## Exercise sheet 3b: Additional exercises

## 1. Proper distance, area and volumes.

Consider the metric

$$
d s^{2}=-\left(1-A r^{2}\right)^{2} d t^{2}+\left(1-A r^{2}\right)^{2} d r^{2}+r^{2}\left(d \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \phi^{2}\right)
$$

i) Calculate the proper distance from $r=0$ to $r=R$.
ii) Calculate the area of a sphere with coordinate radius $R$.
iii) Calculate the three-volume of a sphere with coordinate radius $R$.
iv) Calculate the four-volume of a sphere with coordinate radius $R$ bounded by two $\mathrm{t}=\mathrm{const}$ planes separated by time difference $T$.

## 2. Newtonian gravity as a spacetime phenomenon

Since Newtonian gravity is a special case of Einstein gravity, it should be possible to replace the Newtonian gravitational force by a deformation of Minkowski space. Confirm that the metric describing gravitational effects in the Newtonian limit can be chosen as

$$
\begin{equation*}
\mathrm{d} s^{2}=\left(1+2 \Phi / c^{2}\right) c^{2} \mathrm{~d} t^{2}-\left(1-2 \Phi / c^{2}\right) \mathrm{d} l^{2} \tag{1}
\end{equation*}
$$

by showing that the resulting action of a point particle is equivalent to the the one using the standard Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} m v^{2}-m \Phi=T+V \tag{2}
\end{equation*}
$$

in the limit $v / c \rightarrow 0$. Here, $\Phi$ is the Newtonian gravitational potential and $\mathrm{d} l^{2}=d x^{2}+$ $\mathrm{d} y^{2}+\mathrm{d} z^{2}$ is the Euclidean line-element.

## 3. Maximal velocity of a comet

A comet starts at $r \rightarrow \infty$, approaches a star of mass $M$ and disappears again to $r \rightarrow \infty$. What is the maximal velocity $v$ of the comet measured by a stationary observer at the radius $R$ of nearest approach?
(2 ways of solution: 1. find $v$ as function of $R, l$ and $b$, connect then $l$ to $b$ and $R$. 2. Use the orthonormal basis associated with the observer.)

