seen in Fig. B.4. The given expression by [62] is∫ ∞

−∞
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)
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Using that1 ∫ ∞

x

(
ξ

x
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K1/3(ξ)dξ = K4/3(x) = K2/3(x) +
2

3x
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x

(
ξ
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K1/3(ξ)dξ = K2/3(x), (B.3.5b)

1These integrals can be shown by using the properties of the modified Bessel functions in Eq. (A.1.5).
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Figure B.4: The function Θ2 in terms of x. Four set of values of a and b are chosen,
and v = 0.999c is used.
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this integral is simplified to∫ ∞
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dθ =
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This is not consistent with our derivation in appendix A.2, which resulted in integral T3 of Eq.
(A.2.9). The difference is the factor 2 in front of the function H(x), where we found that this
factor should be 10/3. Our correction of the integral is minor, and the effect on the polarisation
degree should not necessarily be significant.





Appendix C

Nomenclature

Throughout the thesis we have used several abbreviations, symbols and physical constants.
Here, we present an overview of the most important ones for easy reference for the reader.

C.1 Abbreviations

AMS Alpha Magnetic Spectrometer

C-BASS C-Band All Sky Survey

CMB cosmic microwave background

CR cosmic ray

DM dispersion measure

EBL extragalactic background light

EHT Event Horizon Telescope

FD Faraday depth

FOV field of view

GMF Galactic magnetic field

GRM Galactic rotation measure

ISM interstellar medium

ISS International Space Station

LHS left-hand side

LIS local interstellar spectra

LoS line-of-sight

MAD mean absolute deviation

MHD magnetohydrodynamic

ODE ordinary differential equation

PDE partial differential equation

QED quantum electrodynamics

RHS right-hand side

RM rotation measure

RMS root mean square

RRM residual rotation measure

RTE radiative transfer equation

SD standard deviation

TA Telescope Array

UHECR ultra-high-energy cosmic ray

C.2 Symbols

In the following list, symbols representing the most important quantities used in the thesis are
presented along with their names and units. The most standard symbols such as v for velocity,
E for energy, etc. are not included. Furthermore, no vectors are included, but we specify that
vectors in the text are written in bold, e.g. v for the velocity such that its norm is v ≡ |v|.
Note also that the list contains subscripts only when strictly necessary for the context.

125



126 APPENDIX C. NOMENCLATURE

Symbol Name Unit

ωB Angular frequency of rotation s−1

Lc Correlation length cm

ωc Critical angular frequency s−1

νc Critical frequency s−1

Π Degree of polarisation —

D Diffusion coefficient cm2 s−1

ne Electron number density1 cm−3

ρ Emission-polarisation tensor cm2 g s−3

j Emission-polarisation tensor2 cm−1 g s−2

jν Emissivity cm−1 g s−2 sr−1

ν Frequency s−1

ρx Frequency polarisation tensor cm2 g s−2

Iν Intensity g s−2 sr−1

γ Lorentz factor —

B Magnetic field strength G = cm−1/2 g1/2 s−1

nk Number of turbulent modes —

p Particle distribution index —

α Pitch angle rad

ψ Pitch angle deviation rad

ϕ Pitch angle distribution function —

θ Polar angle3 rad

P Power per frequency cm2 g s−2

P Power per frequency per unit volume cm−1 g s−2

a Radius of curvature cm

E0 Rest mass energy erg = g cm2 s−2

zt Scale height cm

C.3 Physical constants

Relevant physical constants with values converted to Gaussian-cgs units from the NIST Constant
Index [66] are presented below.

1The electron number density is sometimes only denoted by n, dropping the subscript.
2Both ρ and j are called “emission-polarisation tensor”, however the latter refers to a distribution of electrons.
3“Polar angle” is used in lack of a better name. The angle θ is for the most part not referenced by a specified

name in the text.
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Symbol Name Value

kB Boltzmann’s constant 1.380649× 10−16 cm2 g s−2K−1

e Electron charge 4.8032047× 10−10 cm3/2 g1/2 s−1

me Electron mass4 9.1093837015(58)× 10−28 g

ℏ Reduced Planck’s constant 1.054571817× 10−27 cm2 g s−1

c Speed of light in vacuum 2.99792458× 1010 cm s−1

4In the text we have in many places only written m for the electron mass, dropping the subscript.





