Exercise sheet 2

1. Scalar product of time-like vectors.

Show that the scalar product of two time-like vectors can be expressed as $\mathbf{a} \cdot \mathbf{b} = ab \cosh \eta$, where η is the rapidity connecting the two frames where $a^{\mu} \equiv (a, \mathbf{0})$ and $\tilde{b}^{\mu} \equiv (b, \mathbf{0})$ are valid.

2. Action of free relativistic particle.

Consider $S = -\alpha \int d\tau$ as action for a free relativistic particle.

a.) Determine the constant α requiring the correct non-relativistic limit.

b.) Does a classically allowed path maximise or minimise the action?

3. Uniformly accelerated observer.

Consider a particle moving on the x axis along a world-line parametrised by

$$t(\sigma) = \frac{1}{a} \sinh \sigma, \qquad x(\sigma) = \frac{1}{a} \cosh \sigma.$$

a.) Find the connection between σ and proper-time τ ; express the world-line as function of τ .

b.) Calculate the four-velocity u^{α} and the three-velocity v^1 of the particle. Check their normalisation.

c.) Calculate the four-acceleration a^{α} of the particle.

d.) Draw a spacetime diagram including $x^{\mu}(\sigma)$.

4. Infinitesimal Lorentz transformation.

Symmetry transformations form groups; continuous transformations in physics depend analytically on their parameters (e.g. as $\cos \vartheta$ and $\sin \vartheta$ on the rotation angle ϑ). An element g of such a group (called "Lie group") can be therefore expanded as a power series,

$$g(\vartheta) = 1 + \sum_{a=1}^{n} i\vartheta^{a}T^{a} + \mathcal{O}(\vartheta^{2}) \equiv 1 + i\vartheta^{a}T^{a} + \mathcal{O}(\vartheta^{2}).$$
(1)

The linear transformation in the arbitrary direction ϑ^a is called an infinitesimal transformation, the T^a the (infinitesimal) generators of the transformation. The generators T^a can be obtained by differentiation, $T^a = -i dg(\vartheta)/d\vartheta^a|_{\vartheta=0}$. Conversely, analyticity implies that the group element $g(\vartheta)$ (more precisely, thus connected to the unity element) can be obtained by exponentiation,

$$g(\vartheta) = \lim_{n \to \infty} \left[1 + i\vartheta^a T^a / n \right]^n \tag{2}$$

a.) Calculate the generators of Lorentz transformations.

b.) Determine their "Lie algebra", i.e. calculate the real numbers f^{abc} called structure constants in

$$[T^a, T^b] = \mathrm{i} f^{abc} T^c. \tag{3}$$