Show that the scalar product of two time-like vectors can be expressed as \(a \cdot b = ab \cosh \eta \), where \(\eta \) is the rapidity connecting the two frames where \(a^\mu \equiv (a, 0) \) and \(\tilde{b}^\mu \equiv (b, 0) \) are valid.

2. Relativity of simultaneity.
Draw a space-time diagram (in \(d = 2 \)) for two inertial frames connected by a boost with velocity \(\beta \): What are the angles between the axes \(t \) and \(t' \), \(x \) and \(x' \)? Draw lines of constant \(t \) and \(t' \) and convince yourself that the time order of two space-like events is not invariant.

3. Uniformly accelerated observer.
Consider a particle moving on the \(x \) axis along a world-line parametrised by
\[
t(\sigma) = \frac{1}{a} \sinh \sigma, \quad x(\sigma) = \frac{1}{a} \cosh \sigma.
\]
a.) Find the connection between \(\sigma \) and proper-time \(\tau \); express the world-line as function of \(\tau \).
b.) Calculate the four-velocity \(u^\alpha \) and the three-velocity \(v^1 \) of the particle. Check their normalisation.
c.) Calculate the four-acceleration \(a^\alpha \) of the particle.
d.) Draw a space-time diagram.

4. Infinitesimal Lorentz transformation.
Symmetry transformations form groups; continuous transformations in physics depend analytically on their parameters (e.g. as \(\cos \vartheta \) and \(\sin \vartheta \) on the rotation angle \(\vartheta \)). An element \(g \) of such a group (called “Lie group”) can be expanded as a power series,
\[
g(\vartheta) = 1 + \sum_{a=1}^{n} i \vartheta^a T^a + \mathcal{O}(\vartheta^2) \equiv 1 + i \vartheta^a T^a + \mathcal{O}(\vartheta^2).
\]
The linear transformation in the arbitrary direction \(\vartheta^a \) is called an infinitesimal transformation, the \(T^a \) the (infinitesimal) generators of the transformation. The generators \(T^a \) can be obtained by differentiation, \(T^a = -i \frac{dg(\vartheta)}{d\vartheta^a}|_{\vartheta=0} \). Conversely, analyticity implies that the group element \(g(\vartheta) \) can be obtained by exponentiation,
\[
g(\vartheta) = \lim_{n \to \infty} [1 + i \vartheta^a T^a/n]^n
\]
a.) Calculate the generators of Lorentz transformations.
b.) Determine their “Lie algebra”, i.e. calculate the real numbers \(f^{abc} \) called structure constants in
\[
[T^a, T^b] = if^{abc}T^c.
\]
Solutions are discussed Friday, 28.01.22