Bibliography

[1] R. Wielebinski. “Technical Report: History of Synchrotron Radiation in Astrophysics”.
In: Synchrotron Radiation News 19.5 (2006), pp. 4–9.

[2] G. C. Fox. “Generation X-ray–A Coming of Age”. In: ARBOR Ciencia, Pensamiento y
Cultura 191.772 (2015), a221.

[3] R. Beck and R. Wielebinski. “Magnetic Fields in the Milky Way and in Galaxies”. In:
Planets, Stars and Stellar Systems: Volume 5: Galactic Structure and Stellar Populations.
Ed. by G. Gilmore. Springer, 2013. Chap. 13.

[4] R. Wielebinski. “A History of Radio Astronomy Polarisation Measurements”. In: Journal
of Astronomical History and Heritage 15.2 (2012), pp. 76–95.

[5] J. J. Condon and S. M. Ransom. Essential Radio Astronomy. Princeton University Press,
2016.

[6] G. F. Smoot. “The Cosmic Background Radiation, Snowmass Workshop”. In: arXiv
preprint astro-ph/9505139 (1995).

[7] J. Singal et al. “The Second Radio Synchrotron Background Workshop: Conference Sum-
mary and Report”. In: Publications of the Astronomical Society of the Pacific 135.1045
(2023), p. 036001.

[8] J. P. Leahy. “Polarization structures in the northern hemisphere: fractional polariza-
tion and constraints on field tangling”. In: Radio Synchrotron Background Conference.
June 2022. url: https://agenda.infn.it/event/28184/contributions/143591/
attachments/92542/126021/Leahy_BAM_2022.pdf.

[9] G. B. Rybicki and A. P. Lightman. Radiative Processes in Astrophysics. John Wiley &
Sons, 1991.

[10] M. S. Longair. High Energy Astrophysics. Cambridge University Press, 2011.

[11] K. C. Westfold. “The Polarization of Synchrotron Radiation”. In: Astrophysical Journal
130 (1959), p. 241.

[12] M. P. C. Legg and K. C. Westfold. “Elliptic Polarization of Synchrotron Radiation”. In:
Astrophysical Journal 154 (1968), p. 499.

[13] S. Galtier. Introduction to Modern Magnetohydrodynamics. Cambridge University Press,
2016.

[14] F. Boulanger et al. “IMAGINE: A comprehensive view of the interstellar medium, Galactic
magnetic fields and cosmic rays”. In: Journal of Cosmology and Astroparticle Physics
2018.08 (2018), p. 049.

[15] D. Manreza Paret et al. “Magnetic fields in compact stars and related phenomena”. In:
Revista mexicana de f́ısica 66.5 (2020), pp. 538–558.

[16] B. W. Carroll and D. A. Ostlie. An Introduction to Modern Astrophysics. Cambridge
University Press, 2017.

129

https://agenda.infn.it/event/28184/contributions/143591/attachments/92542/126021/Leahy_BAM_2022.pdf
https://agenda.infn.it/event/28184/contributions/143591/attachments/92542/126021/Leahy_BAM_2022.pdf


130 BIBLIOGRAPHY

[17] M. Haverkorn. “Magnetic Fields in the Milky Way”. In: Magnetic Fields in Diffuse Media.
Springer, 2014, pp. 483–506.

[18] M. I. R. Alves et al. “The Local Bubble: a magnetic veil to our Galaxy”. In: Astronomy
& Astrophysics 611 (2018), p. L5.

[19] K. Akiyama et al. “First Sagittarius A* Event Horizon Telescope Results. VII. Polarization
of the Ring”. In: The Astrophysical Journal Letters 964.2 (2024), p. L25.

[20] Telescope Array Collaboration et al. “An extremely energetic cosmic ray observed by a
surface detector array”. In: Science 382.6673 (2023), pp. 903–907.

[21] M. Unger and G. R. Farrar. “Where Did the Amaterasu Particle Come From?” In: The
Astrophysical Journal Letters 962.1 (2024), p. L5.

[22] M. Unger and G. R. Farrar. “The Coherent Magnetic Field of the Milky Way”. In:
arXiv:astro-ph.GA/2311.12120 (2023).

[23] R. Jansson and G. R. Farrar. “The Galactic Magnetic Field”. In: The Astrophysical Jour-
nal Letters 761.1 (2012), p. L11.

