Exercise sheet 2

1. Scalar product of time-like vectors.

Show that the scalar product of two time-like vectors can be expressed as $\boldsymbol{a} \cdot \boldsymbol{b}=a b \cosh \eta$, where η is the rapidity connecting the two frames where $a^{\mu} \equiv(a, \mathbf{0})$ and $\tilde{b}^{\mu} \equiv(b, \mathbf{0})$ are valid.

2. Action of free relativistic particle.

Consider $S=-\alpha \int \mathrm{d} \tau$ as action for a free relativistic particle.
a.) Determine the constant α requiring the correct non-relativistic limit.
b.) Does a classically allowed path maximise or minimise the action?

3. Uniformly accelerated observer.

Consider a particle moving on the x axis along a world-line parametrised by

$$
t(\sigma)=\frac{1}{a} \sinh \sigma, \quad x(\sigma)=\frac{1}{a} \cosh \sigma .
$$

a.) Find the connection between σ and proper-time τ; express the world-line as function of τ.
b.) Calculate the four-velocity u^{α} and the three-velocity v^{1} of the particle. Check their normalisation.
c.) Calculate the four-acceleration a^{α} of the particle.
d.) Draw a spacetime diagram including $x^{\mu}(\sigma)$.

4. Infinitesimal Lorentz transformation.

Symmetry transformations form groups; continuous transformations in physics depend analytically on their parameters (e.g. as $\cos \vartheta$ and $\sin \vartheta$ on the rotation angle ϑ). An element g of such a group (called "Lie group") can be therefore expanded as a power series,

$$
\begin{equation*}
g(\vartheta)=1+\sum_{a=1}^{n} \mathrm{i} \vartheta^{a} T^{a}+\mathcal{O}\left(\vartheta^{2}\right) \equiv 1+\mathrm{i} \vartheta^{a} T^{a}+\mathcal{O}\left(\vartheta^{2}\right) \tag{1}
\end{equation*}
$$

The linear transformation in the arbitrary direction ϑ^{a} is called an infinitesimal transformation, the T^{a} the (infinitesimal) generators of the transformation. The generators T^{a} can be obtained by differentiation, $T^{a}=-\mathrm{i} \mathrm{d} g(\vartheta) /\left.\mathrm{d} \vartheta^{a}\right|_{\vartheta=0}$. Conversely, analyticity implies that the group element $g(\vartheta)$ (more precisely, thus connected to the unity element) can be obtained by exponentiation,

$$
\begin{equation*}
g(\vartheta)=\lim _{n \rightarrow \infty}\left[1+\mathrm{i} \vartheta^{a} T^{a} / n\right]^{n} \tag{2}
\end{equation*}
$$

a.) Calculate the generators of Lorentz transformations.
b.) Determine their "Lie algebra", i.e. calculate the real numbers $f^{a b c}$ called structure constants in

$$
\begin{equation*}
\left[T^{a}, T^{b}\right]=\mathrm{i} f^{a b c} T^{c} \tag{3}
\end{equation*}
$$