[24] R. Adam et al. “Planck intermediate results. XLII. Large-scale Galactic magnetic fields”.
In: Astronomy & Astrophysics 596 (2016), A103.

[25] G. Giacinti, M. Kachelriess, and D. V. Semikoz. “Reconciling cosmic ray diffusion with
Galactic magnetic field models”. In: Journal of Cosmology and Astroparticle Physics
2018.07 (2018), p. 051.

[26] N. Oppermann et al. “An improved map of the Galactic Faraday sky”. In: Astronomy &
Astrophysics 542 (2012), A93.

[27] K. Ferrière, J. L. West, and T. R. Jaffe. “The correct sense of Faraday rotation”. In:
Monthly Notices of the Royal Astronomical Society 507.4 (2021), pp. 4968–4982.

[28] R. Adam et al. “Planck 2015 results. I. Overview of products and scientific results”. In:
Astronomy & Astrophysics 594 (2016), A1.

[29] A. R. Choudhuri. Astrophysics for Physicists. Cambridge University Press, 2010.

[30] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[31] J. Latt et al. “Palabos: Parallel Lattice Boltzmann Solver”. In: Computers & Mathematics
with Applications 81 (2021), pp. 334–350.

[32] M. Blytt, M. Kachelrieß, and S. Ostapchenko. “ELMAG 3.01: A three-dimensional Monte
Carlo simulation of electromagnetic cascades on the extragalactic background light and
in magnetic fields”. In: Computer Physics Communications 252 (2020), p. 107163.

[33] J. Giacalone and J. R. Jokipii. “Charged-Particle Motion in Multidimensional Magnetic
Field Turbulence”. In: The Astrophysical Journal 430.2.2 (1994), pp. L137–L140.

[34] J. Giacalone and J. R. Jokipii. “The Transport of Cosmic Rays across a Turbulent Mag-
netic Field”. In: The astrophysical journal 520.1 (1999), p. 204.

[35] C. Evoli et al. “Cosmic-Ray Nuclei, Antiprotons and Gamma-rays in the Galaxy: a New
Diffusion Model”. In: Journal of Cosmology and Astroparticle Physics 2008.10 (2008),
p. 018.

[36] R. Jansson and G. R. Farrar. “A New Model of the Galactic Magnetic Field”. In: The
Astrophysical Journal 757.1 (2012), p. 14.

[37] J. M. Cordes and T. J. W. Lazio. “NE2001. I. A New Model for the Galactic Distribution
of Free Electrons and its Fluctuations”. In: arXiv:astro-ph/0207156 (2002).

[38] J. M. Yao, R. N. Manchester, and N. Wang. “A New Electron Density Model for Estima-
tion of Pulsar and FRB Distances”. In: The Astrophysical Journal 835.1 (2017), p. 29.



BIBLIOGRAPHY 131

[39] C. L. Bennett et al. “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Obser-
vations: Final Maps and Results”. In: The Astrophysical Journal Supplement Series 208.2
(2013), p. 20.

[40] Y. Akrami et al. “Planck 2018 results. IV. Diffuse component separation”. In: Astronomy
& Astrophysics 641 (2020), A4.

[41] D. J. Watts et al. “COSMOGLOBE DR1 results. I. Improved Wilkinson Microwave
Anisotropy Probe maps through Bayesian end-to-end analysis”. In: Astronomy & As-
trophysics 679 (2023), A143.

[42] G. N. Watson. A treatise on the theory of Bessel functions. 2nd ed. Cambridge University
Press, 1966.

[43] R. P. Walker. “Synchrotron radiation”. In: CAS - CERN Accelerator School: 5th General
Accelerator Physics Course (1994), pp. 437–459.

[44] A. Gonoskov et al. “Charged particle motion and radiation in strong electromagnetic
fields”. In: Reviews of Modern Physics 94.4 (2022), p. 045001.

[45] C. F. Bohren and E. E. Clothiaux. Fundamentals of Atmospheric Radiation: An Intro-
duction with 400 Problems. John Wiley & Sons, 2006.

[46] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Vol. 55. US Government printing office, 1972.

[47] J. Dexter. “A public code for general relativistic, polarised radiative transfer around spin-
ning black holes”. In: Monthly Notices of the Royal Astronomical Society 462.1 (2016),
pp. 115–136.
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